JPS62150087A - Drive device - Google Patents

Drive device

Info

Publication number
JPS62150087A
JPS62150087A JP29505185A JP29505185A JPS62150087A JP S62150087 A JPS62150087 A JP S62150087A JP 29505185 A JP29505185 A JP 29505185A JP 29505185 A JP29505185 A JP 29505185A JP S62150087 A JPS62150087 A JP S62150087A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
switches
current
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29505185A
Other languages
Japanese (ja)
Inventor
Masaji Sekine
関根 正次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29505185A priority Critical patent/JPS62150087A/en
Publication of JPS62150087A publication Critical patent/JPS62150087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PURPOSE:To make it possible to facilitate complicated motion of a drive element for a robot or the like by changing the direction of current fed to a thermo- electrical device utilizing a Peltier effect to heat and cool a drive section composed of a shape memory alloy. CONSTITUTION:When switches S2, S3 are closed, and switches S1, S4 are opened, d.c. current I runs from a d.c. source E to ther-moelectric devices M, N, and therefore, a thermal stream Q flows leftward due to a Peltier effect to heat a shape memory alloy A while to cool a shape memory alloy B so that a movable section is shifted to a stationary section (b). When the switches S2, S3 are opened while the switches S1, S4 are closed, a d.c. current in the reverse direction is fed to the thermoelectric elements M, N with the thermal stream flowing rightward to cool the shape memory alloy A which therefore contracts, while to heat the shape memory alloy B which is therefore elongates, thereby the movable section (c) is shifted to a stationary section (a). With the repetition of the above-mentioned operation, the movable part (c) may be reciprocated. Thus, it is possible to easily carry out a low speed motion and a complicated motion.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は被駆動体を駆動する駆動装置に係り、特に形状
記憶合金と熱心装置とを粗金ぜて構成した駆動装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a drive device for driving a driven body, and more particularly to a drive device constructed by metallizing a shape memory alloy and a hard drive device.

1発明の技術的待望とその問題点1 従来から、被駆動体を駆動する駆動装置とじては種々の
ものがあるが、その中でも電気による゛電動機、ソレノ
イドや空気によるシリンダ等が多く使用されてきている
。しかしこの種の駆動装置では、例えば低速駆動を行な
わせるために歯車等の機構を使用したり、あるいは回転
運動や直線運動のようにll純な動作でない複雑な動作
を行なわせるために複雑な機構を組込んだりしなければ
ならず、かような動作を容易に行なわばることが非常に
困難である。
1 Technical long-awaited invention and its problems 1 Conventionally, there have been various types of drive devices for driving driven objects, but among them, electric motors, solenoids, pneumatic cylinders, etc. have been widely used. ing. However, in this type of drive device, mechanisms such as gears are used to perform low-speed drive, or complex mechanisms are used to perform complex movements that are not pure movements such as rotational movement or linear movement. It is extremely difficult to easily perform such operations.

そこで近年では、形状記憶合金を用いて構成した駆動装
置が提案されてきている。しかしながら、この形状記憶
合金を用いた駆動装置においては、上述のような低速動
作および複雑な動作を容易に行なわせることは可能であ
るが、加熱側を高温蒸気にて熱し、また冷却側を冷却水
中につけて冷やすような手法が採られていることから、
これを駆動装置として実際に利用するためには装置が大
形でしかも中樋なものとなってしまい、一般に利用する
ことは非常に困難となっているのが実状でめる。
Therefore, in recent years, drive devices constructed using shape memory alloys have been proposed. However, in a drive device using this shape memory alloy, it is possible to easily perform the low-speed operation and complicated operation described above, but the heating side is heated with high-temperature steam and the cooling side is cooled. Because a method of cooling it by soaking it in water is used,
In order to actually use this as a drive device, the device would have to be large and have a hollow gutter, making it extremely difficult to use it in general.

[発明の目的コ 本発明は上記のような問題を解決するために成されたち
ので、その目的は低速動作および複雑な動作を容易に行
なわせることが可能な小形でしかも軽重な駆動装置を提
供することにある。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to provide a small, light and heavy drive device that can easily perform low-speed operations and complex operations. It's about doing.

