JPS62150159A - Ultrasonic flaw detection and inspection for beta-type titanium alloy - Google Patents
Ultrasonic flaw detection and inspection for beta-type titanium alloyInfo
- Publication number
- JPS62150159A JPS62150159A JP60290933A JP29093385A JPS62150159A JP S62150159 A JPS62150159 A JP S62150159A JP 60290933 A JP60290933 A JP 60290933A JP 29093385 A JP29093385 A JP 29093385A JP S62150159 A JPS62150159 A JP S62150159A
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- ultrasonic flaw
- solution
- type titanium
- titanium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、β型チタン合金材の超音波探傷による検査方
法に関するものであり、特にはβ型チタン合金材の溶体
化処理材を製品とする場合の超−&波探傷検査を行うに
際し、溶体化処理材製品を直接対象とせず、時効処理を
施してα相を析出させた状態の材料に超音波探傷検査を
行うことを特徴とする検査方法に関する。本発明は、β
相の粗大化が生じやすい、例えば熱間加工上シの溶体化
処理材製品に対しても、超音波探傷を熟度良く行うこと
を可能とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inspection method using ultrasonic flaw detection for β-type titanium alloy material, and particularly relates to an ultrasonic flaw detection method for using solution-treated β-type titanium alloy material as a product. The present invention relates to an inspection method characterized in that when carrying out a flaw detection inspection, an ultrasonic flaw detection inspection is carried out not directly on a solution-treated material product, but on a material that has been subjected to an aging treatment to precipitate an α phase. The present invention is based on β
It is possible to perform ultrasonic flaw detection with good quality even on solution-treated material products that are easily subjected to phase coarsening, for example, after hot processing.
発明の背景
チタン及びチタン合金はその優れた比強度、耐食性及び
耐熱性を保有しているため、宇宙航空材料、各種化学プ
ラント、海水淡水化装置等広範曲な用途に利用されてい
る。BACKGROUND OF THE INVENTION Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, and are therefore used in a wide variety of applications such as aerospace materials, various chemical plants, and seawater desalination equipment.
チタン合金としては、従来、Ti−6AI−4V 等に
代表されるα+β型合金が広く用いられてきたが、α+
β型合金は成形性に乏しく、加工の多くを切削に頼るた
めへ、最終製品に至るまでの歩留りが非常に低いという
欠点を有している。そこで。Conventionally, α+β type alloys such as Ti-6AI-4V have been widely used as titanium alloys, but α+
β-type alloys have poor formability and rely on cutting for much of the processing, resulting in a very low yield rate for final products. Therefore.
α+β型合金に比較して、冷間加工性に優れ、しかも高
強度が得られることからβ型チタン合金の利用が近年波
がりつつある。The use of β-type titanium alloys has been gaining momentum in recent years because they have superior cold workability and high strength compared to α+β-type alloys.
同本発明におけるβ型チタン合金は、
Ti−15V−11Cr−3AI 、 Ti −11,
5Mo−4,5Sn−6ZrTi−15V−3Cr−3
Sn−5Al、 Ti−10V−2Fe−3A1等の合
金を含む。The β-type titanium alloys in the present invention are Ti-15V-11Cr-3AI, Ti-11,
5Mo-4,5Sn-6ZrTi-15V-3Cr-3
Contains alloys such as Sn-5Al and Ti-10V-2Fe-3A1.
β型チタン合金は、β相が比較的安定な合金であるため
、溶体化処理によって容易にこのβ相を常温までもちき
たすことが出来、しかもこの溶体化処理状態では、加工
性に優れている。β-type titanium alloys are alloys in which the β phase is relatively stable, so the β phase can be easily brought to room temperature by solution treatment, and in this solution treatment state, it has excellent workability. .
