JPS62149881A - Apparatus for forming deposited film - Google Patents

Apparatus for forming deposited film

Info

Publication number
JPS62149881A
JPS62149881A JP60291065A JP29106585A JPS62149881A JP S62149881 A JPS62149881 A JP S62149881A JP 60291065 A JP60291065 A JP 60291065A JP 29106585 A JP29106585 A JP 29106585A JP S62149881 A JPS62149881 A JP S62149881A
Authority
JP
Japan
Prior art keywords
deposited film
gas
film
gaseous
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60291065A
Other languages
Japanese (ja)
Other versions
JPH0811828B2 (en
Inventor
Masahiro Kanai
正博 金井
Masaaki Hirooka
広岡 政昭
Junichi Hanna
純一 半那
Isamu Shimizu
勇 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60291065A priority Critical patent/JPH0811828B2/en
Publication of JPS62149881A publication Critical patent/JPS62149881A/en
Publication of JPH0811828B2 publication Critical patent/JPH0811828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To permit easy control of film quality and to obtain a deposited film having uniform physical characteristics over a large area by alternately disposing plural release ports for raw materials which can be made gaseous and release ports for gaseous halogen oxidizing agents. CONSTITUTION:This apparatus for forming the deposited film introduces the raw materials which can be made gaseous for forming the deposited film from cylinders 201, 202 via an introducing pipe 223 into a vacuum chamber 222 and introduces the halogen oxidizing agent having the property to make an oxidizing effect on the raw materials from cylinders 203-205 via an introducing pipe 224 and gas distributors 210, 211 into said chamber. The gas distributors are alternately disposed with the plural release ports 210 for the raw materials and the release ports 211 for the gaseous halogen oxidizing agents. Both contact each other in the vacuum chamber 222 and chemically form the plural precursors including the precursors in the excited state. At least one of such precursors is used as the supply source for constituting the deposited film, by which the deposited film is formed on the substrate 220.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、[幾組性膜、VAIこ牛4体デノ(イス、電
子写真用の感光デバイス、九字的画1象入力装置用の元
入力センチー撮障、デバイス、元起電刀素子等の電子デ
バイスの用途fこ有用な機能性堆積膜の形成装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a multi-layer film, a VAI cow 4 body deno (chair, a photosensitive device for electrophotography, a 9-character image input device). The present invention relates to an apparatus for forming a functional deposited film useful for use in electronic devices such as input centimeters, devices, and electromotive devices.

〔従来の技術〕[Conventional technology]

従来、半導体膜、絶縁膜、光導電膜、磁性膜或いは金属
膜等の非晶質乃至多結晶質の機能性膜は、所望される物
理的W性や用途等の観点から個々に適した成膜方法が採
用さnている。
Conventionally, amorphous or polycrystalline functional films, such as semiconductor films, insulating films, photoconductive films, magnetic films, or metal films, have been formed to suit each individual from the viewpoint of desired physical W properties and applications. A membrane method has been adopted.

堆積膜の形成には、真空蒸着法、プラズマ0VDfB、
 熱OVD法、fOVD法、 反応!スパッタリング法
、イオ/ブレーティング法などが試みられでおり、一般
的には、プラズマ発生装置が広く用いらn1企業化され
ている。
For forming the deposited film, vacuum evaporation method, plasma 0VDfB,
Thermal OVD method, fOVD method, reaction! Sputtering methods, ion/blating methods, and the like have been tried, and generally, plasma generators are widely used and have become commercially available.

面乍ら、これ等堆積膜形成法によって得られる堆積膜は
より高度の愼能が求められる電子デバイスや光電子デバ
イスへの適用が求められていることから電気的2元学的
荷性及び、繰返し使用での疲労特性あるいは使用壊境峙
性、更には均一性。
However, since the deposited films obtained by these deposited film formation methods are required to be applied to electronic devices and optoelectronic devices that require a higher level of pumping ability, it is necessary to Fatigue characteristics during use, susceptibility to failure during use, and even uniformity.

再現性8@めで生産性、を産性の点において更に総合的
な特性の同上を図る余地がある。
With reproducibility of 8@, there is room to further improve the overall characteristics in terms of productivity.

第3図に示すものは、従来のプラズマ発生装置による堆
積膜の形成装置の1例を示すものであって、図中、30
1は成膜空間としての成膜室であり、内部の基体支持台
302上に所望の基体303を載置する。
What is shown in FIG. 3 is an example of a deposited film forming apparatus using a conventional plasma generator.
Reference numeral 1 denotes a film forming chamber as a film forming space, in which a desired substrate 303 is placed on a substrate support stand 302 inside.

304は基体加熱用のヒーターであり、導−305を介
して給′厄し、発熱せしめる。
Reference numeral 304 denotes a heater for heating the substrate, which is supplied through a conductor 305 to generate heat.

