JPH01167656A - Ultrasonic flaw inspection of near beta type titanium alloy - Google Patents

Ultrasonic flaw inspection of near beta type titanium alloy

Info

Publication number
JPH01167656A
JPH01167656A JP62327757A JP32775787A JPH01167656A JP H01167656 A JPH01167656 A JP H01167656A JP 62327757 A JP62327757 A JP 62327757A JP 32775787 A JP32775787 A JP 32775787A JP H01167656 A JPH01167656 A JP H01167656A
Authority
JP
Japan
Prior art keywords
flaw detection
titanium alloy
subjected
aging treatment
ultrasonic flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327757A
Other languages
Japanese (ja)
Inventor
Hideo Sakuyama
秀夫 作山
Hideo Takatori
英男 高取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP62327757A priority Critical patent/JPH01167656A/en
Publication of JPH01167656A publication Critical patent/JPH01167656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect internal defects with high accuracy by subjecting a near betatype titanium alloy material to an aging treatment and executing flaw detection in the state of precipitating a fine alpha phase. CONSTITUTION:A soln. heat-treated material or worked or as-worked material of a titanium-base alloy such as Ti-10V-2Fe-3Al alloy or Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy is subjected to an aging treatment, then to flaw detection; thereafter, the material is solutionized again. The soln. heat-treated material or as-worked material is otherwise subjected to the aging treatment and the flaw detection and is further subjected to the aging treatment or is made as it is into a product. Either case, the ultrasonic flaw detection is executed after the alpha phase is finely precipitated in the beta phase by the aging treatment. The noise level is largely lowered by this method and since the S/N is improved, the presence or absence of the internal defects, the position thereof, etc., are inspected with good accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はニア(near)β型チタン合金材の超音波擦
傷による検査方法に係り、特に超音波の減衰の激しいニ
ア(near)β型チタン合金の超音波擦傷を″ 精度
よく行うに好適な超音波擦傷検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for inspecting near β-type titanium alloy materials using ultrasonic abrasions, and particularly for near β-type titanium alloy materials, where ultrasonic waves are severely attenuated. The present invention relates to an ultrasonic scratch inspection method suitable for performing ultrasonic scratches on alloys with high precision.

(従来の技術〕 チタン及びチタン合金はその優れた比強度、耐蝕性及び
耐熱性を保有しているため、宇宙航空材料、各種化学プ
ラント、海水淡水化装置等広範囲な用途に利用されてい
る。
(Prior Art) Titanium and titanium alloys have excellent specific strength, corrosion resistance, and heat resistance, and are therefore used in a wide range of applications such as aerospace materials, various chemical plants, and seawater desalination equipment.

チタン合金としては、従来、Ti−6AI!−4’7等
に代表されるα+β型合金が広く用いられてきたが、近
年、α+β型合金と比較して成形性1強度、破壊靭性値
等にすぐれたニア(near)β型合金やβ型合金の利
用が広がりつつある。
As a titanium alloy, Ti-6AI! α+β type alloys such as -4'7 have been widely used, but in recent years, near β type alloys and β The use of mold alloys is expanding.

本発明におけるニア(near)β型合金とは、高温に
おけるβ相が高温領域から室温に水冷により冷却される
ことにより残留β相としてもちきたされるチタン合金で
あり、溶体化処理をβ変態点以下で行う合金を総称して
いる。このニア(near)β型合金にはTi−10V
−2Fe−3A I合金、Ti−5Au−25n−2Z
r−4Mo−4Cr合金等が含まれる。
The near β-type alloy in the present invention is a titanium alloy in which the β phase at high temperature is brought as a residual β phase by being cooled from the high temperature region to room temperature by water cooling, and the solution treatment is carried out at the β transformation point. This is a general term for the alloys described below. This near β type alloy has Ti-10V
-2Fe-3A I alloy, Ti-5Au-25n-2Z
Includes r-4Mo-4Cr alloy and the like.

このニア(near)β型チタン合金は靭性にすぐれ高
強度が得られるもので、溶体化処理、時効処理を加えて
使用されるのが一般的である。そしてこれらのチタン合
金の欠陥の有無は材料の寿命や許容応力に直接影響を及
ぼすため1通常超音波探傷による検査を中間素材または
最終製品において行っている。
This near β-type titanium alloy has excellent toughness and high strength, and is generally used after being subjected to solution treatment and aging treatment. Since the presence or absence of defects in these titanium alloys directly affects the lifespan and allowable stress of the material, 1. Usually, intermediate materials or final products are inspected by ultrasonic flaw detection.

