JPS61185082A - Electric signal/mechanical amount converter - Google Patents

Electric signal/mechanical amount converter

Info

Publication number
JPS61185082A
JPS61185082A JP2295485A JP2295485A JPS61185082A JP S61185082 A JPS61185082 A JP S61185082A JP 2295485 A JP2295485 A JP 2295485A JP 2295485 A JP2295485 A JP 2295485A JP S61185082 A JPS61185082 A JP S61185082A
Authority
JP
Japan
Prior art keywords
shape memory
elements
memory alloys
memory alloy
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295485A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
藤村 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2295485A priority Critical patent/JPS61185082A/en
Publication of JPS61185082A publication Critical patent/JPS61185082A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To enable to set mechanical amount operating point over many stages by locally and complementarily heating or cooling two shape memory alloys by a plurality of Peltier elements. CONSTITUTION:A plurality of Peltier elements 12a-12n are disposed along shape memory alloys 11a, 11b between the always 11a and 11b for storing different shapes. Two shape memory alloys 11a, 11b are bonded integrally through the elements 12a-12n to form a converter 13. The prescribed DC current is individually applied from a power source 8 through switches 14a-14n capable of switching in polarity to the elements 12a-12n of the converter 13 to control the shape displacement amount of the converter 13. Thus, the telescoping distance of an operation rod 4 can be controlled in multiple stages.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は形状記憶合金を用いた電気信号機械量変換装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrical signal/mechanical quantity conversion device using a shape memory alloy.

〔従来の技術〕[Conventional technology]

ロゲットやX−Yテーブル、電磁パルプ、更にはフリク
シフンモータ等に組込まれるアクチェエータを駆動する
装置に電気信号機械量変換装置がある。中でも、一方向
性形状記憶合金を用いた電気信号機械量変換装置が注目
されているO この種の形状記憶合金を用いた装置は、従来一般に第5
図(a) (b)に示す如く、板状の形状記憶合金1の
一端を保持枠2に金具3を用いて取付け、上記形状記憶
合金1の他端(自由端)を作動枠4に回動自在に取付け
て構成される。尚・図中5は作動枠4を前記形状記憶合
金1の自由端の揺動方向に進退自在に支持した保持台で
おる。また上記形状記憶合金1の自由端と保持枠2の立
上シ片との間に張架されたばね6は、該自由端を上記立
上シ片側に引きつけるバイアス作用を呈するものでおる
An electric signal/mechanical quantity conversion device is used as a device for driving actuators incorporated in loggets, X-Y tables, electromagnetic pulps, and even flixifon motors. Among them, electrical signal/mechanical quantity conversion devices using unidirectional shape memory alloys are attracting attention.
As shown in Figures (a) and (b), one end of the plate-shaped shape memory alloy 1 is attached to the holding frame 2 using a metal fitting 3, and the other end (free end) of the shape memory alloy 1 is rotated to the operating frame 4. It is configured so that it can be mounted freely. In the figure, reference numeral 5 denotes a holding base that supports the operating frame 4 so that it can move forward and backward in the swinging direction of the free end of the shape memory alloy 1. Further, the spring 6 stretched between the free end of the shape memory alloy 1 and the rising piece of the holding frame 2 exhibits a biasing action that draws the free end to one side of the rising piece.

上記形状記憶合金1は、その変態温度以下では外力を受
けて容易に変形し、上記変態温度以上に加熱された場合
、例えば第5図(b)に示す如く前記作動枠4を押込ん
だ状態の所定形状(図中左曲シの形状)となる如く、そ
の形状記憶処理が施されている@ しかして、形状記憶合金1の両端間には、スイッチ7を
介して電源8が接続され、上記スイッチ7の投入によシ
通電されて前記変態温度以上に加熱制御されるようにな
っている。
The shape memory alloy 1 is easily deformed by external force below its transformation temperature, and when heated above the transformation temperature, the operating frame 4 is pushed in, for example, as shown in FIG. 5(b). Shape memory processing is performed so that it has a predetermined shape (the shape of the left curve in the figure). When the switch 7 is turned on, electricity is supplied to control heating to a temperature higher than the transformation temperature.