[発明の概要] 上記目的を達成するために本発明では、形状記憶合金を
用いて形成され、可動部となる部所に被駆動体が接続さ
れた駆動部と、ベルチェ効果を用いて上記駆動部を加熱
または冷却することにより可vJ部を移動させる熱電装
置と、この熱電装置に対して電流を供給する直流電源と
、この直流電源から熱電装置に対して供給する電流の方
向を正から逆方向または逆から正方向に交互に切換える
切換装置とを備えて構成することにより、ベルチェ効果
(W流を流すことにより一方は発熱し他方は吸熱する)
を利用した熱電装置に供給する電流の方向を変えて加熱
・冷却を繰返し行なうようにし。
[Summary of the Invention] In order to achieve the above object, the present invention includes a drive section formed using a shape memory alloy, in which a driven body is connected to a part that becomes a movable section, and a drive section using the Beltier effect. A thermoelectric device that moves the vJ section by heating or cooling the thermoelectric device, a DC power source that supplies current to the thermoelectric device, and a device that changes the direction of the current supplied from the DC power source to the thermoelectric device from normal to reverse. By configuring it with a switching device that alternately switches from the opposite direction to the forward direction, the Bertier effect (by flowing W flow, one side generates heat and the other absorbs heat)
By changing the direction of the current supplied to the thermoelectric device, heating and cooling can be repeated.

たことを特徴とする。It is characterized by:

[発明の実施例] 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.

第1図および第2図は、本発明による形状記憶合金と熱
電装置とを組合せた駆#J装置の構成例を示すものであ
る。第1図および第2図において、A、Bは形状記憶合
金であり、夫々の一端部a。
FIGS. 1 and 2 show an example of the structure of a drive #J device that combines a shape memory alloy and a thermoelectric device according to the present invention. In FIGS. 1 and 2, A and B are shape memory alloys, with one end a of each.

bを固定して固定部とすると共に、他端部同士を結合し
て可動部Cとし駆動部を構成している。ここで可動部C
には、図示しないロボット等の被駆動体が連結接続され
ている。また、M、Nは周知のベルチェ効果を用いて上
記駆動部を加熱または冷却することにより、可動部Cを
図示結合方向に移動させる熱電装置である。さらに、E
はこの熱電装置M、Nに対して直流電流を供給する直流
電源、81〜$4はこの直流電aEから上記熱電装置M
、Nに対して供給する直流電流の方向を、正から逆方向
(図示左から右方向)または逆から正方向く図示右から
左方向)に交互に切換えるように夫々開閉する切換装置
としてのスイッチである。
b is fixed to form a fixed part, and the other ends are connected to each other to form a movable part C to constitute a driving part. Here, the moving part C
A driven body such as a robot (not shown) is connected to the drive body. Further, M and N are thermoelectric devices that move the movable part C in the illustrated coupling direction by heating or cooling the driving part using the well-known Bertier effect. Furthermore, E
81~$4 is a DC power source that supplies DC current to the thermoelectric devices M and N, and 81 to $4 is a DC power source that supplies direct current to the thermoelectric devices M and N.
, N is a switch serving as a switching device that opens and closes the direction of the DC current supplied to the terminals alternately from positive to reverse (from left to right in the figure) or vice versa (from right to left in the figure). be.

次に、以上のように構成した駆動装置の作用について述
べる。
Next, the operation of the drive device configured as above will be described.

まず、いま第1図に示すようにスイッチS1゜S4が開
路し、スイッチ82.83が開路している状態において
は、直流電源EからスイッチSl。
First, as shown in FIG. 1, when the switches S1 and S4 are open and the switches 82 and 83 are open, the DC power supply E supplies the switch S1.