(発明が解決しようとする問題点〕 前記ニア(near)β型チタン合金は、一般に靭性を
持たせるためβ変態点以下の温度から冷却することによ
り溶体化処理を行う。そして強度は、この後の時効処理
により析出される微細なα相によって得られる。このた
め溶体化処理状態ではこのチタン合金は初析α相と準安
定のβ相マトリックスから構成される。
(Problems to be Solved by the Invention) The near β-type titanium alloy is generally subjected to solution treatment by cooling it from a temperature below the β transformation point in order to impart toughness. This titanium alloy is obtained by the fine α phase precipitated by the aging treatment.Thus, in the solution-treated state, this titanium alloy is composed of a pro-eutectoid α phase and a metastable β phase matrix.

このβ相は体心立方格子をもち、β安定化元素が多く含
まれている。このβ相は音響学的には超音波の減衰能が
大きく、このためある程度厚い板厚を持つ材料を超音波
探傷する場合には、感度を上げないと欠陥部から十分識
別できるだけの反射波が帰ってこない、一方この感度を
上げると本来材料が持っているノイズレベルを高くする
結果となり、S/N比を小さくしてしまう欠点が生ずる
This β phase has a body-centered cubic lattice and contains many β-stabilizing elements. Acoustically speaking, this β phase has a large ability to attenuate ultrasonic waves, and therefore, when performing ultrasonic flaw detection on materials with a certain thickness, unless the sensitivity is increased, the reflected waves from the defect will be strong enough to be clearly identified. On the other hand, increasing this sensitivity results in increasing the noise level inherent in the material, which has the disadvantage of reducing the S/N ratio.

しかも、ニア(near)β型合金ではβ相の全体に占
める比率が高いため、上記の理由から超音波探傷により
検出できる欠陥は大きなもののみになってしまうという
問題があった。
Moreover, in near β-type alloys, the ratio of the β phase to the entire alloy is high, so that there is a problem in that only large defects can be detected by ultrasonic flaw detection for the above-mentioned reason.

本発明は上記事情に鑑みてなされたものであり。The present invention has been made in view of the above circumstances.

ニア(naar)β型チタン合金材の検査において、内
部欠陥の有無や位置等を正確に捉えることができる精度
の高い検査方法を提供することを目的とする。
An object of the present invention is to provide a highly accurate inspection method that can accurately determine the presence or absence and position of internal defects in the inspection of naar β-type titanium alloy materials.

〔問題点を解決するための手段及び作用〕本発明は上記
目的を達成するために、ニア(ne−ar)β型チタン
合金材の製品を超音波探傷により検査する方法において
、前記チタン合金材に時効処理を施して微細α相を析出
させた状態で超音波擦傷により検査することを特徴とし
た超音波擦傷検査方法である。
[Means and effects for solving the problems] In order to achieve the above object, the present invention provides a method for inspecting products made of near (near) β type titanium alloy material by ultrasonic flaw detection. This is an ultrasonic abrasion inspection method characterized by performing an aging treatment to precipitate a fine α phase and then inspecting it by ultrasonic abrasion.

本発明者等は、ニア(near)β型チタン合金材の超
音波探傷法について鋭意研究を行った結果、ニア(ne
ar)β型合金のβ相による超音波の減衰は、時効処理
によるα相の微細析出により大幅に改善されることを見
出した。
The present inventors have conducted intensive research on ultrasonic flaw detection methods for near β-type titanium alloy materials.
ar) It has been found that the attenuation of ultrasonic waves due to the β phase of a β type alloy is significantly improved by fine precipitation of the α phase due to aging treatment.

すなわち、ニア(near)β型チタン合金材で、加工
上り材、溶体化処理材等のβ相を多く含む状態のものの
超音波探傷を行うと、超音波の減衰が激しいため感度を
上げて検査を行わねばならない。
In other words, when performing ultrasonic flaw detection on near β-type titanium alloy materials that contain a large amount of β phase, such as processed materials or solution-treated materials, the ultrasonic waves are severely attenuated, so the sensitivity must be increased. must be carried out.

ところが高感度で超音波擦傷を実施するとノイズが多発
し、内部欠陥があってもこれを検出することが難しい。
However, when performing ultrasonic abrasion with high sensitivity, a lot of noise is generated, making it difficult to detect internal defects even if they exist.

