JPS62150133A - Apparatus for testing rotation of blade - Google Patents
Apparatus for testing rotation of bladeInfo
- Publication number
- JPS62150133A JPS62150133A JP60290613A JP29061385A JPS62150133A JP S62150133 A JPS62150133 A JP S62150133A JP 60290613 A JP60290613 A JP 60290613A JP 29061385 A JP29061385 A JP 29061385A JP S62150133 A JPS62150133 A JP S62150133A
- Authority
- JP
- Japan
- Prior art keywords
- blade
- magnet
- attraction
- test
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Of Engines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は翼の回転試験装置に係り、特に、タービン翼等
の回転加振試験に好適な翼の回転試験装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rotation testing device for blades, and particularly to a rotation testing device for blades suitable for rotational vibration testing of turbine blades and the like.
ガスタービン等の翼車は、一般に、第6図に示すような
構造になっている。すなわち、軸1に取付けられた車盤
2に数十枚の翼1が等ピッチで車盤2の全周にわたって
植込まれている。各翼の外径方向の先端には、翼の振動
を抑制するためのシュラウド(第2図4p参照)が取付
けられているが、運転中は変形によって互いに接触し、
あたかも一体の環状のシュラウド4ai形成する。A blade wheel of a gas turbine or the like generally has a structure as shown in FIG. That is, several dozen blades 1 are embedded in a chassis 2 attached to a shaft 1 at equal pitches over the entire circumference of the chassis 2. A shroud (see Figure 2, 4p) is attached to the tip of each blade in the outer diameter direction to suppress blade vibration, but during operation, the shroud deforms and comes into contact with each other.
The shroud 4ai is formed as if it were an integral annular shroud.
翼への作動流体の励振による翼1の固有振動数との共振
を回避し、翼1の破損等を防止することは、これらの機
器の設計、運用にあたって最重槻項目となっている。x
lの共振回避の検討用として第7図に示すようなキャン
ベル図が用いられる。Avoiding resonance with the natural frequency of the blade 1 due to excitation of the working fluid to the blade and preventing damage to the blade 1 is the most important consideration in the design and operation of these devices. x
A Campbell diagram as shown in FIG. 7 is used to study the avoidance of resonance of l.
第7図は横軸の回転数を変えて翼の固有振動数を求めて
横に伸びる曲線でそれを表わしたとき、第7図の原点か
ら右上りの曲線で示される高次の励振力(回転数の整数
倍の高次調波)の直線と先の固有振動数の曲線との交点
が共振点であることを示す。第7図の例では定格速度を
仮に500Or pmとするとき、破線はへ次と九次の
高次調波の間にあり、共振しない。Figure 7 shows that when the natural frequency of the blade is determined by changing the rotational speed of the horizontal axis and expressed as a horizontally extending curve, the higher-order excitation force ( This shows that the intersection of the straight line of higher-order harmonics (which are integral multiples of the rotational speed) and the curve of the natural frequency described above is the resonance point. In the example of FIG. 7, when the rated speed is assumed to be 500 Or pm, the broken line is between the harmonics of the harmonic order and the ninth order, and there is no resonance.
通常ガスタービン等の翼車は、翼の固有振動数を計算に
より求め、定格速度で共振しないように設計されるが、
確認のための回転試験を行ない、翼の振動を測定して第
7図のようなキャンベル図の実測図を作成することが行
なわれる。このとき、共振点における振動振幅や振動応
力を第7図のように○印の大きさで表わすことが多い。Normally, impellers such as gas turbines are designed to avoid resonance at the rated speed by calculating the natural frequency of the blades.
A rotation test is conducted for confirmation, the vibration of the blade is measured, and a measured Campbell diagram as shown in FIG. 7 is created. At this time, the vibration amplitude and vibration stress at the resonance point are often expressed by the size of a circle as shown in FIG.
特に、ガスタービンの翼車は前原のようにシュラウドで
全体の翼が一体化された環状翼となっているため、計X
条件が複雑で計算の予測精度が低下するため、確認のた
めの回転試験の機会が多い。In particular, the blade wheel of a gas turbine is an annular blade with the entire blade integrated with a shroud like Maehara, so the total
Because the conditions are complex and the prediction accuracy of calculations decreases, there are many opportunities for rotation tests for confirmation.