306乃至309は、ガス供給源であり、ケイ素含有化
曾物、水素、−・ロゲン化合物、不活性ガス、不純物元
素を成分とする化合物のガスの種類に応じて設ける。こ
れ等の原料化付物のうち標準状態に於いて液状のものを
使用する場合には、適宜の気化装置を具備せしめる。図
中ガス供給源306乃至309の符号にaを付したのは
分岐管すを付したのは流量計、Cを付したのは各流量計
の高圧側の圧力を計測する圧力計、d又はeを付したの
は各気体流滅を調整するためのバルブである。原料化合
物のガスは導入管310を介して成膜室301内に導入
さnる。
Reference numerals 306 to 309 indicate gas supply sources, which are provided depending on the type of gas of the compound containing a silicon-containing chemical compound, hydrogen, a chloride compound, an inert gas, or an impurity element. When using liquid materials in the standard state among these materials, an appropriate vaporization device is provided. In the figure, the gas supply sources 306 to 309 are marked with a, branch pipes are marked with flowmeters, C is marked with pressure gauges that measure the pressure on the high pressure side of each flowmeter, and d or The valves marked with e are for adjusting the flow of each gas. The gas of the raw material compound is introduced into the film forming chamber 301 via the introduction pipe 310.

311はプラズマ発生装置であって、プラズマ発生装置
311力)らのプラズマは、矢印の向きに流nている原
料ガスに作用して、作用さnた化合物を励起、分解せし
め、分解した化合物か化学反応することによって、基体
303にアモルファス堆積膜を形成するものである。3
12は排気パルプ、313は排気管であり、成膜空間内
を真空排気するため排気装置(図示せず)に接続されて
いる。
Reference numeral 311 denotes a plasma generator, and the plasma from the plasma generator 311 acts on the raw material gas flowing in the direction of the arrow, excites and decomposes the reacted compound, and decomposes the decomposed compound. An amorphous deposited film is formed on the base 303 by a chemical reaction. 3
12 is an exhaust pulp, and 313 is an exhaust pipe, which is connected to an exhaust device (not shown) to evacuate the inside of the film forming space.

こうした装置を用いて、例えばa−8i:Hの堆積膜を
形成する場合、適当な基体303を支持台302上に載
置し、排気装置(図示せず)を用いて排気管を介して成
膜室301内を排気し%減圧する。
When forming a deposited film of, for example, a-8i:H using such an apparatus, a suitable substrate 303 is placed on the support base 302, and the film is formed through an exhaust pipe using an exhaust apparatus (not shown). The inside of the membrane chamber 301 is evacuated and the pressure is reduced by %.

次いで必要に応じて基体を加熱し、ガス供給用ボ/べよ
りS iH4、S iz H6等の原料ガスをガス導入
f310を介して成膜室301内に導入し、成膜室内の
圧力を所定圧力に保ちつつプラズマ発生装置により成膜
室301)7′3にプラズマを発生させ、基体303上
にa −8i : Hgを形成する。
Next, the substrate is heated as necessary, and raw material gases such as SiH4 and SizH6 are introduced into the film forming chamber 301 from the gas supply bottle through the gas introduction f310, and the pressure inside the film forming chamber is maintained at a predetermined level. Plasma is generated in the film forming chamber 301) 7'3 by a plasma generator while maintaining the pressure to form a-8i:Hg on the substrate 303.

ところで従来の堆積膜は、レリんはプラズマOVD@に
より得られるものは特性発現性に富み一応満足のゆくも
のとさnてはいるものの、それであっても、確固たる当
課製品の成立に要求される、電気的、光学的、光導電的
特性、繰返し使用についての耐疲労特性、使用環境時性
の点、経時的安定性および耐久性の点、そして更に均質
性の点の全ての点を総じて満足せしめる、という課題を
解決するには未だ間のある状態のものである。
By the way, although conventionally deposited films obtained by Relin and plasma OVD@ are satisfactory for the time being due to their rich characteristics, there are still some issues required to establish a solid product in our section. , electrical, optical, photoconductive properties, fatigue resistance for repeated use, durability in usage environment, stability over time and durability, and homogeneity. There is still a long way to go to solve the problem of increasing the number of children.

その原因は、目的とする堆lR膜が、使用する材料もさ
ることながら、単純な層堆績操作で得られるという類の
ものでなく、就中の工程操作に熟線的工夫が必要とされ
るところが大きい。
The reason for this is that the desired deposited IR film cannot be obtained by a simple layer deposition operation, not to mention the materials used, and that special ingenuity is required in the particular process operation. The big thing is that

因みに、例えば、いわゆるOVD法の場合、気体材料を
希釈した俊いわゆる不純物を混入し、ついで500〜6
50℃といった高温で熱分解することから、所望の堆積
膜を形成するについでは緻密な工程操作と制御が要求さ
几、ために装置も区雑トナって可成りコスト高のものと
なるが、そうしたところで均質にして前述したような所
望の特注を具有する堆積膜製品を定常的に得ることは極
めてむずかしく、シたがって工業的成膜には採用し難い
ものである。
Incidentally, in the case of the so-called OVD method, for example, a gaseous material is diluted with so-called impurities, and then a
Since it is thermally decomposed at a high temperature of 50°C, precise process operation and control are required to form the desired deposited film, and the equipment is complicated and the cost is quite high. In such a situation, it is extremely difficult to regularly obtain a deposited film product that is homogeneous and has the desired custom features as described above, and therefore is difficult to employ for industrial film formation.

