JPS62150516A - Magnetic recording body - Google Patents

Magnetic recording body

Info

Publication number
JPS62150516A
JPS62150516A JP29079485A JP29079485A JPS62150516A JP S62150516 A JPS62150516 A JP S62150516A JP 29079485 A JP29079485 A JP 29079485A JP 29079485 A JP29079485 A JP 29079485A JP S62150516 A JPS62150516 A JP S62150516A
Authority
JP
Japan
Prior art keywords
thin film
intermediate layer
magnetic medium
magnetic
film magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29079485A
Other languages
Japanese (ja)
Inventor
Kenji Furusawa
賢司 古澤
Kougaki Takagaki
高垣 篤補
Katsuo Abe
勝男 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29079485A priority Critical patent/JPS62150516A/en
Priority to EP86117767A priority patent/EP0227069A3/en
Publication of JPS62150516A publication Critical patent/JPS62150516A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve coercive force and squareness ratio by providing an intermediate layer consisting of body-centered tetragonal structure by diagonal sputtering between a nonmagnetic substrate and thin film magnetic medium. CONSTITUTION:The intermediate layer 102 consisting of the thin nonmagnetic metallic film having the face-centered cubic structure is provided on the nonmagnetic substrate 101 and further the thin film magnetic medium 103 is provided thereon. The layer 102 is formed by diagonal sputtering and the crystal grains of the thin metallic film grown on the substrate 101 has the columnar structure inclining in the sputtering direction. Cr, Mo, W, V, Nb, and Ta of which the columnar structure of the crystal grains has the face-centered cubic structure are used for the material of the thin metallic film. Intra-surface magnetic anisotropy is thereby generated in the thin film magnetic medium, by which the coercive force and squareness ratio are considerably increased and the recording density is remarkably improved with good S/N.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気ディスク装置などに用いて好適な磁気記
録体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium suitable for use in magnetic disk devices and the like.

〔従来の技術〕[Conventional technology]

現在、磁気ディスク装置に用いられるIt磁気記録体、
非磁性基板上に、γ−FeiO*などの磁性微粒子を塗
布して磁性媒体が形成されており、この磁性媒体は不連
続媒体である。これに対して、近年、記録容量などの増
大化を達成するための高記録密度化の要求が高まり、る
イl気記録体Jしても、保磁力、角形比をさらに高める
ことが必要となって、磁性媒体として薄膜連続媒体の研
究、開発が進められている。
It magnetic recording bodies currently used in magnetic disk devices,
A magnetic medium is formed by coating magnetic fine particles such as γ-FeiO* on a nonmagnetic substrate, and this magnetic medium is a discontinuous medium. On the other hand, in recent years, there has been an increasing demand for higher recording densities in order to increase recording capacity, etc., and it is necessary to further increase the coercive force and squareness ratio even in the case of energy recording materials. Therefore, research and development of thin film continuous media as magnetic media is progressing.

保磁力を高める方法としては、従来、 (1)磁性媒体の材料の組成によるもの(電々公社研究
実用化報告第26巻第2号(1977)P、585−5
94)。
Conventionally, methods for increasing coercive force include: (1) Depending on the composition of the material of the magnetic medium (Electric Corporation Research and Practical Application Report Vol. 26 No. 2 (1977) P, 585-5
94).

(11)非磁性基板と薄膜磁性媒体との間に中間層を設
ける(特開昭60−35332号公り。
(11) An intermediate layer is provided between the nonmagnetic substrate and the thin film magnetic medium (see Japanese Patent Laid-Open No. 60-35332).

(iii )非磁性基板上に斜めに蒸着することによっ
て薄膜磁性媒体を形成する(近角聴信著「強磁性体の物
理(下)」裳華房(昭59)p。
(iii) Forming a thin film magnetic medium by diagonally depositing it on a non-magnetic substrate (Kishikaku Choshin, "Physics of Ferromagnetic Materials (Part 2)", Shokabo (1982), p.