しかし、超音波擦傷の対象とするニア(near)β型
チタン合金材に時効処理を行いα相を微細に析出させて
から、同一処理を行った標準となる対比試験片を用いて
超音波擦傷を行うと、低い感度で対比試験片の標準欠陥
のエコーを所定のレベルに調整することができるので、
S/N比を大幅に向上させることができる。
However, after subjecting the near β-type titanium alloy material to ultrasonic abrasion to an aging treatment to finely precipitate the α phase, ultrasonic abrasion was performed using a standard comparison test piece that had undergone the same treatment. By doing this, it is possible to adjust the echo of the standard defect of the control specimen to a predetermined level with low sensitivity.
The S/N ratio can be significantly improved.

したがって1本発明の超音波探傷の対象とするニア(n
ear)β型チタン合金材に内部欠陥が存在した場合に
は、正確にこの欠陥の存在や位置を捉えることが可能に
なることが判った。
Therefore, the near (n
ear) It has been found that when an internal defect exists in a β-type titanium alloy material, it is possible to accurately detect the existence and position of this defect.

しかも、材料の内部欠陥の有無5位置1寸法形状は時効
処理の熱によって変化するものではない。
Furthermore, the presence or absence of internal defects in the material, five positions, one dimension, and the shape are not changed by the heat of aging treatment.

このような知見に基づいて1本発明はニア(ne−ar
) β型チタン合金材の超音波探傷による検査において
、β相マトリックス内にα相を時効処理により微細析出
させた状態で検査を行うことを特徴としている。
Based on this knowledge, the present invention is based on near (near)
) Ultrasonic flaw detection of β-type titanium alloy materials is characterized by the fact that the inspection is performed in a state in which the α phase is finely precipitated within the β phase matrix through aging treatment.

〔実施例〕〔Example〕

以下、本発明に係るニア(near)β型チタン合金の
超音波探傷検査方法の一実施例を説明する。
An embodiment of the ultrasonic testing method for near β-type titanium alloy according to the present invention will be described below.

本実施例の対象とするニア(near)β型チタン合金
は、Ti−1(17−2Fe−3A 11合金、Ti−
Ti−5A 8n−2Zr−4Mo−4Cr合金等のチ
タン基合金である。
The near β-type titanium alloys targeted in this example are Ti-1 (17-2Fe-3A 11 alloy, Ti-
It is a titanium-based alloy such as Ti-5A 8n-2Zr-4Mo-4Cr alloy.

従来、チタン合金加工製品は、一般に鋳造されたインゴ
ットを出発として製品の品質形状に応じて、圧延、鍛造
、押出し等の加工によって製造され、さらに製品の要求
品質に応じて溶体化処理、時効処理等の熱処理が行われ
、最終製品において機械的性質、金属組織、非破壊試験
等の検査が行われる。
Conventionally, titanium alloy processed products are generally manufactured from cast ingots through processes such as rolling, forging, and extrusion, depending on the quality and shape of the product, and are then subjected to solution treatment and aging treatment depending on the required quality of the product. The final product is subjected to heat treatments such as mechanical properties, metallographic structure, non-destructive tests, etc.

ニア(near)β型チタン合金は、一般にβ変態点以
下の温度に加熱保持し、α相を析出しない冷却速度で冷
却を行い、溶体化処理状態とする。その後時効処理を施
し高強度を有した部材を得る。
A near β-type titanium alloy is generally heated and maintained at a temperature below the β transformation point, and cooled at a cooling rate that does not precipitate the α phase to bring it into a solution treatment state. Thereafter, an aging treatment is performed to obtain a member with high strength.

例えば、 Ti−10V−2Fe−3A n 合金を例
にとると、溶体化処理はβ変態点(780〜820℃)
より15〜40℃低い温度の範囲で30分以上保持後。
For example, taking the Ti-10V-2Fe-3A n alloy as an example, the solution treatment is performed at the β transformation point (780-820°C).
After holding for 30 minutes or more at a temperature 15 to 40 degrees Celsius lower.

水冷することにより行われる。また、時効処理は480
〜510℃程度の温度で一般に行われている。
This is done by cooling with water. In addition, the aging process is 480
It is generally carried out at a temperature of about 510°C.

しかし、ニア(near)β型チタン合金の溶体化処理
材、加工まま材を探傷する場合に従来の方法に従い、そ
のままおこなうとノイズレベルが高く内部欠陥の有無、
位置等について正確な検査が困難となる。
However, when performing flaw detection on solution-treated near β-type titanium alloy material or as-processed material, following conventional methods, the noise level is high and the presence or absence of internal defects is detected.
Accurate inspection of position etc. becomes difficult.