S4を介して熱電装置M、Nに、正方向く図示実線矢印
のように左から右方向)に直流電流Iが供給される。こ
れにより、熱流Qは図示点線矢印のように左から右方向
に流れることから、形状記憶合金Aが冷却されまた形状
記憶合金Bが加熱される。そしてこの時、形状記憶合金
Aは圧縮された状態となり、また形状記憶合金Bは伸び
た状態となり、従って各形状記憶合金A、Bが結合され
た可動部Cは形状記憶合金Aの固定部a側に奇っている
A direct current I is supplied to the thermoelectric devices M and N via S4 in the forward direction (from left to right as indicated by the solid arrow in the figure). As a result, the heat flow Q flows from left to right as indicated by the dotted arrow in the figure, so that the shape memory alloy A is cooled and the shape memory alloy B is heated. At this time, shape memory alloy A is in a compressed state, and shape memory alloy B is in an elongated state. Strange on the side.

次に、このような状態にある時いま第2図に示すように
スイッチ82.83を閉路し、スイッチS、1.S4を
開路させると、直流電源Eからスイッチ82.83を介
して熱電装置M、Nに、上述とは逆方向つまり図示実線
矢印のように右から右方向に直流電流Iが供給される。
Next, in this state, switches 82 and 83 are closed as shown in FIG. 2, and switches S, 1. When S4 is opened, a DC current I is supplied from the DC power supply E to the thermoelectric devices M and N via the switches 82 and 83 in the opposite direction to that described above, that is, from right to right as shown by the solid line arrow.

これにより、熱流Qも図示点線矢印のように右から左方
向に流れることになることから、形状記憶合金Aが加熱
されまた形状記憶合金Bが冷却される。そしてこの時、
形状記憶合金Bは圧縮された状態となり、また形状記憶
合金Aは伸びた状態となり、従って各形状記憶合金A、
Bが結合された可動部Cは形状記憶合金Bの固定部す側
に寄ってくることになる。
As a result, the heat flow Q also flows from right to left as indicated by the dotted line arrow in the figure, so that the shape memory alloy A is heated and the shape memory alloy B is cooled. And at this time,
Shape memory alloy B is in a compressed state, and shape memory alloy A is in an elongated state, so that each shape memory alloy A,
The movable part C to which B is coupled comes closer to the fixed part of the shape memory alloy B.

以上の第1図と第2図の状態を交互に繰返すことにより
、可動部Cは形状記憶合金Aの固定部aと形状記憶合金
Bの固定部すの中間において往復動作を繰返すことにな
り、かかる可動部Cの往復動作に応じてこれに連結接続
された図示しない被駆動体であるロボットが駆動される
ことになる。
By alternately repeating the above states shown in FIGS. 1 and 2, the movable part C repeats reciprocating motion between the fixed part a of the shape memory alloy A and the fixed part A of the shape memory alloy B. In response to the reciprocating motion of the movable portion C, a robot, which is a driven body (not shown) connected thereto, is driven.

上述したように本実施例による駆動装置は、形状記憶合
金A、Bを用いて形成され、可動部Cとなる部所にロボ
ット等の被駆動体が接続された駆動部と、ベルチェ効果
を用いて上記駆動部を加熱または冷却することにより可
動部Cを移動させる熱電装置M、Nと、この熱主装置M
、Nに対して直流電流を供給する直流電源Eと、この直
流電源Eから熱電装置M、Nに対して供給する電流Iの
方向を正から逆方向または通力1ら正方向に交互に切換
えるように開閉する切換装置としてのスイッチ81〜S
4とから構成するよう(こしたものである。
As described above, the drive device according to this embodiment includes a drive section that is formed using shape memory alloys A and B, and a driven body such as a robot is connected to a portion that becomes a movable section C, and a drive section that uses the Beltier effect. thermoelectric devices M and N that move the movable portion C by heating or cooling the drive portion; and this heat main device M.
, a DC power supply E that supplies DC current to the thermoelectric devices M and N, and a direction of the current I supplied from the DC power supply E to the thermoelectric devices M and N, which is alternately switched from positive to reverse direction or from passing power 1 to positive direction. Switches 81 to S as switching devices that open and close
It is composed of 4.