また、前コホしたところの、至適な方法として一般に広
く用いられているプラズマ発生方式であっても、工程操
作上のいくつかの問題、そしてまた設備投置上の問題が
存在する。工程操作については、その条件は前述のOV
D法よりも更に複雑であり、−膜化するには至難のもの
である。即ち、例凡ば、基本温度、導入ガスの流址並び
に流量比、層形成時の圧力、高周波電力、電極構造、反
応容器の構造、排気速度、プラズマ発生方式の相互関係
のパラメーターをとってみても既に多くのパラメーター
が存在し、この他にもパラメーターが存在するわけであ
って、所望の製品を得るについては厳密なパラメーター
の選択が必要とされ、そして厳密に選択さnたパラメー
ターであるが故に、その中の1つの構成因子、とりわけ
そ几がプラズマであって、不安定な状態をこなりでもす
ると形成される膜は著しい悪影響を受けて製品として成
立し得ないものとなる。そして装置については、上述し
たように厳密なパラメーターの選択が必要とされること
から、構造はおのずと複雑なものとなり、装置規模、1
重類が変れば個々に厳選さfしたパラメーターにAj応
し得るように設5十シなければfよらない。
Furthermore, even with the plasma generation method, which is generally widely used as an optimal method, as mentioned above, there are some problems in process operation and problems in equipment placement. Regarding the process operations, the conditions are the OV mentioned above.
It is more complicated than method D, and is extremely difficult to form into a film. In other words, consider the interrelationship parameters among basic temperature, flow rate and flow rate of introduced gas, pressure during layer formation, high frequency power, electrode structure, reaction vessel structure, pumping speed, and plasma generation method. There are already many parameters, and there are other parameters as well, and in order to obtain the desired product, it is necessary to select the exact parameters, and even though the parameters are strictly selected, Therefore, one of the constituent factors, especially the source, is plasma, and if the unstable state is maintained, the formed film will be severely adversely affected and cannot be used as a product. As for the equipment, as mentioned above, it is necessary to select strict parameters, so the structure is naturally complicated, and the equipment size and
If the weight class changes, it is not necessary to set it so that it can correspond to the individually selected parameters.

こうしたこと力)ら、プラズマCVD云jこついては、
それが今のところ至適な方法とされてはいるものの、上
述したことから、所望の堆積膜をな、憤するとなれば装
置Uこ多大の設備投資力S必要となり、そうしたところ
でt酊i :産のための工程・計理項目は多く且つ複雑
であり、工程管理許容幅は狭く、そしてまた装置、、I
4整が微妙であることから、紹局は製品を力)7.1″
リコスト高のものにしてしまう等の問題がある。
When it comes to plasma CVD,
Although this is considered to be the optimal method at present, from the above-mentioned point of view, if the desired deposited film is to be obtained, a large amount of capital investment will be required for the equipment, and in such a case, it is difficult to obtain the desired deposited film. The process/accounting items for production are many and complex, the process control tolerance range is narrow, and the equipment,...
4. Because the adjustment is delicate, the introduction office will force the product) 7.1″
There are problems such as making it expensive to recycle.

また−万には、前述の各種ディバイスが多様化して米で
おり、そのための素子部材即ち、前述した各燻特性等の
要注を諾じて1足すると共に適用対象、用途に相応し、
そして場合によってはそれが大面積化されたものである
、安定な准植成展品を低コストで定常的に供給されるこ
とが社会的要求としてあり、この要求を満たす方法、装
置の開発が切望されている状況がある。
In addition, the various devices mentioned above have diversified, and the element materials for them, that is, the above-mentioned smoking characteristics, etc., must be added together, and appropriate to the applicable target and use.
In some cases, there is a social demand for a steady supply of stable semi-planted products at a low cost, and the development of methods and devices that meet this demand is urgently needed. There are situations where this is the case.

〔発明の目的〕[Purpose of the invention]

本発明は、光起電力素子、牛導体ディバイス、画像入力
用ラインセンサー、撮はディバイス、電子写真用感光デ
ィバイス等に使用する堆積膜を形成する従来装置につい
て、上述の諸問題を解決し、上述の要求を満たすように
することを目的とするものである。
The present invention solves the above-mentioned problems with respect to conventional apparatuses for forming deposited films used in photovoltaic elements, conductor devices, line sensors for image input, photographic devices, photosensitive devices for electrophotography, etc. The purpose is to meet the requirements of

すなわち本発明の主たる目的は、′6fE気的、光字的
、光導電的特性が殆んどの使用環境に依存することなく
実質的に常時安定しており、浚nた耐光疲労時性を有し
、繰返し使用にあっても劣化現象を起こさず、優れた耐
久性、耐湿性を有し、残留電位の問題を生じない均一に
して均質な、改善された堆積膜を形成するための堆積膜
形成装置を提供することζこある。
That is, the main object of the present invention is to provide a material whose '6fE optical, optical, and photoconductive properties are substantially always stable regardless of the usage environment, and which has excellent resistance to light fatigue. A deposited film for forming an improved deposited film that does not deteriorate even after repeated use, has excellent durability and moisture resistance, and is uniform and homogeneous without causing residual potential problems. The purpose of the present invention is to provide a forming device.