次に本実施例による超音波探傷の手順を説明する。この
手順には2通りが考えられる。第1は溶体化処理材また
は加工まま材を時効処理した後探傷を行い、その後再度
溶体化する。第2は溶体化処理材または加工まま材に時
効処理を施し、探傷後さらに時効処理を加えるか、また
はそのままにて製品とする。この探傷の対象としては最
終製品及び中間材のいずれも含まれる。いずれの場合に
も、時効処理によりβ相中にα相を微細に析出させた後
超音波探傷を実施する。この方法によりノイズレベルは
大幅に低くなりS/N比が向上するため、内部欠陥の有
無、位置等を精度よく検査することができる。
Next, the procedure of ultrasonic flaw detection according to this embodiment will be explained. There are two possible ways to perform this procedure. First, flaw detection is performed after aging the solution-treated material or the as-processed material, and then solution treatment is performed again. Second, the solution-treated material or as-processed material is subjected to aging treatment, and after flaw detection, further aging treatment is applied, or the material is made into a product as is. The targets of this flaw detection include both final products and intermediate materials. In either case, ultrasonic flaw detection is performed after the α phase is finely precipitated in the β phase by aging treatment. This method significantly lowers the noise level and improves the S/N ratio, making it possible to accurately inspect the presence and location of internal defects.

この時効処理の条件は合金の品種によって異なるが、α
相が全面的に析出する温度、時間を選択すればよく、不
十分な時効条件でも材料全体に析出α相が現れていれば
問題ない。
The conditions for this aging treatment vary depending on the type of alloy, but α
It is sufficient to select the temperature and time at which the phase precipitates over the entire surface, and there is no problem even under insufficient aging conditions as long as the precipitated α phase appears throughout the material.

例えばTi−10’7−2 F e−3A 11 合金
では、時効処理は400〜600℃において1時間以上
行えばよい。
For example, in the Ti-10'7-2 Fe-3A 11 alloy, the aging treatment may be performed at 400 to 600° C. for one hour or more.

以下、本実施例による超音波探傷の実験結果について説
明する。供試材として用いたニア(near)r型のチ
タン合金T 1−10v−2F e−3A 11 合金
の化学成分を下記第1表に示す。
The experimental results of ultrasonic flaw detection according to this example will be explained below. The chemical composition of the near r type titanium alloy T 1-10v-2F e-3A 11 alloy used as a test material is shown in Table 1 below.

第1表 使用したインゴットは直径550Iであり、これを95
0℃に加熱した後直径250111tlまで鍛造して丸
ビレットとし、このビレットを傷とりしだ後750℃に
おいて直径190圓の棒材とした。
The ingot used in Table 1 had a diameter of 550I, which was
After heating to 0°C, it was forged to a diameter of 250,111 tl to form a round billet, and after removing scratches from the billet, it was heated at 750°C to form a bar with a diameter of 190 mm.

この加工したままの材料をAとし、このA材を750℃
で1時間加熱した後水冷した溶体化処理材をBとし、前
記A材を500℃で4時間加熱して時効処理を施した直
接時効材をCとし、前記B材に500℃で4時間加熱し
て時効処理を施した溶体化時効処理材をDとして、これ
らA乃至りをそれぞれ2個ずつ製作して超音波探傷を実
施した。
This as-processed material is referred to as A, and this A material is heated to 750°C.
The solution-treated material heated for 1 hour and then water-cooled is designated as B, and the directly aged material obtained by heating the above material A at 500 ° C. for 4 hours and subjected to aging treatment is designated as C, and the above material B is heated at 500 ° C. for 4 hours. The solution-aged material D was subjected to aging treatment, and two pieces of each of A to A were manufactured and subjected to ultrasonic flaw detection.

超音波探傷条件は下記の通りである。The ultrasonic flaw detection conditions are as follows.

(1)試験片形状  190mmψX150ny。(1) Test piece shape: 190mmψX150ny.