回転試験によって第7図のようなキャンベル図を得るに
は回転させながら翼全体全励振、すなわち、加振する必
要があり、このため、従来は翼の近くに設けたノズルか
ら、例えば、特開昭58−214820号公報に示すよ
うに、空気などの流体を高圧で噴流として吹きつける方
法が用いられてきた。しかし、この方法は励振用VC吹
きつけた空気の摩擦抵抗による自然減速によって、被駆
動回転翼の速度を変えているので、任意の一定速度で加
振できない上、駆動モータを含む被駆動回転翼全体を真
空室内に収納する構造となっているので、被駆動回転翼
の実働ガス温度に近い高温雰囲気中での運転が困難であ
るなどの欠点があった。In order to obtain a Campbell diagram as shown in Figure 7 through a rotation test, it is necessary to fully excite the entire blade while rotating, in other words, excite it. As shown in Japanese Patent No. 58-214820, a method has been used in which a fluid such as air is sprayed as a jet at high pressure. However, in this method, the speed of the driven rotor blade is changed by natural deceleration caused by the frictional resistance of the air blown by the excitation VC, so it is not possible to vibrate at an arbitrary constant speed, and the driven rotor blade including the drive motor cannot be vibrated at an arbitrary constant speed. Since the entire structure is housed in a vacuum chamber, there are drawbacks such as difficulty in operation in a high-temperature atmosphere close to the actual gas temperature of the driven rotor blades.
また、回転中のlI&を磁石で加振する装置として、例
えば、特開昭48−60977号公報があるが、これは
数枚の翼からなる群翼と群翼の間に、電磁石を装着した
加振用具を挿入する構成をとっておシ、翼全体がシュラ
ウド等で連結された環状翼には適用できないという欠点
があった。In addition, there is, for example, Japanese Unexamined Patent Publication No. 48-60977 as a device for exciting the rotating lI& with a magnet. Although the structure is such that a vibrating tool is inserted, there is a drawback that it cannot be applied to an annular wing in which the entire wing is connected by a shroud or the like.
、〔発明の目的〕
本発明の目的は、低コストで、振動試験の容易な翼の回
転試験装置を提供することにある。, [Object of the Invention] An object of the present invention is to provide a blade rotation testing device that is low cost and allows easy vibration testing.
本発明の特徴は、翼近くの静止構造物に磁石を設置し、
一方、翼にはこの碑石と適当な間隙をもって磁気回路を
形成するような磁性体の吸着片を装置し、磁石とこの吸
着片との間の吸引力によって、回転中の翼にインパルス
状の加振力を与え得るようにしたことにある。The feature of the present invention is that a magnet is installed on a stationary structure near the wing,
On the other hand, a magnetic attracting piece is installed on the blade to form a magnetic circuit with an appropriate gap between the stone and the stone, and the attractive force between the magnet and the attracting piece applies an impulse-like force to the rotating blade. The reason is that it can give vibrational force.
本発明の詳細を以下実施例によって詳述する。 The details of the present invention will be explained in detail below with reference to Examples.
第1図において、供試翼1、車盤2及び軸3からなるロ
ータは軸3の両端を軸受21及び22で支持されている
。このロータはカップリング25、増速ギヤ装置23及
びカップリング26を介して1駆動モータ24によシ駆
動される。ロータの翼車部分は回転による風損を叙らす
ため車盤室28に収納され、車盤室28の中は真空とな
っている。In FIG. 1, a rotor consisting of a test blade 1, a chassis 2, and a shaft 3 is supported at both ends of the shaft 3 by bearings 21 and 22. This rotor is driven by a single drive motor 24 via a coupling 25, a speed increasing gear device 23, and a coupling 26. The impeller portion of the rotor is housed in the wheel panel chamber 28 to prevent wind damage due to rotation, and the inside of the wheel disk chamber 28 is kept in a vacuum.