そこで、製造メーカーでは、この溶体化処理状態の合金
材を製品として出荷し、そしてユーザー側では溶体化状
態で受入れた材料を目的に応じた加工を施した後に所要
の強度を得るための時効処理を行うのが一般的である。Therefore, the manufacturer ships the solution-treated alloy material as a product, and the user receives the solution-treated material and processes it according to the purpose, followed by aging treatment to obtain the required strength. It is common to do this.
従って、β型チタン合金の製造メーカーは、溶体化状態
で出荷する製品について超音波探傷による検査を実施す
るのが一般的である。Therefore, manufacturers of β-type titanium alloys generally inspect products shipped in a solution-treated state using ultrasonic flaw detection.
従来技術と問題点
β型チタン合金の溶体化処理は、金践組織をβ単−相と
するため、β変態点以上の温度に加熱保持し、α相を消
失させた後、α相の析出が起らないような冷却速度で冷
却を行う熱処理である。Conventional technology and problems In solution treatment of β-type titanium alloys, in order to make the metal structure into a single β phase, the α phase is heated and held at a temperature above the β transformation point to disappear, and then the α phase is precipitated. This is a heat treatment in which cooling is performed at a cooling rate that does not occur.
しかし、β域加熱によるβ相の結晶粒成長速度は大きく
、特に、熱間加工上りの材料においては、結晶粒の粗大
化が進む。However, the growth rate of β-phase crystal grains due to heating in the β region is high, and especially in materials after hot working, the crystal grains become coarser.
このように粒成長した粗大結晶粒のものは、超音波の減
衰が大きいため、高い感度で超音波探傷を行わなければ
ならない。Since coarse crystal grains that have grown in this way have large attenuation of ultrasonic waves, ultrasonic flaw detection must be performed with high sensitivity.
しかし、結晶粒の粗大化したβ型チタン合金の溶体化処
理材では、感度を上げた超音波探傷を実施した場合、高
いノイズが多発し、S/N比が小さいため、内部欠陥の
有無や位置等を正確につかむことが困難であり、精度の
よい検査が出来ないという難点があった。However, when ultrasonic flaw detection with increased sensitivity is performed on solution-treated β-type titanium alloy materials with coarse grains, high noise occurs frequently and the S/N ratio is small, so it is difficult to detect the presence or absence of internal defects. There was a problem in that it was difficult to accurately grasp the position, etc., and it was difficult to perform accurate inspection.
現在の所、β型チタン合金の製造方法については幾つか
の報告があるが、製品の非破壊検査に関する報告は見ら
れない。At present, there are several reports on the manufacturing method of β-type titanium alloy, but there are no reports on non-destructive testing of the product.
こうした状況において、上記難点克服のための対応策に
迫られている。Under these circumstances, countermeasures are needed to overcome the above-mentioned difficulties.
発明の概要
本発明は、β型チタン合金材の溶体化処理材を製品とす
る場合の超音波探傷による検査において、内部欠陥の有
無や位置等を正確に捉えることが出来る精度のよい検査
方法の提供を目的とする。Summary of the Invention The present invention provides an accurate inspection method that can accurately detect the presence or absence and location of internal defects in ultrasonic testing of solution-treated β-type titanium alloy materials. For the purpose of providing.
本発明者等は、溶体化処理材を製品とする場合のβ型チ
タン合金の超音波探傷による検査を精度よ〈実施できる
方法について鋭意研究を行った結果、本合金の溶体化処
理材の超音波探傷における小さいS/N比は、超音波の
減衰の大きいβ単−相の粒成長が原因であシ、このβ相
中にα相を微細に析出させた状態を意図的に創出し、こ
の状態の合金材を超音波探傷にかけることによって大巾
にS/N比を向上できる、との新たな知見を得た。The inventors of the present invention have conducted extensive research on methods that can improve the accuracy of ultrasonic flaw detection of β-type titanium alloys when solution-treated materials are used as products. The small S/N ratio in sonic flaw detection is due to the grain growth of the β single phase, which has a large attenuation of ultrasonic waves. We have obtained new knowledge that the S/N ratio can be greatly improved by subjecting the alloy material in this state to ultrasonic flaw detection.