このような形状記憶合金1を用いて構成された電気信号
機械量変換装置によれば、前記スイッチ7を“OFF″
状態とし、形状記憶合金1の温度をその変態温度以下に
しておくと、前記ばね6の弾性作用を受けて作動枠4は
第5図(、)に示すように図中右側方向に引き寄せられ
る。この状態で前記スイッチ7を投入し、前記形状記憶
合金1をその変態温度以上に通電加熱すると、該合金1
は形状記憶作用を呈して第5図(b)に示す如く変形し
く記憶形状に戻り)、前記作動枠4はばね6に抗して図
中左側に押込まれることになる。
According to the electrical signal/mechanical quantity converter constructed using such a shape memory alloy 1, the switch 7 can be turned "OFF".
When the temperature of the shape memory alloy 1 is kept below its transformation temperature, the operating frame 4 is pulled toward the right side in the figure by the elastic action of the spring 6, as shown in FIG. In this state, when the switch 7 is turned on and the shape memory alloy 1 is heated to a temperature above its transformation temperature, the alloy 1
exhibits a shape memory effect and returns to its memorized shape in a deformed manner as shown in FIG.

その後、前記スイッチ7を再び“OFF ”にすると、
形状記憶合金1の通電加熱が停止され、その放冷によっ
て形状記憶合金1の温度は変態温度以下となる。この結
果、前記ばね6の力を受けて形状記憶合金1は右側に曲
シ、作動枠4は第5図(a)に示す如く移動することに
なる。
After that, when the switch 7 is turned "OFF" again,
The current heating of the shape memory alloy 1 is stopped, and the temperature of the shape memory alloy 1 becomes equal to or lower than the transformation temperature due to cooling. As a result, the shape memory alloy 1 bends to the right under the force of the spring 6, and the operating frame 4 moves as shown in FIG. 5(a).

このようにしてスイッチ7の開閉に応じて作動枠4が進
退駆動され、ここに電気信号機械量定換作用が呈せられ
ることになる。
In this manner, the operating frame 4 is driven forward and backward in response to the opening and closing of the switch 7, and an electric signal and mechanical quantity regulating action is exerted here.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが従来では、形状記憶合金1の加熱に、その通電
による抵抗発熱を利用し、また冷却には自然放冷や空冷
が用いられている。この為、形状記憶合金1を局部的に
加熱、または冷却することができず、その全体を変態温
度以上にするか、或いは変態温度以下に制御している。
However, conventionally, the shape memory alloy 1 has been heated by utilizing resistance heat generation due to energization, and natural cooling or air cooling has been used for cooling. For this reason, the shape memory alloy 1 cannot be locally heated or cooled, and the entire shape memory alloy 1 is controlled to be above the transformation temperature or below the transformation temperature.

これ故、アクチュエータとしての作動ポイントラ第5図
(、) (b)に示すように2点しか設定することがで
きなかった。
Therefore, it was possible to set only two operating points for the actuator, as shown in FIG. 5(,)(b).

つまり、上記2つの作動ポイントの中間段階を定量的に
制御することが困難であり、電気信号機械量変換装置と
しては甚だ不完全であった。
In other words, it is difficult to quantitatively control the intermediate stage between the two operating points, and the device is extremely incomplete as an electrical signal/mechanical quantity converter.

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、形状記憶台   。
The present invention was made in consideration of these circumstances, and its purpose is to provide a shape memory stand.

金の局部的な加熱を可能ならしめて多段階に亘る機械量
作動ポイントを設定可能な電気信号機械量変換装置を提
供することにある。
An object of the present invention is to provide an electric signal/mechanical quantity converting device that enables local heating of gold and sets mechanical quantity operating points over multiple stages.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は、互いに異なる形状を記憶した2枚の形状記憶
合金を、その間に該形状記憶合金に沿って配列された複
数のベルチェ素子を挾んで接合し、上記各ベルチェ素子
を個々に駆動するようにしたものである。
The present invention involves bonding two shape memory alloys that memorize mutually different shapes, sandwiching a plurality of Vertier elements arranged along the shape memory alloy between them, and driving each of the Vertier elements individually. This is what I did.

〔発明の作用とその効果〕[Function of the invention and its effects]

かくして本発明によれば、2枚の形状記憶合金の間に挾
まれた複数のベルチェ素子によって、上記2枚の形状記
憶合金が局部的に、且つ相補的に加熱・冷却することが
可能となる。
Thus, according to the present invention, the two shape memory alloys can be heated and cooled locally and complementarily by the plurality of Vertier elements sandwiched between the two shape memory alloys. .