スリップリング27は翼1に貼付した歪ゲージ(図示せ
ず)の出力を外部に取出し、Ji1!1の振動を測定す
るためのものである。The slip ring 27 is for taking out the output of a strain gauge (not shown) attached to the blade 1 to the outside and measuring the vibration of Ji1!1.
磁石装[30は固定静止構造物として、この場合車盤室
28の側壁が用いられ、そこに固定されている。磁石装
置30の詳細は第2図及び第3図のようになっておシ、
磁石保持台33に載せられた永久磁石32はスペーサ3
4を介してボルト35及び36で固定されている。磁石
保持台33はボルト37及び38によって固定台41と
連結され、固定台41はボルト42及び43によって車
盤室28の壁に固定されている。The magnet assembly [30 is a fixed stationary structure, in this case the side wall of the vehicle panel chamber 28, and is fixed thereto. The details of the magnet device 30 are shown in FIGS. 2 and 3.
The permanent magnet 32 placed on the magnet holder 33 is attached to the spacer 3
4 with bolts 35 and 36. The magnet holding stand 33 is connected to a fixed stand 41 by bolts 37 and 38, and the fixed stand 41 is fixed to the wall of the vehicle panel chamber 28 by bolts 42 and 43.
磁性体の吸着片は全ての翼1のシュラウド4pの半径方
向内側に永久磁石31と間隙gをもつように接着剤で接
着されている。永久磁石32と吸着片31間の間隙gは
ボルト37及び38で調整できるようになっている。す
なわち、ナツト39及び40を緩めた状態でボルト37
及び38fjr:固定台41のネジ孔に絞め込み、所定
の間隙gとなった所でナツト39及び40が磁石保持台
33及び固定台41に絞め付けられ、固定される。The magnetic attracting piece is bonded to the permanent magnet 31 on the radially inner side of the shroud 4p of all the blades 1 with an adhesive so as to have a gap g. The gap g between the permanent magnet 32 and the attraction piece 31 can be adjusted using bolts 37 and 38. That is, with nuts 39 and 40 loosened, bolt 37
and 38fjr: The nuts 39 and 40 are tightened into the screw holes of the fixed base 41, and when a predetermined gap g is reached, the nuts 39 and 40 are tightened and fixed to the magnet holding base 33 and the fixed base 41.
次に、本発明の翼の回転試験装置の機能について説明す
る。永久磁石32と吸着片31とが第2図または第3図
に示した位?i¥関係にあると、これらによって磁気回
路が形成されるので、間隙2間には吸着片31を磁石3
2側に引きつけようとする磁気吸引力が発生する。翼1
が回転するとこの吸引力によって、翼一枚につき周期的
インパルス力と見なされる次式で示される磁気力F (
t)が作用する。Next, the functions of the blade rotation testing apparatus of the present invention will be explained. Are the permanent magnet 32 and the attraction piece 31 at the positions shown in FIG. 2 or 3? If there is an i\ relationship, a magnetic circuit is formed by these, so an attraction piece 31 is placed between the gap 2 and the magnet 3.
A magnetic attraction force is generated that tries to attract the two sides. wing 1
When the blade rotates, this attractive force creates a magnetic force F (
t) acts.
たソし、foは永久磁石32の静的吸引力、toは吸着
片31の磁石通過時間、Tはロータの回転周期、bは永
久磁石320周方向長さ、Dは吸着片31の取付は位置
直径である。(1)式の右辺の第二項から明らかなよう
に、ロータが回転すると興1はに次の高次調波成分力2
foto/Tによって加振されることになる。Where, fo is the static attraction force of the permanent magnet 32, to is the magnet passage time of the attraction piece 31, T is the rotation period of the rotor, b is the circumferential length of the permanent magnet 320, and D is the attachment of the attraction piece 31. It is the position diameter. As is clear from the second term on the right side of equation (1), when the rotor rotates, the higher harmonic component power 2
It will be excited by foto/T.