即ち、β型チタン合金材、特には熱間加工上りの材料を
β変態点以上の温度域で溶体化処理を施して製品とする
場合、溶体化処理材製品そのものに超音波探傷検査を実
施すると、超音波の減衰が大きいため、感度を上げて検
査を行わねばならない。ところが、高感度で超音波探傷
を実施すると、粒径の粗大化によるノイズとしての林状
エコーが多発し、もし、内部欠陥があったとしてもこれ
を正確に捉えることが難しい。In other words, when a β-type titanium alloy material, especially a hot-worked material, is solution-treated at a temperature above the β-transformation point to produce a product, it is necessary to perform ultrasonic flaw detection on the solution-treated material product itself. Since the attenuation of ultrasonic waves is large, inspection must be performed with increased sensitivity. However, when ultrasonic flaw detection is performed with high sensitivity, forest-like echoes occur frequently as noise due to the coarse grain size, making it difficult to accurately detect internal defects, if any.
しかし、超音波探傷の対象とするβ型チタン合金材に時
効処理を行い、α相を微細に析出させてから、同一処理
を行った対比試験片を用いて超音波探傷を行うと、低い
感度で対比試験片の標準欠陥のエコーを所定のレベルに
調整することが出来るので、S/N比を大巾に向上させ
ることができる。従って、対象とするβ型チタン合金材
に内部欠陥が存在した場合には、正確にこの存在や位置
を捉えることが可能になることが判った0しかも、材料
の内部欠陥は溶体化処理前の加工工程から由来するもの
であり、それらの有無、位置、寸法形状は溶体化処理及
び時効処理によって変化しない。However, if the β-type titanium alloy material targeted for ultrasonic flaw detection is subjected to aging treatment to finely precipitate the α phase, and then ultrasonic flaw detection is performed using a comparison test piece that has been subjected to the same treatment, the sensitivity is low. Since the echo of the standard defect of the comparison test piece can be adjusted to a predetermined level, the S/N ratio can be greatly improved. Therefore, it has been found that if an internal defect exists in the target β-type titanium alloy material, it is possible to accurately detect its presence and location. They originate from the processing process, and their presence, location, size and shape do not change through solution treatment and aging treatment.
こうした知見に基いて、本発明は、β型チタン合金材の
溶体化処理材製品を超音波探傷により検査する方法にお
いて、前記溶体化処理製品とする前の合金材に時効処理
を施してα相を析出させた状態で超音波探傷を行うこと
を特徴とするβ型チタン合金の超音波探か検査方法を提
供する。一般には、溶体化処理を施す前に合金材に時効
処理を施して超音波探傷を行い、その後溶体化処理を行
って溶体化処理材製品とする手順がとられるが、しかし
溶体化処理ずみの合金材に時効処理を施して超音波探傷
を行い、その後再度溶体化処理を行って溶体化処理材製
品としてもよい。Based on these findings, the present invention provides a method for inspecting solution-treated β-type titanium alloy products by ultrasonic flaw detection, in which the alloy material is subjected to aging treatment before being made into the solution-treated product to obtain α phase. Provided is an ultrasonic testing method for β-type titanium alloy, which is characterized by performing ultrasonic flaw detection in a precipitated state. Generally, before solution treatment, the alloy material is aged and subjected to ultrasonic flaw detection, and then solution treatment is performed to produce a solution treatment product. The alloy material may be subjected to aging treatment, subjected to ultrasonic flaw detection, and then subjected to solution treatment again to produce a solution treatment material product.