この結果、形状記憶合金に沿って、その間に配列された
複数のベルチェ素子を個々に駆動制御することによって
、上記形状記憶合金の接合体は任意形状に変形すること
となる。これ故、多段階に亘る作動ポイントを定量的に
制御して電気信号機械量変換を行うことが可能となる。
As a result, by individually driving and controlling the plurality of Vertier elements arranged between the shape memory alloys, the joined body of the shape memory alloys can be deformed into an arbitrary shape. Therefore, it is possible to quantitatively control the operating points over multiple stages and convert electrical signals to mechanical quantities.

しかも、構造が簡単でsb、応用範囲が広い等の実用上
多大なる効果が奏せられる。
In addition, it has a simple structure, has a wide range of applications, and has great practical effects.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例につき説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図乃至第3図は実施例装置の概略構成と、その作用
形態を示す図である。尚、従来装置と同一部分には同一
符号を付して示しである。
FIGS. 1 to 3 are diagrams showing a schematic configuration of an embodiment device and its mode of operation. Note that the same parts as in the conventional device are designated by the same reference numerals.

本装置が特徴とするところは、従来の板状の単一素子か
らなる形状記憶合金1に代えて、互いに異なる形状を記
憶させた2枚の板状の形状記憶合金11h、llbの間
に、該形状記憶合金11g、llbに沿って複数のペル
チェ素子12a、12b〜12nを配列し、これらのペ
ルチェ素子12m、12b〜12nを挾んで上記2枚の
形状記憶合金11a、llbを接合一体化した板状構造
体からなる変換素子13を用いるようにしたものである
The feature of this device is that instead of the conventional shape memory alloy 1 consisting of a single plate-shaped element, between two plate-shaped shape memory alloys 11h and llb that memorize mutually different shapes, A plurality of Peltier elements 12a, 12b to 12n were arranged along the shape memory alloys 11g and llb, and the two shape memory alloys 11a and llb were joined and integrated by sandwiching these Peltier elements 12m and 12b to 12n. A conversion element 13 made of a plate-like structure is used.

そして、この変換素子13の前記各ベルチェ素子12m
 、 12b 〜12nVCは、極性切換可能なスイッ
チ14&、14b〜14nを介して電源8から所定の直
流電流を各別に印加し得るようにしている。
Each of the Bertier elements 12m of this conversion element 13
, 12b to 12nVC can be individually applied with a predetermined DC current from the power source 8 via switches 14&, 14b to 14n whose polarity can be changed.

前記2枚の形状記憶合金11m、llbは、その記憶形
状を互いに逆向きに設定された一方向性の形状記憶合金
から’hh、その形状記憶方向を互いに外向きに向けて
接合されている。
The two shape memory alloys 11m and llb are made of unidirectional shape memory alloys whose memory shapes are set in opposite directions, and are joined with their shape memory directions facing outward.

このような2枚の形状記憶合金111L、 1 lbの
間に介在されるベルチェ素子12h、12b〜12nは
、第4図(IL) (b)に示すように、例えばビスマ
ステルル化合物を主成分とした半導体からなるN型半導
体21とP型半導体22とを電極23,24.25間に
設けた構造を有する。
The Bertier elements 12h, 12b to 12n interposed between the two shape memory alloys 111L and 1 lb are made of, for example, a bismuth tellurium compound as a main component, as shown in FIG. 4(IL) (b). It has a structure in which an N-type semiconductor 21 and a P-type semiconductor 22 made of semiconductors are provided between electrodes 23, 24, and 25.

そして、電源26から電極24、N型半導体21、電極
23、P型半導体22、そして電極25へと通電したと
き、N型半導体2ノからP型半導体22へ電流を流す電
極23側で吸熱作用が生じ、逆にP型半導体22からN
型半導体21へ電流を流す電極24C25)側で発熱作
用を呈するものである。
When electricity is applied from the power supply 26 to the electrode 24, the N-type semiconductor 21, the electrode 23, the P-type semiconductor 22, and the electrode 25, an endothermic effect occurs on the electrode 23 side where the current flows from the N-type semiconductor 2 to the P-type semiconductor 22. occurs, and conversely, N from the P-type semiconductor 22
The electrode 24C25) side through which current flows to the type semiconductor 21 exhibits a heat-generating effect.