本発明の他の目的は、形成される膜の緒特性、成膜速度
、再現性の向上及び膜品質の均一化、均質化をはかりな
がら、膜の大面積化に適し、膜の生産性向上及び直属化
も容易に達成することりできる堆積膜形成装置を提供す
ることにある。
Another object of the present invention is to improve the characteristics, film formation speed, and reproducibility of the film to be formed, and to make the film uniform and homogeneous, while making it suitable for large-area films and improving film productivity. It is also an object of the present invention to provide a deposited film forming apparatus that can be easily operated directly.

〔発明の構成、効果〕[Structure and effect of the invention]

本発明者は、従来装置についての前述の諸問題を克服し
て、上述の目的を達成すべく鋭意研究を重ねた結果、堆
積膜形成用の気体状にし得る原料物質と、該原料物質に
酸化作用をする性質を有Tる気体状ハロゲン系酸化剤と
、を反応空間内に導入しで接触させることで励起状態の
前駆体を化学的に生成し、該前駆体を堆積膜構成要素の
供給源として成膜空間内にある基体上に所望の堆積膜そ
効率よく、膜厚の均一性、膜質の均一性を保ちながら大
面積にわたって形成TることのできるA直を開発するに
至った。
As a result of extensive research in order to overcome the aforementioned problems with conventional devices and achieve the above-mentioned objectives, the present inventor has discovered a raw material that can be made into a gaseous state for forming a deposited film, and a material that can be oxidized into the raw material. A precursor in an excited state is chemically generated by introducing a gaseous halogen-based oxidant having the property of acting into the reaction space and bringing it into contact, and the precursor is supplied to the constituent elements of the deposited film. We have developed an A-direction method that can efficiently form a desired deposited film over a large area while maintaining uniformity in film thickness and film quality on a substrate located in a film formation space as a source.

即ち本発明の@置は、准、漬挨形戊用の気体状にし得る
原料1勿實と、該原料物質に酸化作用をする性質を有す
る気体状−・ロゲ/系戚比剤とを反応空間内をこ導入接
触させる際に、こζしらのガスを効率良く混合し、堆積
膜の形成に必要な前駆体を大面積にわたって生成させる
装置であってs NIJ記気不状にし得る原料gJ質の
放出口と前記気体状ハロゲン系酸化剤の放出口の形状が
円形、楕円形又はスリット状で、横方向に一列、あるい
は横方向及び縦方向fこ複数列、あるいは放射状に複数
列配置し、その材質が、金属、樹脂又はセラミックであ
ることを特徴とする装置である。
That is, the method of the present invention is to react a raw material 1, which can be made into a gaseous state for use in pickling and dusting, with a gaseous ROGE/system relative agent that has the property of oxidizing the raw material. This device efficiently mixes these gases when they are brought into contact with each other in the space, and generates the precursor necessary for forming a deposited film over a large area. The shape of the gaseous halogen-based oxidizing agent discharge port and the gaseous halogen-based oxidizing agent discharge port are circular, oval, or slit-shaped, and are arranged in one row in the horizontal direction, in multiple rows in the horizontal and vertical directions, or in multiple rows radially. , the device is characterized in that its material is metal, resin, or ceramic.

本発明の堆積膜形成用の気体状にし得る11X、科吻誠
と、該原料物質に酸化作用をする性質を有する気体状ハ
ロゲン系酸化剤と、を反応空間内jこ導入Tるための放
出口が円形である場合には、隣接する他の放出口との距
離、原料物質やハロゲン系酸化剤の流量、反応空間内の
圧力等の成膜因子の関係に於て適宜決定されるが、その
直径は好ましくは0.O1〜110011L、より好ま
しくは0.05〜50趨、最適には0.1〜201mと
されるのが望ましい。
11X, which can be made into a gas for forming the deposited film of the present invention, and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material are introduced into the reaction space. When the outlet is circular, it is determined as appropriate depending on the relationship between film-forming factors such as the distance to other adjacent discharge ports, the flow rate of the raw material and halogen-based oxidizing agent, and the pressure in the reaction space. Its diameter is preferably 0. It is desirable that the length is O1 to 110011L, more preferably 0.05 to 50m, and optimally 0.1 to 201m.

同様に、放出口が楕円形である場合Iこは、その幾径は
好ましくは0.01〜50tttx、より好ましくは0
.05〜20朋、最適には0.1〜10趨とされ、力)
つ短径(81と長径(L)との長さ比(R/L )は好
ましくは1/1〜1/10000゜より好ましくは1/
2〜1/1000とされるのが望ましい。同様に、放出
口がスリット状である場合には、スリット巾は好ましく
は0.01〜501I1m1より好ましくは0.05〜
20朋、最適には0.1〜10闇とされるのが望ましい
。またスリット長さは好ましくは1韻以上、より好まし
くは5 rrm以上、最適には10肩II以上とされる
のが望ましい。
Similarly, if the outlet is elliptical, its geometric diameter is preferably 0.01 to 50tttx, more preferably 0.
.. 05 to 20, optimally 0.1 to 10, power)
The length ratio (R/L) of the short axis (81) and the long axis (L) is preferably 1/1 to 1/10000°, more preferably 1/1
It is desirable that it be 2 to 1/1000. Similarly, when the discharge port is slit-shaped, the slit width is preferably 0.01 to 501 I1 m1, more preferably 0.05 to 501 m1.
It is desirable to set it to 20 tom, optimally 0.1 to 10 tom. The length of the slit is preferably at least one rhyme, more preferably at least 5 rrm, and optimally at least 10 rhymes.