従って、従来では実施が困難であった形状G111合金
を利用した駆動装置用の熱エネルギー源として、ベルチ
ェ効果を利用した熱電装置M、Nを採用し、形状記憶合
金A、Bの加熱・冷却の繰返しを容易に行なうことが可
能となる。これにより、従来の駆動装置く電気による電
動機、ソレノイドや空気によるシリンダ等)とは異なり
、形状記憶合金A、Bの形状記憶のさせ方によって従来
にないような低速動作、複雑な動作を極めて容易に行な
うことができる。例えば、コイル状にして伸縮さけたり
、板状で捻回させたり、板状で折曲げたり伸ばしたり、
さらにこれらを組合せて複雑な動作をさせることができ
る。また以上のような理由から、従来のように加熱側を
高温蒸気にて熱し。
Therefore, we adopted thermoelectric devices M and N that utilize the Beltier effect as a thermal energy source for a drive device that uses shape G111 alloy, which was difficult to implement in the past, to heat and cool shape memory alloys A and B. It becomes possible to perform repetition easily. As a result, unlike conventional drive devices (electric motors, solenoids, air cylinders, etc.), the shape memory of shape memory alloys A and B makes it extremely easy to perform low-speed and complex movements that were not possible before. can be done. For example, you can make it into a coil to avoid expansion and contraction, or twist it into a plate, or bend or stretch it into a plate.
Furthermore, these can be combined to perform complex operations. Also, for the above reasons, the heating side is heated with high-temperature steam as in the conventional method.

また冷却側を冷W水中につけて冷やす等の設備を設ける
必要がなく、熱電製置M、N、百流電源E、スイッチ8
1〜S4を備えるのみでよいため、駆vJ装置としては
極めて小形でしかも軽量なものとすることができ、一般
的に利用することが可能となり汎用性の高いものである
。特に、従来の゛電動機等の駆動装置のような回転によ
る振動・間音の発生もなく、駆動力が小さくて済むよう
なものについては一層の小形化および軽量化を図ること
が可能である。そして口のことは、今後多方面にわたっ
てロボット化が進められる時、本構成の駆動装置がロボ
ットへの組込みが容易であり、駆動し易いものとして利
用することができることを意味するものである。
In addition, there is no need to install equipment such as immersing the cooling side in cold W water to cool it, and thermoelectric equipment M, N, 100-current power supply E, switch 8
Since only the components 1 to S4 are required, the vJ drive device can be extremely small and lightweight, and can be used generally, making it highly versatile. In particular, it is possible to further reduce the size and weight of a device that does not generate vibration or noise due to rotation like conventional drive devices such as electric motors, and requires only a small driving force. This means that when robotization advances in many areas in the future, the drive device with this configuration will be easy to incorporate into robots and can be used as an easy-to-drive device.

尚、上記実施例では被駆動体がロボットである場合を述
べたが、これ以外のものであってもよいことは言うまで
もない。
Incidentally, in the above embodiment, the case where the driven object is a robot has been described, but it goes without saying that the driven object may be other than this.

その他、本発明は上述した実施例に限定されるものでは
なく、その要旨を変更しない範囲で種々に変形して実施
することができるものである。
In addition, the present invention is not limited to the embodiments described above, and can be implemented with various modifications without changing the gist thereof.