(2)探傷方法  直接接触式 %式% (5)対比試験片  同−丸棒より切り出した190n
mψX150mmの 円柱に直径3/64イン チの平底穴を深さ60mm まで形成したもの 上記(5)の対比試験片の標準欠陥からのエコーをブラ
ウン管画面のフルスケールの50%に調整し、上記(1
)の試験片を探傷し、そのノイズレベルを測定した。そ
の結果を下記第2表に示す。
(2) Flaw detection method Direct contact type % type % (5) Comparative test piece - 190n cut from the same round bar
A flat-bottomed hole with a diameter of 3/64 inch was formed to a depth of 60 mm in a cylinder with mψ
) test piece was tested and its noise level was measured. The results are shown in Table 2 below.

第2表 超音波探傷結果 上記第2表により明確なように、従来の比較例における
加工まま材、溶体化処理材のノイズはかなり高く、標準
欠陥3764インチ平底穴によるエコーの高さ(フルス
ケールの50%)に近いため、正確な超音波探傷は困難
である。しかし、本発明の方法に従って探傷を行ったも
のは、いずれもノイズレベルが5%以下でありS/N比
10以上を達成している。したがって1本発明は、ニア
(near)β型チタン合金の超音波探傷に大きな効果
をもたらす。
Table 2 Ultrasonic flaw detection results As is clear from Table 2 above, the noise of the as-processed material and solution-treated material in the conventional comparative example is quite high, and the echo height (full scale 50%), making accurate ultrasonic flaw detection difficult. However, in all cases where flaw detection was performed according to the method of the present invention, the noise level was 5% or less and an S/N ratio of 10 or more was achieved. Therefore, the present invention brings great effects to ultrasonic flaw detection of near β-type titanium alloys.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、ニア(near)β型
チタン合金材の溶体化処理製品に時効処理を施して、微
細α相を析出させた状態で超音波探傷を行うようにした
ので、高い精度で超音波の減衰の激しいニア(near
)β型チタン合金材の超音波探傷を行うことができる効
果がある。
As described above, according to the present invention, the solution treatment product of near β-type titanium alloy material is subjected to aging treatment and ultrasonic flaw detection is performed in a state in which fine α phase is precipitated. High accuracy and near ultrasonic wave attenuation
) It has the effect of enabling ultrasonic flaw detection of β-type titanium alloy materials.

Claims (7)

【特許請求の範囲】[Claims] (1)ニア(near)β型チタン合金材の溶体化処理
材製品を超音波探傷により検査する方法において、前記
溶体化処理製品とする前のチタン合金材に時効処理を施
して微細α相を析出させた状態で超音波探傷を行うこと
を特徴とするニア(near)β型チタン合金の超音波
探傷検査方法。
(1) In a method of inspecting solution-treated near β-type titanium alloy products by ultrasonic flaw detection, the titanium alloy material before being made into the solution-treated product is subjected to aging treatment to form a fine α phase. An ultrasonic flaw detection method for a near β-type titanium alloy, characterized by performing ultrasonic flaw detection in a precipitated state.
(2)溶体化処理ずみの合金材に時効処理を施して超音
波探傷を行い、その後再度溶体化処理を行って溶体化処
理材製品とすることを特徴とする特許請求の範囲第1項
記載のニア(near)β型チタン合金の超音波探傷検
査方法。
(2) Claim 1, characterized in that the solution-treated alloy material is subjected to aging treatment and subjected to ultrasonic flaw detection, and then subjected to solution treatment again to produce a solution-treated material product. An ultrasonic flaw detection method for near β-type titanium alloy.
(3)溶体化処理材製品とする前のチタン合金材に時効
処理を施して超音波探傷を行い、その後溶体化処理を行
って溶体化処理材製品とすることを特徴とする特許請求
の範囲第1項記載のニア(ne−ar)β型チタン合金
の超音波探傷検査方法。
(3) A claim characterized in that a titanium alloy material before being made into a solution-treated material product is subjected to an aging treatment and subjected to ultrasonic flaw detection, and then subjected to solution treatment to be made into a solution-treated material product. 2. The method for ultrasonic flaw detection of a near (ne-ar) β-type titanium alloy according to item 1.
(4)溶体化処理ずみの合金材に時効処理を施して超音
波探傷を行い、その後再度時効処理を行って製品とする
ことを特徴とする特許請求の範囲第1項記載のニア(n
ear)β型チタン合金の超音波探傷検査方法。
(4) The near (n
ear) Ultrasonic testing method for β-type titanium alloy.
(5)溶体化処理ずみの合金材に時効処理を施して超音
波探傷を行った後、製品とすることを特徴とする特許請
求の範囲第1項記載のニア(near)β型チタン合金
の超音波探傷検査方法。
(5) The near β-type titanium alloy according to claim 1, which is made into a product after subjecting the solution-treated alloy material to aging treatment and performing ultrasonic flaw detection. Ultrasonic flaw detection inspection method.
(6)製品とする前のチタン合金材に時効処理を施して
超音波探傷を行い、その後再度時効処理を行ってそのま
ま製品とすることを特徴とする特許請求の範囲第1項記
載のニア(near)β型チタン合金の超音波探傷検査
方法。
(6) The near (1) according to claim 1, characterized in that the titanium alloy material is subjected to aging treatment before being made into a product, subjected to ultrasonic flaw detection, and then subjected to aging treatment again to be made into a product as it is. near) Ultrasonic testing method for β-type titanium alloy.
(7)製品とする前のチタン合金材に時効処理を施して
超音波探傷を行った後、そのまま製品とすることを特徴
とする特許請求の範囲第1項記載のニア(near)β
型チタン合金の超音波探傷検査方法。
(7) Near β according to claim 1, wherein the titanium alloy material is subjected to aging treatment and subjected to ultrasonic flaw detection before being made into a product, and then made into a product as it is.
Ultrasonic testing method for type titanium alloy.
JP62327757A 1987-12-24 1987-12-24 Ultrasonic flaw inspection of near beta type titanium alloy Pending JPH01167656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327757A JPH01167656A (en) 1987-12-24 1987-12-24 Ultrasonic flaw inspection of near beta type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327757A JPH01167656A (en) 1987-12-24 1987-12-24 Ultrasonic flaw inspection of near beta type titanium alloy