(iv)薄膜磁性媒体を形成中、または形成後にfn場
中で処理する(上記(iii )の文献のp、56−6
9)などが知られている。
(iv) Treating the thin film magnetic medium in an fn field during or after formation (page 56-6 of the document (iii) above)
9) etc. are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記のいずれの方法によっても、保磁力や角形
比に限界があり、磁気記録媒体の高記録密度化を促進す
るためには、これらをさらに高める必要がある。
However, with any of the above methods, there are limits to the coercive force and squareness ratio, and in order to promote higher recording density of magnetic recording media, it is necessary to further increase these.

本発明の目的は、かかる要求を満すものであって、保磁
力や角形比がさらに向上した磁気記録媒体を提供するに
ある。
An object of the present invention is to provide a magnetic recording medium that satisfies such requirements and further improves coercive force and squareness ratio.

[問題点を解決するための手段] 非磁性基板と薄膜磁性媒体との間に、斜めスパッタによ
る体心立方構造の非磁性金属結晶粒からなる中間層を設
ける。
[Means for Solving the Problems] An intermediate layer made of nonmagnetic metal crystal grains with a body-centered cubic structure formed by diagonal sputtering is provided between a nonmagnetic substrate and a thin film magnetic medium.

〔作用〕[Effect]

斜めスパッタによって体心立方構造の結晶粒が斜め成長
して中間層が形成されているが、この斜め成長に起因し
、該中間層の上に形成した薄膜磁性媒体に、その表面に
平行な磁気異方性(以下、面内磁気異方性という)が生
じ、これが保磁力。
Due to oblique sputtering, crystal grains with a body-centered cubic structure grow obliquely to form an intermediate layer. Due to this oblique growth, a magnetic field parallel to the surface of the thin film magnetic medium formed on the intermediate layer is generated. Anisotropy (hereinafter referred to as in-plane magnetic anisotropy) occurs, and this is the coercive force.

角形比を高める。Increase squareness ratio.

〔実施例〕〔Example〕

以下、本発明の実施例を図面によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による磁気記録媒体の一実施例を示す部
分断面図であって、101は非磁性基板、102は中間
層、103はI膜磁性媒体である。
FIG. 1 is a partial sectional view showing an embodiment of a magnetic recording medium according to the present invention, in which 101 is a nonmagnetic substrate, 102 is an intermediate layer, and 103 is an I-film magnetic medium.

同図において、非磁性基板101上には体心立方構造を
とる非磁性金属薄膜の中間層102が設けられ、さらに
、その上に薄膜磁性媒体103が設けられている。
In the figure, an intermediate layer 102 of a nonmagnetic metal thin film having a body-centered cubic structure is provided on a nonmagnetic substrate 101, and a thin film magnetic medium 103 is further provided thereon.

中間層102は斜めスパッタによって形成されたもので
あり、非磁性基板101上に成長した金属薄膜の結晶粒
は、スパッタ方向くすなわち、磁気の入射方向)に傾く
柱状構造をなしている。この実施例では、この金属薄膜
の材料としては、結晶粒の柱状構造が体心立方構造をと
るCr、Mo。
The intermediate layer 102 is formed by oblique sputtering, and the crystal grains of the metal thin film grown on the nonmagnetic substrate 101 have a columnar structure that is inclined in the sputtering direction (that is, the direction of incidence of magnetism). In this embodiment, the material of this metal thin film is Cr or Mo, in which the columnar structure of crystal grains has a body-centered cubic structure.

W、V、Nb、Taなどを用いる。W, V, Nb, Ta, etc. are used.