従って、通電電流の向きを第4図(b)に示す如く逆に
すると、今度は電極23側で発熱作用を呈し、電極24
C25)側で吸熱作用が呈せられる。
Therefore, when the direction of the applied current is reversed as shown in FIG. 4(b), heat generation occurs on the electrode 23 side, and the electrode 24
An endothermic effect is exhibited on the C25) side.

このようにして、2つの電極間に相補的に発熱・吸熱作
用を呈するベルチェ素子12&。
In this way, the Bertier element 12& exhibits complementary heat-generating and heat-absorbing effects between the two electrodes.

12b〜12nが前記2枚の形状記憶合金11a。12b to 12n are the two shape memory alloys 11a.

11bの加熱・冷却素子として用いられる。11b as a heating/cooling element.

かくして今、上述の如く構成された本装置において、2
枚の形状記憶合金11*、Ilb間に配設されたイルチ
ェ素子12*、12b〜12nの全てに同一極性の電流
を流し、例えば形状記憶合金11aをその全体に亘って
冷却し、同時に他方の形状記憶合金11bをその全体に
亘って加熱すれば、形状記憶合金11hh外力によって
自由に変形可能な状態となり、且つ形状記憶合金11b
は変態温度以上に加熱されてその記憶形状に変形する。
Thus, in this apparatus configured as described above, two
A current of the same polarity is passed through all of the ilche elements 12*, 12b to 12n disposed between the two shape memory alloys 11* and Ilb, for example, the shape memory alloy 11a is cooled over its entirety, and at the same time the other If the shape memory alloy 11b is heated over its entirety, the shape memory alloy 11hh becomes freely deformable by external force, and the shape memory alloy 11b
is heated above its transformation temperature and deforms into its memorized shape.

この結果、変換素子13は第1図に示すようにその自由
端を右側に変位させた形状をとる。
As a result, the conversion element 13 assumes a shape with its free end displaced to the right as shown in FIG.

しかして、複数のベルチェ素子12*、12b〜12n
の、例えば上半分側の通電電流の極性を反転させると、
変換素子13の上半分の領域において2枚の形状記憶合
金11m、Ilbの加熱・冷却作用が反転する。この結
果、形状記憶合金11&は、下半分の領域で自由変形可
能な状態となシ、且つ上半分の領域で記憶形状に変形す
る。また他方の形状記憶合金11bは下半分の領域で1
ノ形状記憶作用を呈する。これにより、変換素子13は
第2図に示すように、その曲シの向きを下半分と上半分
とで逆とした形状に変形することになる。
Therefore, a plurality of Bertier elements 12*, 12b to 12n
For example, if you reverse the polarity of the current flowing in the upper half,
In the upper half region of the conversion element 13, the heating and cooling actions of the two shape memory alloys 11m and Ilb are reversed. As a result, the shape memory alloy 11& is in a state where it can be freely deformed in the lower half region, and deforms into a memorized shape in the upper half region. In addition, the other shape memory alloy 11b has 1
It exhibits shape memory effect. As a result, the conversion element 13 is deformed into a shape in which the direction of the curve is reversed between the lower half and the upper half, as shown in FIG.

そして、更に前記イルチェ素子12 * 、12b〜1
2nの下側半分の通電電流の逆性を反転させると、つま
シ全てのベルチェ素子128゜12b〜12nに対する
通電電流の極性を反転させると、形状記憶合金11hが
全体に亘って形状記憶作用を呈し、他方の形状記憶合金
11bは自由変形可能な状態となる。この結果、変換素
子13は第3図に示すようにその自由端を左側に曲げて
変形することになる0 このよう圧して複数のイルチェ素子12a。
Further, the ilche elements 12*, 12b-1
When the polarity of the current applied to the lower half of the 2n is reversed, when the polarity of the current applied to all the Veltier elements 128° 12b to 12n is reversed, the shape memory alloy 11h has a shape memory effect throughout. The other shape memory alloy 11b becomes freely deformable. As a result, the conversion element 13 is deformed by bending its free end to the left as shown in FIG.