本発明に於て、堆積膜形成用の気体状船こし侍る原料物
質と、該原料物質fこ酸化作用を’KTる気体状ハロゲ
ン系酸化剤と、を反応空間内に導入Tるための放出口を
横方向に一列、あるいは横方向及び縦方向に0数列配置
する場合には隣接する放出口間の距離は原料物質やハロ
ゲン系酸化剤の流J!1′1反応窒間内の圧力等の成膜
因子の関係に於て適宜決定されるが、放出口の端部どう
しの距離は好ましくは50朋以下、より好ましくは20
 mrtt以下、最適には10+i以下とされるのが望
ましい。放射状に配置する場合には中心より外方向に同
って少なくとも2列以上、好ましくは3列以上、又、周
方向に向っては3列以上、好ましくは4列以上配置され
ることが望ましい。
In the present invention, a gaseous material for forming a deposited film is introduced into the reaction space, and a gaseous halogen-based oxidizing agent that oxidizes the material is introduced into the reaction space. When the outlets are arranged in one row in the horizontal direction, or in zero rows in both the horizontal and vertical directions, the distance between adjacent outlets is determined by the flow of the raw material or halogen-based oxidizer J! The distance between the ends of the discharge ports is preferably 50 mm or less, more preferably 20 mm, although it is determined as appropriate depending on the relationship between film forming factors such as the pressure within the 1'1 reaction nitrogen chamber.
It is desirable that it be less than mrtt, most preferably less than 10+i. In the case of radial arrangement, it is desirable to arrange at least two or more rows, preferably three or more rows outward from the center, and three or more rows, preferably four or more rows in the circumferential direction.

本発明に於て、使用される放出口の材質は金属である場
合tこはステンレス、 Alp Or 、 Mo I 
Au gPt、Nb、Ta、V、Ti、Fe、Pd、N
i−0r等、樹脂である場合には、ポリエステル、ポリ
エチレン。
In the present invention, when the material of the discharge port used is metal, stainless steel, Alp Or, MoI, etc.
Au gPt, Nb, Ta, V, Ti, Fe, Pd, N
When it is a resin such as i-0r, it is polyester or polyethylene.

ポリカーボネート、セルローズアセテート、ポリプロビ
レ/、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチ
レン、ポリアミド等、セラミックスである場合にはkl
z Ox t S 10Ht B e Ot MgOt
ZrOz 、SiO,Tie、ZrO,BN、AJN、
Si3N4等が挙げらnる。好ましくはAl、ステンレ
スが加工性、耐腐食性などの点から用いられる。
kl for ceramics such as polycarbonate, cellulose acetate, polypropylene/, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, etc.
z Ox t S 10Ht B e Ot MgOt
ZrOz, SiO, Tie, ZrO, BN, AJN,
Examples include Si3N4. Preferably, Al or stainless steel is used from the viewpoint of workability, corrosion resistance, etc.

本発明に於て、ガス放出口を複数配置する場合天 ζこは、ガスの混合率を向上させる目的で渡々の放出口
から放出されるガスの種石は交互に規則正しく、又は2
個、3個と複数の集団で、あるいは不規則性をもって放
出されても良い。
In the present invention, when a plurality of gas discharge ports are arranged, in order to improve the gas mixing ratio, the gas seeds discharged from the various discharge ports are arranged alternately and regularly, or
It may be emitted in multiple groups such as one, three, or irregularly.

かくする本発明の装置は、成膜空間即ち反応室内で放電
か生起する機会のないものであることから、形成される
堆積膜は、イオンダメージやその他の例えば異常放電作
用等による不都合な影響を受けることがない。
Since the apparatus of the present invention has no chance of generating electrical discharge in the film forming space, that is, the reaction chamber, the deposited film formed is free from ion damage and other undesirable effects such as abnormal electrical discharge action. I never receive it.

そして、本発明の堆積膜形成装置によnば、省エネルギ
ー化と同時Iこ大面積化、膜厚均一性、膜品質の均一性
を十分満足させて管理の簡素化と量産化を図り、量産装
置に多大な設備投資も必要とせず、またそのil−産の
為の管理項目も明確になり、管理許容幅も広く、装置の
調整も簡単になる。
According to the deposited film forming apparatus of the present invention, it is possible to save energy, simultaneously increase the area, uniform film thickness, and uniform film quality, simplify management, and achieve mass production. There is no need for a large amount of capital investment in the equipment, and the management items for the IL-production become clear, the management tolerance range is wide, and the adjustment of the equipment becomes easy.

本発明の堆積膜形成装置に於いて、使用される堆積膜形
成用の気体状にし得る原料物質は、気体状ハロゲン系酸
化剤との接触により酸化作用をうけるものであり、目的
とする堆積膜の種類、e性。
In the deposited film forming apparatus of the present invention, the raw material used for forming the deposited film, which can be made into a gas, is oxidized by contact with the gaseous halogen-based oxidizing agent, so that the desired deposited film cannot be formed. type, e-sexuality.