斯様に、本発明は、検査は最終製品そのものについて行
う必要があるとの固定観念を捨て、最終製品と内部欠陥
状態の1:1対応性が保証され且つ精度の高い検査を可
能とする、α相微細析出状態を検査目的の為に利用する
というユニークが発想に基礎を置いている□
本発明の対象とするβ型チタン合金は、Ti−13V−
11Cr−3Al 、 Ti−1t5Mo−4,5Sn
−6Zr 。In this way, the present invention abandons the fixed idea that inspection must be performed on the final product itself, and enables highly accurate inspection while ensuring 1:1 correspondence between the final product and internal defect status. The β-type titanium alloy that is the subject of the present invention is based on the unique idea of utilizing the α phase fine precipitation state for inspection purposes.
11Cr-3Al, Ti-1t5Mo-4,5Sn
-6Zr.
Ti−15V−3Cr−3Sn−5A1. Tt−10
V−2Fe−3A1等のチタン“基合金である。Ti-15V-3Cr-3Sn-5A1. Tt-10
It is a titanium-based alloy such as V-2Fe-3A1.
チタン合金加工製品は、一般に鋳造されたインゴットを
出発として製品の品質形状に応じて、圧延、鍛造、押出
し等の加工によって製造され、さらに製品の要求品質に
応じて、溶体化処理、溶体化時効処理等の熱処理が行わ
れ、最終?品において、機械的性質、金属組織、非破壊
試駆等の検査が行われる。Titanium alloy processed products are generally manufactured from cast ingots through processes such as rolling, forging, and extrusion, depending on the quality and shape of the product, and are then subjected to solution treatment, solution aging, etc., depending on the required quality of the product. Heat treatment such as processing is performed, and the final? The products are tested for mechanical properties, metallographic structure, non-destructive testing, etc.
本発明を特徴づけるのは、溶体化処理材を製品とする場
合の非破壊検査としての超音波探傷の方法に関するもの
である。The present invention is characterized by a method of ultrasonic flaw detection as a non-destructive inspection when solution-treated materials are used as products.
β型チタン合金は、一般にβ変態点以上の温既に加熱保
持し、α相を析出しない冷却速度で冷却を行った溶体化
処理状態でユーザーに納入され、ユーザーはこれを目的
に応じた加工を行りfC後、時効処理を行って、高強度
を有した部材を得る。β-type titanium alloys are generally delivered to users in a solution-treated state, which is heated to a temperature above the β transformation point and cooled at a cooling rate that does not precipitate the α phase, and the user processes this according to the purpose. After fC, aging treatment is performed to obtain a member with high strength.
例えば、Ti−15V−3Cr−3Sn−3A1合金を
例にとると、溶体化処理はβ変態点(730〜770℃
)を越える780〜830℃の範囲の温度で3〜60分
間保持し、空冷以上の冷却速度で室温1で冷却すること
により実施されている。時効処理は400〜600℃の
温度で一般に行われている。For example, taking the Ti-15V-3Cr-3Sn-3A1 alloy as an example, solution treatment is performed at the β transformation temperature (730-770℃
) is maintained at a temperature in the range of 780 to 830° C. for 3 to 60 minutes, and then cooled to room temperature 1 at a cooling rate higher than air cooling. Aging treatment is generally performed at a temperature of 400 to 600°C.
ここで本発明の対象とするところは、チタン合金材の製
造メーカーがユーザーに納入する溶体化処理状態の製品
の品質保証にあたシ、実施する超音波探傷の方法である
。The object of the present invention is an ultrasonic flaw detection method carried out by manufacturers of titanium alloy materials to ensure the quality of solution-treated products delivered to users.
従って、このチタン合金の製造方法については、特に規
定するものではないが、特に、溶体化処理により結晶粒
の粗大化を起しやすいβ型チタン合金の熱間加工上り材
や高温溶体化材に対して、本発明による検査方法は、効
果的である。Therefore, the manufacturing method of this titanium alloy is not particularly stipulated, but it is particularly suitable for hot-worked finished materials and high-temperature solution treated materials of β-type titanium alloys, which tend to coarsen grains due to solution treatment. On the other hand, the inspection method according to the present invention is effective.