12b〜12nの通電電流の極性の向きを半分づつ切換
えるだけでも、変換素子13の自由端は3つの作動ポイ
ントに位置制御されることになる◎従って、各ベルチェ
素子12*、12b〜12nの通電極性を更に細かく制
御すれば、形状記憶合金111.Ilbの加熱・冷却的
を局部的に細く制御することができ変換素子13の形状
を多段階に変えて更に多くの作動ポイントを段階的に設
定することが可能となる。
Even if the direction of the polarity of the current flowing through each of the Vertier elements 12*, 12b to 12n is switched half by half, the position of the free end of the conversion element 13 will be controlled to three operating points. If the polarity is controlled more precisely, shape memory alloy 111. The heating and cooling of Ilb can be locally and finely controlled, and the shape of the conversion element 13 can be changed in multiple stages to set even more operating points in stages.

従って、本装置によれば作動枠4の進退量を多段階に亘
って制御することが可能となる。しかもイルチェ素子1
2g、12b〜12nによつて形状記憶合金11a、l
lbを局部的に、しかも相補的に加熱・冷却制御するこ
とができる。
Therefore, according to this device, it is possible to control the amount of movement of the operating frame 4 in multiple stages. Moreover, Ilche element 1
Shape memory alloys 11a, l by 2g, 12b to 12n
It is possible to locally and complementarily control heating and cooling of lb.

故に、各ベルチェ素子12 a 、 I 2 b〜12
nに対する通電極性を制御するだけで変換素子13の形
状変形量を正確に制御し、これを作動枠4の機械的な進
退量として作用させることが可能となる。また従来のよ
うに形状記憶合金の自然放冷や空冷を行うものとは異な
るので、変換応答性を高め得る等の効果も奏せられ、そ
の実用的利点は多大である。
Therefore, each Bertier element 12a, I2b~12
It is possible to accurately control the amount of shape deformation of the conversion element 13 simply by controlling the conductivity with respect to n, and to make this act as the amount of mechanical movement of the operating frame 4. In addition, since this method differs from conventional methods in which shape memory alloys are naturally cooled or air cooled, effects such as improved conversion response can be achieved, and the practical advantages thereof are great.

尚、本発明は上述した実施例に限定されるものではない
。例えばここではスイッチ14a。
Note that the present invention is not limited to the embodiments described above. For example, here the switch 14a.

1’4 b〜14 nを用いてにルチェ素子12a。Lutier element 12a using 1'4b to 14n.

12b〜12nの通電極性を手動的に切替える装置につ
き例示したが、リレーとシーケンサを用いたり、或いは
コンピュータ制御によシその通電極性の切替えを行うよ
うにしてもよい。またここでは、形状記憶合金の曲シ変
形の向きを外側としたものについて説明したが、内側に
設定しても同様な作用が呈せられる。但し、実施例とは
曲りの向きと電流の極性との関係が逆になる。また形状
記憶合金の曲り変形ばかシでなく、伸び変形やねじシ変
形、或いはこれらの合成変形を利用したものにも適用可
能なことは云うまでもない。また4ルチエ素子について
は、装置仕様に応じた特性のものを必要個数用いれば十
分である。その池水発明は、その要旨を逸脱しない範囲
で種々変形して実施することができる。
Although an example has been given of a device for manually switching the conductivity of the terminals 12b to 12n, the switching of the conductivity may be performed using a relay and a sequencer, or by computer control. Furthermore, here, although the case where the direction of bending deformation of the shape memory alloy is set to the outside has been described, the same effect can be obtained even if the direction of the bending deformation is set to the inside. However, the relationship between the direction of bending and the polarity of the current is opposite to that of the embodiment. It goes without saying that the present invention is also applicable to not only bending deformation of shape memory alloys but also elongation deformation, screw deformation, or composite deformation thereof. As for the 4-Lutier elements, it is sufficient to use the necessary number of 4-Lutier elements with characteristics according to the device specifications. The pond water invention can be implemented with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の一実施例装置の概略構成と
その作用形態を示す図、第4図(&)(b)はペルチェ
素子の原理的な構造とその作用を説明する為の図、第5
図(a) (b)は従来装置の一例を示す概略構成図で
ある。 1・・・形状記憶合金、2・・・保持枠、3・・・金具
、4・・・作動枠、5・・・保持台、6・・・ばね、7
・・・スイッチ、8・・・電源、11*、Ilb・・・
形状記憶合金%12h 、12b〜12n・=<ルチェ
素子、13・・・変換素子、14*、14b〜14n・
・・スイッチ 出願人復代理人  弁理士 鈴 江 武 彦第4図 第6図
Figures 1 to 3 are diagrams showing the schematic structure and mode of operation of a device according to an embodiment of the present invention, and Figure 4 (&) (b) is for explaining the basic structure of a Peltier element and its operation. Figure 5
Figures (a) and (b) are schematic configuration diagrams showing an example of a conventional device. DESCRIPTION OF SYMBOLS 1... Shape memory alloy, 2... Holding frame, 3... Metal fitting, 4... Operating frame, 5... Holding stand, 6... Spring, 7
...Switch, 8...Power supply, 11*, Ilb...
Shape memory alloy% 12h, 12b~12n・=<Lucier element, 13... Conversion element, 14*, 14b~14n・
...Switch applicant sub-agent Patent attorney Takehiko Suzue Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 互いに異なる形状を記憶した2枚の一方向性形状記憶合
金を、その間に配列された複数のペルチェ素子を挾んで
接合してなる変換素子を具備したことを特徴とする電気
信号機械量変換装置。
An electrical signal/mechanical quantity converting device comprising a converting element formed by joining two unidirectional shape memory alloys that memorize mutually different shapes with a plurality of Peltier elements arranged between them.
JP2295485A 1985-02-08 1985-02-08 Electric signal/mechanical amount converter Pending JPS61185082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295485A JPS61185082A (en) 1985-02-08 1985-02-08 Electric signal/mechanical amount converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295485A JPS61185082A (en) 1985-02-08 1985-02-08 Electric signal/mechanical amount converter