用途等によって所望に従って適宜選択される。本発明に
於いては、上記の気体状にし得る原料物質及び気体状ハ
ロゲン系酸化剤は、導入されて接触をする際に気体状と
されるものであれば良く、通常の場合は、気体でも液体
でも固体であっても差支えない。
It is appropriately selected depending on the purpose and the like. In the present invention, the above-mentioned raw materials and gaseous halogen-based oxidizing agents that can be made into a gaseous state may be ones that are made into a gaseous state when they are introduced and brought into contact. It does not matter if it is liquid or solid.

堆積膜形成用の原料物質あるいはハロゲン系酸化剤が液
体又は固体である場合には、Ar、He。
Ar or He when the raw material for forming the deposited film or the halogen-based oxidizing agent is liquid or solid.

NZ、H2等のキャリアーガスを使用し、必要に応じて
は熱も加えながらバプリ/グを行なって反応空間に堆積
膜形成用の原料物質及びハロゲン系酸化剤を気体状とし
て導入する。
Using a carrier gas such as NZ, H2, etc., and applying heat if necessary, vaporization is performed to introduce a raw material for forming a deposited film and a halogen-based oxidizing agent into the reaction space in a gaseous state.

この際、上記気体状原料物質及び気体状ハロゲン系酸化
剤の分圧及び混合比は、キャリアーガスの流量あるいは
堆積膜形成用の原料物質及び気体状ハロゲン系酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material and the gaseous halogen-based oxidizing agent can be adjusted by adjusting the flow rate of the carrier gas or the vapor pressure of the raw material for forming the deposited film and the gaseous halogen-based oxidizing agent. Set.

本発明に於いて使用される堆積膜形成用の原料物質とし
ては、例えば、半導体性或いは電気的絶縁性のシリコン
堆積膜やゲルマニウム堆積膜等のテトラヘドラル系の堆
積膜を得るのであれば、直鎖状、及び分岐状の鎖状シラ
ン化合物、環状シラン化合物、鎖状ゲルマニウム化合物
等が有効なものとして挙げることが出来る。
As the raw material for forming the deposited film used in the present invention, for example, if a tetrahedral deposited film such as a semiconductor or electrically insulating silicon deposited film or germanium deposited film is to be obtained, linear Effective examples include linear and branched chain silane compounds, cyclic silane compounds, and chain germanium compounds.

具体的には、直鎖状シラン化合物としては81 nH2
n +2(n−1# 2p 3p 4t 5p 6# 
7p 8)  、分岐状鎖状シラン化合物としては、8
iH1SiH(S iH3) S iHI S iHl
  % 環状シラン化合物としては5inH2n(n−
3,4,5,6)、鎖状ゲルマン化合物としては、Oe
mHl m+2 (m−1、2、3r 45)等が挙げ
られる。この他、例えばスズの堆積膜を作成するのであ
わばSnH4等の水素化スズを有効な原料物質として挙
げることが出来る。
Specifically, as a linear silane compound, 81 nH2
n +2(n-1# 2p 3p 4t 5p 6#
7p 8), as a branched chain silane compound, 8
iH1SiH(S iH3) S iHI S iHl
% As a cyclic silane compound, 5inH2n(n-
3,4,5,6), as a chain germane compound, Oe
Examples include mHl m+2 (m-1, 2, 3r 45). In addition, for example, tin hydride such as SnH4 can be used as an effective raw material for forming a deposited film of tin.

勿論、これ等の原料物質は1種のみならず2種以上混合
して使用することも出来る。
Of course, these raw materials can be used not only alone, but also as a mixture of two or more.

本発明に於いて使用されるハロゲン系酸化剤は、反応空
間内Iこ導入さnる際気体状とされ、同時に反応空間内
に導入される堆積膜形成用の気体原料物質との接触だけ
で効果的に酸化作用をする性質を有するもので、F2 
* Ols e Brl t x、等のハロゲゲンガス
、発生期状態の弗素、塩素、臭素等が有効なものとして
挙げることが出来る。
The halogen-based oxidizing agent used in the present invention is in a gaseous state when it is introduced into the reaction space, and the halogen-based oxidizing agent is in a gaseous state when it is introduced into the reaction space, and the halogen-based oxidizing agent is in a gaseous state when it is introduced into the reaction space. It has the property of effectively oxidizing, and F2
*Halogen gas such as Ols e Brl t x, nascent fluorine, chlorine, bromine, etc. can be cited as effective.

こn等のハロゲン系酸化剤は気体状で、前記の堆積膜形
成用の原料物質の気体と共に所望の流量と供給圧を与え
らnて反応空間内に導入されて前記原料物質と混合衝突
することで、前記原料物質に酸化作用をして励起状態の
前駆体を含む複数種の前駆体を効率的に生成する。生成
奈れる励起状態の前駆体及び他の前駆体は、少なくとも
そのいずれが1つが形成される堆積膜の構成要素の供給
源として働く。
These halogen-based oxidants are in a gaseous state, and are introduced into the reaction space together with the gaseous raw material for forming the deposited film at a desired flow rate and supply pressure, where they mix and collide with the raw material. By doing so, the raw material is oxidized to efficiently generate a plurality of types of precursors including excited state precursors. The excited state precursor and other precursors that are generated serve as a source of components of the deposited film, at least one of which is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体fこなって、或
いは必要に応じてエネルギーを放出はするがそのままの
形態で成膜空間に配設された基体表面に触nることで基
体表面温度が比較的低い場合には三次元ネットワーク構
造の堆積膜が基体表面温度が高い場合には、結晶質の堆
積膜が作成される。
The produced precursor may be decomposed or reacted to form another excited state precursor or a precursor in another excited state, or it may be formed in its original form, releasing energy as required. By touching the surface of the substrate disposed in the membrane space, when the substrate surface temperature is relatively low, a deposited film with a three-dimensional network structure is created, and when the substrate surface temperature is high, a crystalline deposited film is created. Ru.