ロータが回転している限り、翼1は加振されるから、回
転数を変えながら翼1に貼付した歪ゲージ(図示せず)
の出力をスリップリング27で取出すことにより、振動
を測定すると、第7図に示したようなキャンベル図の実
測図を得られる。As long as the rotor is rotating, the blade 1 is vibrated, so a strain gauge (not shown) is attached to the blade 1 while changing the rotation speed.
When the vibration is measured by extracting the output from the slip ring 27, a measured Campbell diagram as shown in FIG. 7 can be obtained.
第4図は別の実施例を示す。吸着片31は減1のシュラ
ウド4pのリプ5の外側側面に接着されている。吸着片
31はもう一方のリプ6の外側に接着し、電磁石32を
それに対向させて設置するようにしても同じ効果が得ら
れる。たyし、この実施例はロータの回転数が低く、遠
心力による吸着片31の接着への支障のない場合にのみ
有効である。FIG. 4 shows another embodiment. The suction piece 31 is adhered to the outer side surface of the lip 5 of the reduced shroud 4p. The same effect can be obtained by adhering the adsorption piece 31 to the outside of the other lip 6 and placing the electromagnet 32 facing it. However, this embodiment is effective only when the rotation speed of the rotor is low and there is no problem with adhesion of the suction pieces 31 due to centrifugal force.
この実施例では車盤室28の真空度を上げた状1(10
torr)のま%、glの回転加振試験の実施が可能で
あったため、空気による動力損が減少し、回転のための
所要動力は従来技術と比べて少なくとも数分の−に減少
させることができた。In this embodiment, the degree of vacuum in the vehicle panel chamber 28 is increased to 1 (10
Since it was possible to perform a rotational excitation test of % (torr) and gl, the power loss due to air was reduced, and the power required for rotation could be reduced by at least several minutes compared to the conventional technology. did it.
また、磁石装置30は一度設置後は、特に、手のか\る
ことかないので試験の遂行が容易であった。Moreover, once the magnet device 30 was installed, it was easy to carry out the test, especially since there was no need to touch the magnet device.
第5図はこの実施例における車盤室の温度上昇の傾向を
示す。前述のように、高真空状態とはいえ、わずかな残
留空気の摩擦抵抗によシ車盤室28の温度が上昇したも
ので、最高回転数では数百度Cに達した。このため磁石
としては耐熱性の永久磁石を用いたものである。このよ
うに、本発明になる翼の回転試験装置によれば、磁石の
耐熱性を適当に選ぶことにより、高温中での回転試験が
可能である。また、車盤室28の冷却などにより、回転
場の温度が低い状態であれば別の磁石、例えば、直流の
′電磁石を用いて、磁石装置30を構成することも可能
である。この場合は電磁石のコイルに電流を流すことに
なるので、磁石装置30の構成にや\複雑となるが、電
流を犬きくすることにより、買1への加振力を大きく選
ぶことができる。FIG. 5 shows the tendency of temperature rise in the vehicle panel chamber in this embodiment. As mentioned above, even though it was in a high vacuum state, the temperature in the wheel panel chamber 28 rose due to the slight frictional resistance of the residual air, reaching several hundred degrees Celsius at the maximum rotation speed. For this reason, a heat-resistant permanent magnet is used as the magnet. As described above, according to the blade rotation testing device of the present invention, rotation testing at high temperatures is possible by appropriately selecting the heat resistance of the magnet. Furthermore, if the temperature of the rotating field is low due to cooling of the vehicle panel chamber 28, the magnet device 30 can be constructed using another magnet, for example, a DC' electromagnet. In this case, a current will be passed through the electromagnetic coil, so the structure of the magnet device 30 will be somewhat complicated, but by increasing the current, the excitation force to the magnet 1 can be selected to be large.
本発明によれば、高温中で、任意の速度における翼の加
振が可能であり、しかも、翼の駆動馬力を小さくして低
コスト化を図り得る。According to the present invention, it is possible to vibrate the blade at any speed at high temperatures, and furthermore, it is possible to reduce the driving horsepower of the blade, thereby reducing costs.