Publications (1)

Publication Number Publication Date
JPH01167656A true JPH01167656A (en) 1989-07-03

Family

ID=18202648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327757A Pending JPH01167656A (en) 1987-12-24 1987-12-24 Ultrasonic flaw inspection of near beta type titanium alloy

Country Status (1)

Country Link
JP (1) JPH01167656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
JP2019193947A (en) * 2014-11-05 2019-11-07 アーコニック インコーポレイテッドArconic Inc. METHOD OF ULTRASONICALLY INSPECTING WELDS OBTAINED FROM Ti WELDING WIRE

Similar Documents

Publication Publication Date Title
US5277718A (en) Titanium article having improved response to ultrasonic inspection, and method therefor
US5026520A (en) Fine grain titanium forgings and a method for their production
Unal et al. Effects of conventional shot peening, severe shot peening, re-shot peening and precised grinding operations on fatigue performance of AISI 1050 railway axle steel
Miller et al. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8 Mo
Mutoh et al. The effect of residual stresses induced by shot‐peening on fatigue crack propagation in two high strength aluminium alloys
Tariq et al. Characterization of material properties of 2xxx series al-alloys by non destructive testing techniques
AU2003262755B2 (en) Processing of alpha-beta titanium alloy workpieces for good ultrasonic inspectability
US6387197B1 (en) Titanium processing methods for ultrasonic noise reduction
Cavaliere Hot and warm forming of 2618 aluminium alloy
CN110760763A (en) Forging method of steel ring forging for nuclear power equipment
US3470034A (en) Method of refining the macrostructure of titanium alloys
JPH01167656A (en) Ultrasonic flaw inspection of near beta type titanium alloy
Thossatheppitak et al. Mechanical properties at high temperatures and microstructures of a nickel aluminum bronze alloy
Davies et al. Fatigue crack initiation and growth behaviour of 316L stainless steel manufactured through selective laser melting
KR890003346B1 (en) Al alloy for head drum of video tape recorder
CA1131104A (en) Process for treating weldments
Eylon et al. Fractographic and metallographic morphology of fatigue initiation sites
JPH0243137B2 (en)
Mavropoulos et al. Effect of Heat Treatments on the Corrosion Behavior of High Strength Aluminum Alloy
Thomas On the characterisation of subsurface deformation microstructures in aerostructural titanium alloys
Sláma et al. Effect of mechanical treatment on intergranular corrosion of 6064 alloy bars
Clough et al. The rosette, star, tensile fracture
RU2707114C1 (en) METHOD FOR THERMOMECHANICAL PROCESSING OF SEMI-FINISHED PRODUCTS FROM HEAT-STRENGTHENED Al-Cu-Mg-Ag ALLOYS
JPH03108658A (en) Method of detecting nonmetallic inclusion in high carbon steel
Boyd et al. The effect of composition on the mechanism of stress-corrosion cracking of titanium alloys in N2O4, and aqueous and hot-salt environments