またン°ノ造方法として、鍛造、熱間圧延、押出し等の
加工方法についても特に規定され力い0β型チタン合金
の溶体化処理材を製品とする場合、従来方法に従って、
結晶粒の粗大化したβ単−相の製品そのものの超音波探
傷を行うと、林状エコーの多発により、内部欠陥の有無
、位置等について正確な検査が困難である0
従って、本発明は、最終の俗体化処理を行う前に、時効
処理に□より、β相中にα相を微細に析出させた後、同
一処理を施した対比試験片を用い、超り波探傷を実施す
る。既に溶体化処理を終えた製品が検査ステージに送ら
れるような状況においては、それに時効処理を施して超
音波探傷を実施し、その後再溶体化処理を行えばよい。In addition, processing methods such as forging, hot rolling, and extrusion are also specified as manufacturing methods.When manufacturing a solution-treated material of 0β type titanium alloy into a product, according to conventional methods,
When performing ultrasonic flaw detection on a β single-phase product itself with coarse grains, it is difficult to accurately inspect the presence or absence and location of internal defects due to frequent forest-like echoes. Therefore, the present invention provides Before performing the final vulgarization treatment, α phase is finely precipitated in the β phase by aging treatment, and then ultra-high wave flaw detection is performed using a comparison test piece that has been subjected to the same treatment. In a situation where a product that has already undergone solution treatment is sent to the inspection stage, it may be subjected to aging treatment, ultrasonic flaw detection, and then re-solution treatment.
この方法によって、林状エコーによるノイズは大巾に低
くな9、S/N比が向上するため、内部欠陥の有無、位
置等を精度よく捉えることが出来る。With this method, the noise caused by forest echoes is greatly reduced9 and the S/N ratio is improved, making it possible to accurately detect the presence or absence and location of internal defects.
ここで、最終溶体化処理前に行う時効処理条件は、β型
チタン合金の品種によって異なるが、α相が微細に析出
する温度と時間の範囲を選択すればよい。例えば、Ti
−15V−3Cr−3Sn−3A1の場合には400〜
600℃において1〜20 hr 時効処理が為され
る。Here, the aging treatment conditions performed before the final solution treatment differ depending on the type of β-type titanium alloy, but it is sufficient to select a temperature and time range in which the α phase is finely precipitated. For example, Ti
-400~ for 15V-3Cr-3Sn-3A1
Aging treatment is performed at 600°C for 1 to 20 hours.
発明の効果
近年利用度の高まシつつあるβ型チタン合金の溶体化処
理材を製品とする場合、精度のよい超音波探傷を可能に
する検査方法の確立に成功した。Effects of the Invention We have succeeded in establishing an inspection method that enables highly accurate ultrasonic flaw detection when solution-treated β-type titanium alloy materials, which have been increasingly used in recent years, are used as products.
実施例および比較例
供試材として用いたβ型チタン合金(Ti−15V−5
Cr−3Sn−3AI )の化学成分を表1に示す。Examples and Comparative Examples β-type titanium alloy (Ti-15V-5
The chemical components of Cr-3Sn-3AI) are shown in Table 1.
使用したインゴットは、直径550馴であり、これを1
050℃に加熱した後、直径200++1mlの丸ビレ
ットを製造し、さらに、これを900℃に加熱後リング
圧延により外径420咽内径350揃厚さ100m+の
リング材を製造した。このリング材の表面スケール層を
機械加工によって除去した後、真空加熱炉において、5
50℃X 14 hrの時効処理を行ったもの囚、およ
び800℃X30分加熱保持後、Ar ガスによって
冷却した溶体化処理を行ったもの(B)、さらに(B)
を550℃×14hrで時効処理を行ったもの(C)に
ついて、各々2ケずつ超音波探傷を実施した。この超音
波探傷結果を表2に示す。The ingot used had a diameter of 550mm, which was
After heating to 050°C, a round billet with a diameter of 200++1 ml was produced, which was further heated to 900°C and then ring-rolled to produce a ring material with an outer diameter of 420, an inner diameter of 350, and a thickness of 100 m+. After removing the surface scale layer of this ring material by machining, it was heated in a vacuum heating furnace for 5 minutes.