第2図は中間71101の形成方法を示すものであって
、ターゲット104は非磁性、W坂101の法線105
 (すなわち、非磁性基板101の表面に垂直な方向)
に対して角度θだけ傾いた方向に設ける。ターゲット1
04からのスパッタ粒子は、入射角θで非磁性基板10
1に照射され、これによって結晶粒が入射角θ方向に成
長した中間層102が非磁性基板101上に得られる。
FIG. 2 shows a method of forming the intermediate 71101, in which the target 104 is non-magnetic and the normal 105 of the W slope 101 is
(that is, the direction perpendicular to the surface of the nonmagnetic substrate 101)
It is provided in a direction inclined by an angle θ with respect to the direction shown in FIG. target 1
The sputtered particles from 04 strike the non-magnetic substrate 10 at an incident angle θ.
1, thereby obtaining an intermediate layer 102 on the nonmagnetic substrate 101 in which crystal grains have grown in the direction of the incident angle θ.

この入射角θとしては、θ245°になるように設定す
薄膜磁性媒体103 (第1図)を形成°rる場合には
、第2図において、入射角θがθ≦喀5°となるように
する。
When forming the thin film magnetic medium 103 (FIG. 1), the incident angle θ is set to θ245°, and in FIG. 2, the incident angle θ is set so that θ≦5°. Make it.

このように中間層102と薄膜磁性媒体103とを形成
すると、薄膜磁性媒体103にその表面に平行な磁化容
易軸106を有する面内磁気異方性が生ずる。この面内
磁気異方性の方向は、ターゲットlO4と非磁性基板1
01上のスパッタ粒子の照射点とを含む面(すなわち、
中間Ji督i 02の結晶粒の成長方向を含む面)に平
行な方向である。したがって、たとえば、ターゲットj
04の位置を非磁性基板101の法線105を白心とし
て変化させることにより、薄膜磁性媒体!03に生ずる
面内磁気異方性の方向を変えることができる。
When the intermediate layer 102 and the thin film magnetic medium 103 are formed in this manner, in-plane magnetic anisotropy is generated in the thin film magnetic medium 103 having an axis of easy magnetization 106 parallel to its surface. The direction of this in-plane magnetic anisotropy is between the target lO4 and the nonmagnetic substrate 1.
01 (i.e.,
The direction is parallel to the plane containing the growth direction of the crystal grains of the intermediate grain 02. So, for example, target j
By changing the position of 04 with the normal 105 of the non-magnetic substrate 101 as the white center, the thin film magnetic medium! It is possible to change the direction of the in-plane magnetic anisotropy generated in 03.

そこで、この実施例では、中間層102や薄膜磁性媒体
103の形成手段を制御することにより、第3図に示す
ように、磁化容易軸106の方向を磁気記録体107の
円周方向に一致させている。
Therefore, in this embodiment, by controlling the means for forming the intermediate layer 102 and the thin film magnetic medium 103, the direction of the axis of easy magnetization 106 is made to coincide with the circumferential direction of the magnetic recording medium 107, as shown in FIG. ing.

先に(iii )で説明した従来技術では、薄膜磁性媒
体に6■化容易軸の方向がスパッタ粒子の入射方向に一
致する磁気異方性が生ずる。磁性媒体の保磁力、角形比
は磁化容易軸とは方向が異なる程小さくなるものである
から、面内磁気異方性を生ずる上記実施例では、上記従
来技術に比べて保磁力、角形比が優れ、S/Nが向上し
て記録密度をより高めることができる。
In the prior art described in (iii) above, magnetic anisotropy occurs in the thin film magnetic medium in which the direction of the easy axis of hexagonalization coincides with the direction of incidence of sputtered particles. Since the coercive force and squareness ratio of a magnetic medium decrease as the direction differs from the axis of easy magnetization, in the above embodiment that produces in-plane magnetic anisotropy, the coercive force and squareness ratio are smaller than in the above conventional technology. It is possible to improve the S/N ratio and further increase the recording density.

次に、この実施例をさらに具体的に説明する。Next, this example will be explained in more detail.

具体例1: 非磁性基板101としては、AIL合金ディスクを用い
、このディスク上にN i −P合金を無電解メッキし
た後、その表面を鏡面研摩し、最大表面粗さが0.04
μm以下となるように表面仕上げをした。
Specific Example 1: As the non-magnetic substrate 101, an AIL alloy disk is used. After Ni-P alloy is electrolessly plated on this disk, its surface is mirror-polished so that the maximum surface roughness is 0.04.
The surface was finished so that it was below μm.