第1図は本発明の一実施例の立面図、第2図は磁石装置
の詳細を示す平面図、第3図は磁石装置の詳細を示す立
面図、第4図は別の実施例を示す断面図、第5図は車盤
室内の温度上昇の説明図、第6図は翼車の構成を示す説
明図、第7図は翼の振動特性を示す図である。
1・・・翼、2・・・車盤、3・・・軸、4p・・・シ
ュラウド、21.22・・・軸受、23・・・増速機、
24・・・駆動モー1.27・・・スリップリング、2
8・・・車盤完、30・・・磁石装置、31・・・吸着
片、32・・・永久磁石、33・・・磁石保持台、37
.38・・・ボルト、40・・・固定台。
′き代理人 弁理士 小
川勝男 −′
第4図
第50
潟′7図
口 重大数 〔トP/IYL)Fig. 1 is an elevational view of one embodiment of the present invention, Fig. 2 is a plan view showing details of the magnet device, Fig. 3 is an elevational view showing details of the magnet device, and Fig. 4 is another embodiment. FIG. 5 is an explanatory diagram of the temperature rise in the vehicle panel chamber, FIG. 6 is an explanatory diagram showing the configuration of the blade wheel, and FIG. 7 is a diagram showing the vibration characteristics of the blade. 1... Wing, 2... Vehicle board, 3... Shaft, 4p... Shroud, 21.22... Bearing, 23... Speed increaser,
24... Drive motor 1.27... Slip ring, 2
8... Car chassis complete, 30... Magnet device, 31... Adsorption piece, 32... Permanent magnet, 33... Magnet holding stand, 37
.. 38...Bolt, 40...Fixing base.
'Representative Patent Attorney Katsuo Ogawa −' Figure 4 Figure 50 Lagoon Figure 7 Exit Significant Number [P/IYL]
Claims (1)
タを前記軸の両端で支持する軸受、前記軸の一方の端よ
り軸継手を介してこの前記ロータを回転させる駆動装置
からなるものにおいて、前記供試翼付近の静止構造物に
磁石を設置し、前記ロータの翼にはこの磁石と適当な間
隙をもつて磁気回路を形成すべく磁性体の吸着片を装着
したことを特徴とする翼の回転試験装置。 2、前記ロータの前記供試翼を含む車盤部を回転自在に
収納する車盤室を設け、この車盤室を真空とし、磁石を
設置する前記静止構造物として前記車盤室の壁を用いた
ことを特徴とする特許請求の範囲第1項に記載の翼の回
転試験装置。 3、磁石として永久磁石を用いたことを特徴とする特許
請求の範囲第1項または第2項に記載の翼の回転試験装
置。 4、前記磁性体の前記吸着片を前記供試翼のシュラウド
部分に接着剤で装着したことを特徴とする特許請求の範
囲第1項、第2項または第3項に記載の翼の回転試験装
置。[Scope of Claims] 1. A rotor having a shaft with test blades embedded in the vehicle chassis, bearings that support this rotor at both ends of the shaft, and a rotor that is connected to one end of the shaft via a shaft coupling. A magnet is installed on a stationary structure near the test blade, and a magnetic material is attached to the rotor blade with an appropriate gap to form a magnetic circuit. A wing rotation testing device characterized by being equipped with a piece. 2. A vehicle board chamber is provided to rotatably house a vehicle board including the test blade of the rotor, the vehicle board chamber is evacuated, and the wall of the vehicle board chamber is used as the stationary structure in which magnets are installed. The blade rotation testing device according to claim 1, wherein the blade rotation testing device is used. 3. The blade rotation testing device according to claim 1 or 2, characterized in that a permanent magnet is used as the magnet. 4. The blade rotation test according to claim 1, 2, or 3, wherein the adsorption piece of the magnetic material is attached to the shroud portion of the test blade with an adhesive. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290613A JPS62150133A (en) | 1985-12-25 | 1985-12-25 | Apparatus for testing rotation of blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60290613A JPS62150133A (en) | 1985-12-25 | 1985-12-25 | Apparatus for testing rotation of blade |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62150133A true JPS62150133A (en) | 1987-07-04 |
Family
ID=17758259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60290613A Pending JPS62150133A (en) | 1985-12-25 | 1985-12-25 | Apparatus for testing rotation of blade |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62150133A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2630213A1 (en) * | 1988-04-11 | 1989-10-20 | Inst Mash | TEST DEVICE FOR VENTILATOR PALLETS VIBRATION |