本発明に於いては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される可く
、成膜因子としての、原料物質及びハロゲン糸寂化剤の
種類と組み合せ、これ等の混合比、混合時の圧力、流量
、成膜窓間内圧、ガスの流型、成膜温度(基体温度及び
雰囲気温度)が所望に応じて適宜選択される。これ等の
成膜因子は有機的に関連し、単独で決定されるものでは
なく相互関連の下に夫々に応じて決定される。本発明に
於いて、反応空間に導入される堆積膜形成用の気体状原
料物質と気体状ハロゲン系酸化剤との量の割合は、上記
成膜因子の中関連する成膜因子との関係に於いて適宜所
望tこ従って決めらnるが、導入流意比で、好ましくは
、1/20〜100/1が遍尚であり、より好ましくは
115〜50/1とされるのが望ましい。
In the present invention, the type of raw material and halogen thread thinning agent as film-forming factors are selected so that the deposited film forming process can proceed smoothly and a film having high quality and desired physical properties can be formed. The mixing ratio, the pressure during mixing, the flow rate, the internal pressure between the film forming windows, the gas flow type, and the film forming temperature (substrate temperature and ambient temperature) are selected as desired. These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other. In the present invention, the ratio of the amounts of the gaseous raw material for forming a deposited film and the gaseous halogen-based oxidizing agent introduced into the reaction space is determined depending on the relationship with the relevant film-forming factors among the above-mentioned film-forming factors. Although it is determined according to the desired ratio, the introduction flow ratio is preferably 1/20 to 100/1, more preferably 115 to 50/1.

反応空間に導入される際の混合時の圧力としては前記気
体状原料物質と前記気体状ノ・ロゲン系酸化剤との接触
を確率的fこより高める為には、より高い万が良いが、
反応性を考lばして適宜所望Iこ応じて最適1111’
i−決定するのが良い。前記混合1寺の圧力としては、
上記の様にして決められるが、夫々の導入時の圧力とし
て、好ましくはI X 10−’気圧〜5気圧、より好
ましくはlXl0”’ 気圧〜2気圧とされるのが望ま
しい。
The pressure at the time of mixing when introduced into the reaction space is preferably higher in order to increase the contact between the gaseous raw material and the gaseous nitrogen-based oxidizing agent more than the probability f.
Optimal 1111' depending on the desired I considering the reactivity.
i- It is better to decide. The pressure of the mixed 1 temple is as follows:
Although determined as described above, it is desirable that the pressure at the time of each introduction is preferably I x 10-' atm to 5 atm, more preferably lXl0"' to 2 atm.

成膜空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、反応空間に於いて生成
される励起状態の前駆体(E)及び場合Iこよって該前
駆体(E)より派生的に生ずる前駆体(D)が成膜に効
果的に寄与する様に適宜所望に応じて設定される。
The pressure in the film-forming space, that is, the pressure in the space on which the substrate on which the film is to be formed is disposed, is the same as the excited state precursor (E) generated in the reaction space and in case I. The precursor (D) derived from the precursor (E) is appropriately set as desired so as to effectively contribute to film formation.

成膜空間の内圧力は、成膜空間が反応空間と開放的に連
続している場合には、堆積膜形成用の基体状原料物質と
気体状ノ・ロゲン系酸化剤との反応空間での導入圧及び
流量との関連に於いて、例えば差動排気或いは、大型の
排気装置の使用等の工夫を加えて調整することが出来る
When the film forming space is open and continuous with the reaction space, the internal pressure of the film forming space is determined by the pressure in the reaction space between the substrate-like raw material for forming the deposited film and the gaseous nitrogen-based oxidizing agent. In relation to the introduction pressure and flow rate, adjustments can be made by, for example, using differential exhaust or a large exhaust device.

或いは、反応空間と成膜空間の連結部のコンダクタンス
が小さい場合Fこは、成膜空間に適当な排気装置を設け
、談装置の排気量を制御することで成膜空間の圧力を真
整することが出来る。
Alternatively, if the conductance of the connection between the reaction space and the film-forming space is small, the pressure in the film-forming space can be adjusted by installing an appropriate exhaust system in the film-forming space and controlling the exhaust volume of the exhaust system. I can do it.

又、反応空間と成膜空間が一体的になっていて、反応位
置と成膜位置が空間的に異なるだけの場合には、前述の
様に差動排気するか或いは、排気能力の充分ある大型の
排気装置を設けてや几ば艮い。
In addition, if the reaction space and film-forming space are integrated and the reaction position and film-forming position are only spatially different, use differential pumping as described above or use a large-scale pump with sufficient exhaust capacity. It is best to install an exhaust system.