[発明の効果] 以上説明したように本発明によれば、形状記憶合金を用
いて形成され、可動部となる部所に被駆動体が接続され
た駆動部と、ベルチェ効果を用(Xで上記駆動部を加熱
または冷却することにより可動部を移動させる熱電装置
と、この熱電装置に対して電流を供給する直流電源と、
この直流電源から熱電装置に対して供給する電流の方向
を正から逆方向または逆から正方向に交互に切換える切
換装置とを備えて構成するようにしたので、熱電装置に
供給する電流の方向を変えて加熱・冷」を繰返し行ない
、低速動作および複雑な動作を容易に行なわせることが
可能な小形でしかも軽量な駆動装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, the driving part is formed using a shape memory alloy and the driven body is connected to the part that becomes the movable part, and the Beltier effect is used (X a thermoelectric device that moves the movable portion by heating or cooling the driving portion; a DC power source that supplies current to the thermoelectric device;
The structure is equipped with a switching device that alternately switches the direction of the current supplied from the DC power source to the thermoelectric device from the positive to the reverse direction or from the reverse to the positive direction. It is possible to provide a compact and lightweight drive device that repeatedly performs "heating and cooling" and easily performs low-speed operations and complex operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示す構成図で
ある。 A、B・・・形状記憶合金、a、b・・・固定部、C・
・・可動部、M、N・・・熱電装置、E・・・直流電源
、81〜S4・・・スイッチ。 出願人代理人  弁理士 鈴 江 武 彦−一→I 第1図 第2図
FIGS. 1 and 2 are configuration diagrams showing one embodiment of the present invention. A, B... Shape memory alloy, a, b... Fixed part, C.
...Movable part, M, N...thermoelectric device, E...DC power supply, 81-S4...switch. Applicant's agent Patent attorney Takehiko Suzue→I Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 形状記憶合金を用いて形成され、可動部となる部所に被
駆動体が接続された駆動部と、ペルチエ効果を用いて前
記駆動部を加熱または冷却することにより可動部を移動
させる熱電装置と、この熱電装置に対して電流を供給す
る直流電源と、この直流電源から熱電装置に対して供給
する電流の方向を正から逆方向または逆から正方向に交
互に切換える切換装置とを備えて構成するようにしたこ
とを特徴とする駆動装置。
A driving part formed using a shape memory alloy and having a driven body connected to a part that becomes a movable part, and a thermoelectric device that moves the movable part by heating or cooling the driving part using the Peltier effect. , comprising a DC power source that supplies current to the thermoelectric device, and a switching device that alternately switches the direction of the current supplied from the DC power source to the thermoelectric device from positive to reverse or vice versa. A drive device characterized by:
JP29505185A 1985-12-25 1985-12-25 Drive device Pending JPS62150087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29505185A JPS62150087A (en) 1985-12-25 1985-12-25 Drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29505185A JPS62150087A (en) 1985-12-25 1985-12-25 Drive device

Publications (1)

Publication Number Publication Date
JPS62150087A true JPS62150087A (en) 1987-07-04

Family

ID=17815682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29505185A Pending JPS62150087A (en) 1985-12-25 1985-12-25 Drive device

Country Status (1)

Country Link
JP (1) JPS62150087A (en)

Similar Documents

Publication Publication Date Title
JP3527506B2 (en) Powerful thermochemical power machine
EP0045250A1 (en) Memory alloy thermal motor
JPS62150087A (en) Drive device
US6886331B2 (en) Magnetohydraulic motor
JPS61171885A (en) Actuator
CN211265352U (en) Mechanical logic control bidirectional actuating mechanism based on shape memory alloy
JPS58111792A (en) Thermoelastic operating element
RU2252375C1 (en) Magnetic heat machine
Colli et al. Current-controlled shape memory alloy actuators for automotive tumble flap
CN110828232B (en) Mechanical logic control two-way actuating mechanism based on shape memory alloy
WO2005020412B1 (en) Field force machine
JPS61185082A (en) Electric signal/mechanical amount converter
CN114643575A (en) Material increase manufacturing bionic intelligent driving component
KR100441225B1 (en) Cooling Apparatus of Single Linear Motor
JPS61245217A (en) Actuator
JPH01103180A (en) Driver
JPS61150678A (en) Electric signal/mechanical amount converter and method of use thereof
JPS61297091A (en) Actuator made of shape memory alloy
RU2051287C1 (en) Method of operating engine with external heat supply and engine with external heat supply
JPS61234280A (en) Driving device
JPS63201375A (en) Reciprocating rotary actuator
ES2238808T3 (en) THERMAL MACHINE
JPH03294666A (en) Inch worm mechanism using shape memory alloy
Wang et al. A SMA actuated earthworm-like robot
JPS6277882A (en) Shape-memory alloy applied actuator