Publications (1)

Publication Number Publication Date
JPS61185082A true JPS61185082A (en) 1986-08-18

Family

ID=12097003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295485A Pending JPS61185082A (en) 1985-02-08 1985-02-08 Electric signal/mechanical amount converter

Country Status (1)

Country Link
JP (1) JPS61185082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941249A (en) * 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
US6072154A (en) * 1996-09-05 2000-06-06 Medtronic, Inc. Selectively activated shape memory device
US6133547A (en) * 1996-09-05 2000-10-17 Medtronic, Inc. Distributed activator for a two-dimensional shape memory alloy
US11041485B2 (en) * 2016-08-26 2021-06-22 Daegu Gyeongbuk Institute Of Science And Technology Soft actuator using thermoelectric effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941249A (en) * 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
US6072154A (en) * 1996-09-05 2000-06-06 Medtronic, Inc. Selectively activated shape memory device
US6133547A (en) * 1996-09-05 2000-10-17 Medtronic, Inc. Distributed activator for a two-dimensional shape memory alloy
US6323459B1 (en) 1996-09-05 2001-11-27 Medtronic, Inc. Selectively activated shape memory device
US11041485B2 (en) * 2016-08-26 2021-06-22 Daegu Gyeongbuk Institute Of Science And Technology Soft actuator using thermoelectric effect

Similar Documents

Publication Publication Date Title
US4716731A (en) Actuator of shape memory effect material
US6633095B1 (en) Motion device using shape memory material and method therefor
ATE33732T1 (en) BISTABLE ELECTROTHERMAL CONVERTER WITH SHAPE MEMORY EFFECT.
US6679064B2 (en) Wafer transfer system with temperature control apparatus
JP2006507690A5 (en)
JP5835377B2 (en) Superconducting power transducer
JPS61185082A (en) Electric signal/mechanical amount converter
US4765139A (en) Thermocouple for heating and cooling of memory metal actuators
US3142149A (en) Drive mechanism
KR200484695Y1 (en) Necklace with hot and cold function
JPS6328753B2 (en)
JPS60175777A (en) Shape-memory actuator
US3280550A (en) Electrothermal motors
JPS5910789A (en) Actuator which comprises shape memorizy alloy
US20140366523A1 (en) Actuator for generating positioning movements
JPS59178986A (en) Mechanical amplifying mechanism
JPH0775355A (en) Shape memory actuator
CN218182136U (en) Converter and relay
JPS58111792A (en) Thermoelastic operating element
JPS6114771A (en) Electric signal/mechanical amount converter
TWI277995B (en) Device for controlling inductive load
RU2259914C1 (en) Thermo-mechanic transducer for micro-manipulator (variants)
JPS6114770A (en) Electric signal/mechanical amount converter
JP3637388B2 (en) Cooling method and apparatus using Peltier effect
JPS59110875A (en) Heating for driving body made of shape memory alloy