Those subjected to aging treatment at 50°C for 14 hours, those subjected to solution treatment by heating and holding at 800°C for 30 minutes and then cooled with Ar gas (B), and (B)
Ultrasonic flaw detection was performed on two pieces of each piece (C) which had been aged at 550°C for 14 hours. The results of this ultrasonic flaw detection are shown in Table 2.
超音波探傷条件は次のとおりである。The ultrasonic flaw detection conditions are as follows.
(1)探傷方法 接触式
%式%
(4) 対比試験片 同一化学成分の材料を同一工程
で製造し、同一熱処理したもの
(5)標準欠陥 5/64インチ径平底穴(深さ60゜
1篩)のエコーをブラウン管画面の
フルスケールの50チに調整
表λ 超音波探傷結果
表2よシ、溶体化処理材のノイズはかなシ高く、標準欠
陥、3/64インチ平底穴によるエコーの高さ50%に
近いため、正確な超音波探傷は困難である。しかし、本
発明の方法に従って検査対象とするものを、溶体化処理
前に時効処理を施したものおよび、溶体化処理後時効処
理を施したもののノイズの最大高さは、ブラウン管画面
のフルスケールに対して4%以下であシ標準欠陥のエコ
ーに比べて非常に低く、検査精度が大巾に向上すること
が判る。従って、本発明は、β型チタン合金の溶体化処
理材を製品とする場合の、精度の高い超音波探傷による
検査に大きな効果をもたらす。(1) Flaw detection method Contact type % type % (4) Comparative test piece Materials with the same chemical composition manufactured in the same process and subjected to the same heat treatment (5) Standard defect 5/64 inch diameter flat bottom hole (depth 60°1) Adjusting the echo of the sieve to 50 cm of the full scale of the cathode ray tube screen λ According to the ultrasonic flaw detection results table 2, the noise of the solution-treated material is very high, and the echo due to the standard defect and 3/64 inch flat bottom hole is high. Accurate ultrasonic flaw detection is difficult because the flaw is close to 50%. However, the maximum noise height of the test object subjected to the aging treatment before solution treatment and the one subjected to aging treatment after solution treatment according to the method of the present invention is the same as the full scale of the CRT screen. On the other hand, it is less than 4%, which is very low compared to the echo of standard defects, and it can be seen that the inspection accuracy is greatly improved. Therefore, the present invention brings about a great effect on highly accurate ultrasonic flaw detection when a solution-treated β-type titanium alloy material is used as a product.