次に、入射角θが45°以Fとなるように制御して非磁
性基板101上に非G1を性金属を斜めスパッタし、j
lさ0.05〜0.5μmの中間[102を形成した。
Next, a non-G1 magnetic metal is obliquely sputtered onto the non-magnetic substrate 101 by controlling the incident angle θ to be 45° or more.
An intermediate layer [102] with a thickness of 0.05 to 0.5 μm was formed.

この場合、この非磁性金属としてはCr。In this case, the nonmagnetic metal is Cr.

MO,W、V、Nbあるいはraを用いた。これにより
、中間層102を構成する結晶粒)ま体心立方構造をな
している。
MO, W, V, Nb or ra was used. As a result, the crystal grains constituting the intermediate layer 102 have a body-centered cubic structure.

次いで、入射角θが45°よりも小さくなるように制御
して中間層102上に磁性材料おスパッタし、厚さ0.
17μm程度の薄膜磁性媒体103を形成した。この磁
性材料としては、Coをドープしたr−Fe、Ozを用
い、形成された薄膜磁性媒体103としては、連続媒体
となっている。
Next, a magnetic material is sputtered onto the intermediate layer 102 to a thickness of 0.05 by controlling the incident angle θ to be smaller than 45°.
A thin film magnetic medium 103 having a thickness of about 17 μm was formed. As this magnetic material, Co-doped r-Fe and Oz are used, and the formed thin film magnetic medium 103 is a continuous medium.

なお、上記の中間層102の形成工程においては、非磁
性基板101を一部開口したマ入りで覆い、かつ非磁性
基板101を回転させた。これにより、非磁性基板10
1の全体にわたってスパッタの方向がほとんど一様とな
り、第3図に示したように、’iRH磁性媒体103で
の磁化容易軸106の方向が磁気記録体の円周方向に一
致した。
In addition, in the above-described process of forming the intermediate layer 102, the non-magnetic substrate 101 was covered with a partially open hole, and the non-magnetic substrate 101 was rotated. As a result, the nonmagnetic substrate 10
The direction of sputtering was almost uniform over the whole of the iRH magnetic medium 103, and as shown in FIG. 3, the direction of the axis of easy magnetization 106 in the iRH magnetic medium 103 coincided with the circumferential direction of the magnetic recording medium.

次表は、薄膜磁性媒体103として、Goをドープした
r−Few O,(Co−r−F+1203)を用いて
、中間[102の厚さを0.3μrQとし、中間層10
2の材料をCr、Mo、W、V、Nb。
The following table shows that Go-doped r-Few O, (Cor-F+1203) is used as the thin film magnetic medium 103, the thickness of the intermediate layer 102 is set to 0.3 μrQ, and the intermediate layer 10
2 materials are Cr, Mo, W, V, and Nb.

Taとしたときの薄膜磁性媒体1t13の保磁力と角形
比とを従来技術と対比して示したものである。
The coercive force and squareness ratio of the thin film magnetic medium 1t13 when Ta is used are shown in comparison with the prior art.

〈表〉 上表において、例(イ)は中間層102を設けずに、非
磁性基板101に直接薄膜磁性媒体103を形成した場
合である。また、例(ロ)・〜(ニ)は、夫々上段が上
記具体例に関するものであり、下段は中間層102を入
射角θが45°よりも小さいスパッタ(すなわち、通常
スパッタ)で形成した場合である。
<Table> In the above table, example (a) is a case where the thin film magnetic medium 103 is directly formed on the nonmagnetic substrate 101 without providing the intermediate layer 102. Further, in Examples (B) to (D), the upper row relates to the above specific example, and the lower row shows cases where the intermediate layer 102 is formed by sputtering with an incident angle θ smaller than 45° (i.e., normal sputtering). It is.