FR2635186A1 (en) * | 1988-07-29 | 1990-02-09 | Inst Mash | METHOD FOR TESTING WHEELS WITH BLADES OF FANS |
EP2056089A2 (en) * | 2007-10-31 | 2009-05-06 | Pratt & Whitney Canada Corp. | Method and apparatus for turbine engine dynamic characterization |
US7654145B2 (en) * | 2007-09-27 | 2010-02-02 | Siemens Energy, Inc. | Non-synchronous vibrational excitation of turbine blades using a rotating excitation structure |
FR2956206A1 (en) * | 2010-02-10 | 2011-08-12 | Snecma | Vibratory stimulator for blade control system of bladed wheel of e.g. double-flow type turbojet engine of aircraft, has vibratory detector placed on control system of blade, where non-integrated part is not in mechanical contact with blade |
CN105258887A (en) * | 2015-10-22 | 2016-01-20 | 西安热工研究院有限公司 | Blade dynamic frequency test apparatus using magnetic excitation |
CN105510044A (en) * | 2015-12-31 | 2016-04-20 | 苏州东菱科技有限公司 | High-speed rotor blade flying-off test device and test method |
CN106226015A (en) * | 2016-07-01 | 2016-12-14 | 西北工业大学 | A kind of assay device of turbine disk coupled vibrations |
CN106706291A (en) * | 2016-12-23 | 2017-05-24 | 南京航空航天大学 | Rotor tester used for rotating tracking continuous scanning laser Doppler vibrometry |
US20180224353A1 (en) * | 2017-02-08 | 2018-08-09 | United Technologies Corporation | System and method for blade health monitoring |
FR3070202A1 (en) * | 2017-08-17 | 2019-02-22 | Safran Aircraft Engines | TRANSMISSION SHAFT FOR DRIVING A BLOWER TREE OF A TURBOMACHINE PROTOTYPE IN AN INGESTION AND RETENTION TEST BENCH |
CN112197924A (en) * | 2020-09-27 | 2021-01-08 | 脉创测控装备科技(苏州)有限公司 | Turbine blade high-low cycle fatigue test system |
CN112557017A (en) * | 2020-12-21 | 2021-03-26 | 通标标准技术服务有限公司 | Wind power generation blade test device |
EP4425141A1 (en) * | 2023-03-01 | 2024-09-04 | Rolls-Royce plc | Excitation system |
EP4425139A1 (en) * | 2023-03-01 | 2024-09-04 | Rolls-Royce plc | Method of analysis of an excitation system |
-
1985
- 1985-12-25 JP JP60290613A patent/JPS62150133A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2630213A1 (en) * | 1988-04-11 | 1989-10-20 | Inst Mash | TEST DEVICE FOR VENTILATOR PALLETS VIBRATION |
FR2635186A1 (en) * | 1988-07-29 | 1990-02-09 | Inst Mash | METHOD FOR TESTING WHEELS WITH BLADES OF FANS |
US7654145B2 (en) * | 2007-09-27 | 2010-02-02 | Siemens Energy, Inc. | Non-synchronous vibrational excitation of turbine blades using a rotating excitation structure |
EP2056089A2 (en) * | 2007-10-31 | 2009-05-06 | Pratt & Whitney Canada Corp. | Method and apparatus for turbine engine dynamic characterization |
EP2056089A3 (en) * | 2007-10-31 | 2011-01-05 | Pratt & Whitney Canada Corp. | Method and apparatus for turbine engine dynamic characterization |
FR2956206A1 (en) * | 2010-02-10 | 2011-08-12 | Snecma | Vibratory stimulator for blade control system of bladed wheel of e.g. double-flow type turbojet engine of aircraft, has vibratory detector placed on control system of blade, where non-integrated part is not in mechanical contact with blade |
CN105258887A (en) * | 2015-10-22 | 2016-01-20 | 西安热工研究院有限公司 | Blade dynamic frequency test apparatus using magnetic excitation |