〜−1′l □~-1'l □
Claims (1)
により検査する方法において、前記溶体化処理製品とす
る前のチタン合金材に時効処理を施してα相を析出させ
た状態で超音波探傷を行うことを特徴とするβ型チタン
合金の超音波探傷検査方法。 2)溶体化処理ずみの合金材に時効処理を施して超音波
探傷を行い、その後再度溶体化処理を行つて溶体化処理
材製品とする特許請求の範囲第1項記載の方法。[Claims] 1) In a method of inspecting a solution-treated β-type titanium alloy product by ultrasonic flaw detection, the titanium alloy material before being made into the solution-treated product is subjected to an aging treatment to remove the α phase. An ultrasonic flaw detection method for β-type titanium alloy, characterized by performing ultrasonic flaw detection in a precipitated state. 2) The method according to claim 1, wherein the solution-treated alloy material is subjected to aging treatment, subjected to ultrasonic flaw detection, and then subjected to solution treatment again to produce a solution-treated material product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290933A JPS62150159A (en) | 1985-12-25 | 1985-12-25 | Ultrasonic flaw detection and inspection for beta-type titanium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290933A JPS62150159A (en) | 1985-12-25 | 1985-12-25 | Ultrasonic flaw detection and inspection for beta-type titanium alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62150159A true JPS62150159A (en) | 1987-07-04 |
JPH0243137B2 JPH0243137B2 (en) | 1990-09-27 |
Family
ID=17762381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60290933A Granted JPS62150159A (en) | 1985-12-25 | 1985-12-25 | Ultrasonic flaw detection and inspection for beta-type titanium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62150159A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014238395A (en) * | 2013-05-31 | 2014-12-18 | アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド | Method of ultrasonic inspection of as-cast titanium alloy articles |
JP2018504282A (en) * | 2014-11-05 | 2018-02-15 | アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド | Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0719417U (en) * | 1993-09-09 | 1995-04-07 | 大和理研工業株式会社 | Joint material for concrete molded board |
-
1985
- 1985-12-25 JP JP60290933A patent/JPS62150159A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014238395A (en) * | 2013-05-31 | 2014-12-18 | アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド | Method of ultrasonic inspection of as-cast titanium alloy articles |
JP2018504282A (en) * | 2014-11-05 | 2018-02-15 | アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド | Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods |
JP2019193947A (en) * | 2014-11-05 | 2019-11-07 | アーコニック インコーポレイテッドArconic Inc. | METHOD OF ULTRASONICALLY INSPECTING WELDS OBTAINED FROM Ti WELDING WIRE |
Also Published As
Publication number | Publication date |
---|---|
JPH0243137B2 (en) | 1990-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5277718A (en) | Titanium article having improved response to ultrasonic inspection, and method therefor | |
US6387197B1 (en) | Titanium processing methods for ultrasonic noise reduction | |
US6918974B2 (en) | Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability | |
US6332935B1 (en) | Processing of titanium-alloy billet for improved ultrasonic inspectability | |
US5026520A (en) | Fine grain titanium forgings and a method for their production | |
RU2321674C2 (en) | Method for producing homogenous fine-grain titanium material (variants) | |
US2894866A (en) | Method for annealing and rolling zirconium-base alloys | |
JP2988269B2 (en) | Method for producing rolled α + β titanium alloy sheet | |
US6401537B1 (en) | Titanium-based alloys having improved inspection characteristics for ultrasonic examination, and related processes | |
JP2965841B2 (en) | Method of manufacturing forged Ni-base superalloy product | |
Charquet et al. | Influence of Variations in Early Fabrication Steps on Corrosion, Mechanical Properties, and Structure of Zircaloy-4 Products | |
JPS62150159A (en) | Ultrasonic flaw detection and inspection for beta-type titanium alloy | |
JPS62284060A (en) | Manufacture of hot rolled titanium alloy plate | |
CA1131104A (en) | Process for treating weldments | |
Clemens et al. | Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2 Si sheet material with different microstructures | |
JPH01127653A (en) | Manufacture of alpha+beta type titanium alloy cold rolled plate | |
JPH01167656A (en) | Ultrasonic flaw inspection of near beta type titanium alloy | |
RU2569611C1 (en) | Method of manufacture of slabs from titanium alloy | |
US4138279A (en) | Method of producing stainless steel product | |
Thomas | On the characterisation of subsurface deformation microstructures in aerostructural titanium alloys | |
JP3065782B2 (en) | Hydrogen treatment method for titanium alloy | |
Johnson et al. | Properties and microstructure of a large forged superalloy turbine wheel | |
Clough et al. | The rosette, star, tensile fracture | |
Brasche et al. | Correlation of mechanical properties with non-destructive evaluation measurements in Al Li alloys | |
JPH01222038A (en) | Manufacture of alpha+beta type ti alloy member having high strength and high toughness |