上表から明らかなように、斜めスパックによって体心立
方構造を有する中間11102を形成する上記具体例で
は、薄膜磁性媒体103の材料を同一とした場合、その
保磁力および角形比は、中間層102を設けない場合(
例(イ))よりも夫々約2000a以上、0.15増加
し、また、通常スパッタで中間層102を形成した場合
よりも夫々約1000e、0.1増加し、磁気記録体の
磁気特性が格段に向上している。
As is clear from the above table, in the above specific example in which the intermediate layer 11102 having a body-centered cubic structure is formed by diagonal sppacking, when the thin film magnetic medium 103 is made of the same material, its coercive force and squareness ratio are equal to those of the intermediate layer 102. If not provided (
The magnetic properties of the magnetic recording medium are significantly improved, with an increase of about 2000a and 0.15 more than in example (a)), and an increase of about 1000e and 0.1, respectively, compared with the case where the intermediate layer 102 is formed by normal sputtering. has improved.

なお、上表では、中間層102の膜厚そ0.3μmの場
合を示したが、これが0.1〜0.5μmの範囲にあれ
ば、同様の効果が得られる。
Although the above table shows the case where the thickness of the intermediate layer 102 is 0.3 μm, similar effects can be obtained if the thickness is in the range of 0.1 to 0.5 μm.

具体例2: 薄膜磁性媒体103の材料をCOとし、具体例1と同様
の処理を行なった。この結果、中間層102を通常スパ
ッタによって形成した場合に比べ、保磁力が約1000
e増加し、角形比も0.9から0.95へ増加した。中
間層102の膜17が0,1〜0.5μmの範囲で同様
の効果が得られた。
Specific Example 2: The same treatment as in Specific Example 1 was performed using CO as the material of the thin film magnetic medium 103. As a result, the coercive force is approximately 1000 times higher than that when the intermediate layer 102 is formed by normal sputtering.
e increased, and the squareness ratio also increased from 0.9 to 0.95. Similar effects were obtained when the thickness of the film 17 of the intermediate layer 102 was in the range of 0.1 to 0.5 μm.

具体例3: 薄膜磁性媒体103の材料をCo−30%Niとし、具
体例1と同様の処理を行なった。この結果、中間層10
2を通常スパッタによって形成した場合に比べ、保磁力
が約1000e増加し、角形比も0.9から0.95へ
増加した。中間層102の膜厚がO01〜0.5μmの
範囲で同様の効果が得られた。
Specific Example 3: The material of the thin film magnetic medium 103 was Co-30%Ni, and the same treatment as in Specific Example 1 was performed. As a result, the middle layer 10
Compared to the case where No. 2 was formed by normal sputtering, the coercive force increased by about 1000 e, and the squareness ratio also increased from 0.9 to 0.95. Similar effects were obtained when the thickness of the intermediate layer 102 was in the range of O01 to 0.5 μm.

以上のように、非磁性基板と薄膜磁性媒体との間に斜め
スパッタによって形成され、体心立方構造の非Lit性
金属結晶粒からなる中間層を設けることにより、薄膜磁
性媒体の磁気特性が大幅に向上する。
As described above, by providing an intermediate layer made of non-Lit metal crystal grains with a body-centered cubic structure between the nonmagnetic substrate and the thin film magnetic medium by diagonal sputtering, the magnetic properties of the thin film magnetic medium can be greatly improved. improve.