CN105510044A (en) * | 2015-12-31 | 2016-04-20 | 苏州东菱科技有限公司 | High-speed rotor blade flying-off test device and test method |
CN106226015A (en) * | 2016-07-01 | 2016-12-14 | 西北工业大学 | A kind of assay device of turbine disk coupled vibrations |
CN106706291A (en) * | 2016-12-23 | 2017-05-24 | 南京航空航天大学 | Rotor tester used for rotating tracking continuous scanning laser Doppler vibrometry |
US20180224353A1 (en) * | 2017-02-08 | 2018-08-09 | United Technologies Corporation | System and method for blade health monitoring |
US10775269B2 (en) * | 2017-02-08 | 2020-09-15 | Raytheon Technologies Corporation | Blade health inspection using an excitation actuator and vibration sensor |
FR3070202A1 (en) * | 2017-08-17 | 2019-02-22 | Safran Aircraft Engines | TRANSMISSION SHAFT FOR DRIVING A BLOWER TREE OF A TURBOMACHINE PROTOTYPE IN AN INGESTION AND RETENTION TEST BENCH |
CN112197924A (en) * | 2020-09-27 | 2021-01-08 | 脉创测控装备科技(苏州)有限公司 | Turbine blade high-low cycle fatigue test system |
CN112557017A (en) * | 2020-12-21 | 2021-03-26 | 通标标准技术服务有限公司 | Wind power generation blade test device |
CN112557017B (en) * | 2020-12-21 | 2022-07-12 | 通标标准技术服务有限公司 | Wind power generation blade test device |
EP4425141A1 (en) * | 2023-03-01 | 2024-09-04 | Rolls-Royce plc | Excitation system |
EP4425139A1 (en) * | 2023-03-01 | 2024-09-04 | Rolls-Royce plc | Method of analysis of an excitation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62150133A (en) | Apparatus for testing rotation of blade | |
KR100732275B1 (en) | Vacuum pump | |
EP2960465B1 (en) | Compressor assembly | |
US20200182252A1 (en) | Rotation driving device, method for mounting rotation driving device, axial blower, method for mounting axial blower, and laser oscillator | |
US10571361B2 (en) | Inducing and monitoring a vibratory response in a component | |
US20150285672A1 (en) | Dynamic characteristic measurement device of centrifugal rotation machine, and centrifugal rotation machine | |
KR100976224B1 (en) | Device for measuring loss of permanent magnet type rotating machine | |
JPH10274189A (en) | Turbo molecular pump | |
KR960029776A (en) | Electric drive air intake unit balancing device | |
KR101713892B1 (en) | Device and Method for Measuring the Characteristics of Axial Bearing | |
US5553501A (en) | Vibration testing on rotating machine components | |
JP7057128B2 (en) | Vacuum pump and vacuum pump deposit detector and vacuum pump deposit detection method | |
JPH08297050A (en) | Method for evaluating vibration of rotating body in static field | |
CN109579981B (en) | Vibration monitoring device and method for radial sliding bearing | |
JP2000274391A (en) | Over hang type turbo molecular pump | |
JPH08145058A (en) | Rotor supporting method, coupling device, radial magnetic bearing and rotary type fluid machinery | |
JP2000097801A (en) | Vibration mode excitation device during rotational vibration test | |
JP2011144713A (en) | Vacuum pump | |
JP2004205315A (en) | Motion evaluating method for bearing structure | |
JPH11148487A (en) | Turbo-molecular pump | |
JP3426831B2 (en) | Verification device for rotation signal detector | |
SU427267A1 (en) | INSTALLATION FOR TESTING BLADDS TURBO MOBILE AND MATERIAL SAMPLES | |
JP4287253B2 (en) | Load torque measuring method and apparatus | |
CN107306066B (en) | Axial induction motor and axial induction fan | |
CN117420434A (en) | Protection bearing falling performance calibration system and method |