なお、上記実施例では、薄膜磁性媒体の材料をCo−r
−Fe、ol、Co、Co−30%Niとしたが、本発
明はこれらのみに限られるものではない。また、中間層
の材料としても、斜めスパッタによって体心立方構造の
結晶粒が形成されれば、先にあげたCr、Moなど以外
のものであってもよい。
In the above embodiment, the material of the thin film magnetic medium is Cor-
-Fe, ol, Co, Co-30%Ni, but the present invention is not limited to these. Further, the material of the intermediate layer may be other than the above-mentioned Cr, Mo, etc., as long as crystal grains having a body-centered cubic structure are formed by diagonal sputtering.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、薄膜磁性媒体に
面内磁気異方性を生じさせることができるから、その保
磁力、角形比が格段に増大し、良好なS/Nで記録密度
が大幅に向上する。
As explained above, according to the present invention, since in-plane magnetic anisotropy can be produced in a thin film magnetic medium, its coercive force and squareness ratio can be significantly increased, and recording density can be improved with good S/N. will be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁気記録体の一実施例を示す部分
断面図、第2図は第1図における中間層のスパッタ方法
を示す説明図、第3図は第1図における薄膜磁性媒体で
の磁化容易軸方向4示す模式図である。 101・・・・非磁性基板、102・・・・中間層、1
03・・・・薄膜磁性媒体、106・・・・磁化容易軸
方向。 l″HH,””−t。 ・□ 11 第1図 第2図 第3図
FIG. 1 is a partial cross-sectional view showing an embodiment of the magnetic recording medium according to the present invention, FIG. 2 is an explanatory diagram showing a sputtering method for the intermediate layer in FIG. 1, and FIG. FIG. 4 is a schematic diagram showing the easy axis direction 4 of magnetization. 101...Nonmagnetic substrate, 102...Intermediate layer, 1
03... Thin film magnetic medium, 106... Easy magnetization axis direction. l″HH,””-t. ・□ 11 Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 非磁性基板と金属または酸化物薄膜磁性媒体との間に非
磁性金属の中間層を設けてなる磁気記録体において、該
中間層は斜めスパッタによって形成されかつ体心立方構
造の金属結晶粒からなることを特徴とする磁気記録体。
In a magnetic recording body comprising a nonmagnetic metal intermediate layer between a nonmagnetic substrate and a metal or oxide thin film magnetic medium, the intermediate layer is formed by oblique sputtering and is made of metal crystal grains with a body-centered cubic structure. A magnetic recording medium characterized by:
JP29079485A 1985-12-25 1985-12-25 Magnetic recording body Pending JPS62150516A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29079485A JPS62150516A (en) 1985-12-25 1985-12-25 Magnetic recording body
EP86117767A EP0227069A3 (en) 1985-12-25 1986-12-19 Middle layer material for magnetic disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29079485A JPS62150516A (en) 1985-12-25 1985-12-25 Magnetic recording body

Publications (1)

Publication Number Publication Date
JPS62150516A true JPS62150516A (en) 1987-07-04

Family

ID=17760578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29079485A Pending JPS62150516A (en) 1985-12-25 1985-12-25 Magnetic recording body

Country Status (1)

Country Link
JP (1) JPS62150516A (en)

Similar Documents

Publication Publication Date Title
US4621030A (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2996442B2 (en) Magnetic thin film recording medium and method of manufacturing the same
JPS6063710A (en) Magnetic recording medium
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPH056738B2 (en)
JPH0323972B2 (en)
JPS62150516A (en) Magnetic recording body
JPH0618135B2 (en) Perpendicular magnetic recording medium
JPS62150517A (en) Magnetic recording body
JPS61110328A (en) Vertical magnetic recording medium and its production
JPS6390025A (en) Magnetic recording medium
JPH05101385A (en) Production of magnetic recording medium having axis of easy magnetization unified in circumferential direction
JPH0389502A (en) Magnetic multilayer film
EP0227069A2 (en) Middle layer material for magnetic disc
JPS60231911A (en) Magnetic recording medium
JPS5948822A (en) Vertical magnetic recording medium and its production
JPH0311531B2 (en)
JPH0337724B2 (en)
JPH02236815A (en) Magnetic recording medium and its production
JPH10261520A (en) Magnetic recording medium and its manufacture
JPS6364623A (en) Magnetic recording medium
JPH0823929B2 (en) Perpendicular magnetic recording media
JPS63124213A (en) Perpendicular magnetic recording medium
JPS6174133A (en) Magnetic recording medium
JPS61122919A (en) Vertical magnetic recording medium