上記のようにして成膜空間内の圧力は、反応!間に導入
さIする気体状原料物質と気体状ハロゲノ酸化剤の導入
圧力との関係に於いて決めらちるが、好ましくは0.0
OITorr 〜100Torr 、より好ましくは0
.01Torr〜30Torr  、最適にハo、 o
 5〜10To r rとさ几るのが望ましい。
As described above, the pressure in the film forming space reacts! It is determined based on the relationship between the gaseous raw material introduced between I and the introduction pressure of the gaseous halide oxidizing agent, but preferably 0.0
OITorr ~ 100Torr, more preferably 0
.. 01Torr~30Torr, optimally ha o, o
It is desirable to reduce the pressure to 5 to 10 Torr.

ガスの元型に就いては、反応空間への前記*植成形成用
の原料物質及びハロゲン系酸化剤の導入の際にこn等か
均−に効率良く混合され、前記前駆体(E)が効率的に
生成され且っ成膜か支障なく適切になされる様に、ガス
導入口と蚕体とガス排気口との幾何学的配置を考慮して
一計さζしる必要がある。具体的には、前記気体状にし
得るjぷ科物質と前記気体状ハロゲン系酸化剤の前記反
応空間への導入方向に対して対向する位置に基体が配設
さnることが好ましい。
Regarding the original form of the gas, when the raw materials for implantation formation and the halogen-based oxidizing agent are introduced into the reaction space, they are evenly and efficiently mixed, and the precursor (E) It is necessary to take into consideration the geometrical arrangement of the gas inlet, the silkworm body, and the gas exhaust port so that the gas can be efficiently generated and the film can be formed properly without any problems. Specifically, it is preferable that the substrate be disposed at a position opposite to the direction in which the gaseous substance and the gaseous halogen-based oxidizing agent are introduced into the reaction space.

成膜時の基体温度(+1+ s)としては、使用される
ガス種及び形成される堆積膜のi数と要求される特性に
応じて、個々に適宜所望に従って設定されるが、非晶質
の膜を得る場合には好ましくは室温から450℃、より
好ましくは50〜400 ”cとさ几るのが孟ましい。
The substrate temperature (+1+ s) during film formation is set as desired depending on the type of gas used, the i number of the deposited film to be formed, and the required characteristics. When a film is obtained, the temperature is preferably reduced from room temperature to 450°C, more preferably from 50 to 400"C.

殊に半導体性や元導屯性等の特性がより良好な結晶質の
堆!R膜を形成する場合には、基体温度(Ts)は30
0〜700”0とされるのが望ましい。
In particular, crystalline sediments with better properties such as semiconductivity and conductivity! When forming an R film, the substrate temperature (Ts) is 30
It is desirable to set it to 0-700''0.

成膜空間の雰囲気温度(Ta t )としては、生成さ
れる前記前駆体(B)及び前記前駆体(D)が成膜に不
適当な化学株に変化せず、且つ効率良く前記前駆体(B
)が生成される様に基体温度(Ts)との関連で適宜所
望fこ応じて決められる。。
The atmospheric temperature (Ta t ) in the film-forming space is set so that the precursor (B) and the precursor (D) to be produced do not change into a chemical strain unsuitable for film-forming, and the precursor (Ta t ) is efficiently controlled. B
) is appropriately determined in relation to the substrate temperature (Ts). .

本発明に於いて使用される基体としては、形成される堆
積膜の用途に応じて適宜所望に応じて選択されるのであ
れば導電性でも電気絶縁性であっても良い。導電性基体
としては、例えば、Ni0r 、ステンvy、、A7 
、Or  、Mo 、Au。
The substrate used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the deposited film to be formed. Examples of the conductive substrate include Ni0r, stainless steel, A7
, Or, Mo, Au.

Ir 、Nb 、Ta 、V、’IJ  、Pt  、
Pd等の金属又はこれ等の会金が挙げられる。
Ir, Nb, Ta, V, 'IJ, Pt,
Examples include metals such as Pd and metals thereof.

電気絶縁性基°体としては、ポリエステル、ポリエチレ
ン、ポリカーボネート、セルローズアセテート、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ
スチレン、ポリアミド等の合成樹脂のフィルム又はシー
ト、ガラス、セラミック等が通常使用される。これらの
電気絶縁性基体は、好適には少なくともその一方の表面
が導電処理さn1咳導電処理さnた表面側に他の層が設
けられるのが望ましい。
As the electrically insulating substrate, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, etc. are usually used. Preferably, at least one surface of these electrically insulating substrates is subjected to conductive treatment, and another layer is preferably provided on the surface that has undergone conductive treatment.

例えばガラスであわば、その表面かN i Or 。For example, in the case of glass, its surface or Ni Or.

人A!、Or、Mo、Au、Ir、Nb、Ta、VT 
ig P t p P d p I n! On  t
 S” 02  y I ’l 0(Inn’s +8
nO* )等の薄膜を設ける事によって導電処理さn1
或いはポリエステルフィルム等の合成樹脂フィルムであ
れば、N iOr ? A l! tAg、Pb  、
  Zn  、Ni   、Au  、  Or  、
Mo  、  Ir。
Person A! , Or, Mo, Au, Ir, Nb, Ta, VT
ig P t p P d p I n! On t
S" 02 y I'l 0(Inn's +8
conductive treatment by providing a thin film such as nO*)
Or if it is a synthetic resin film such as polyester film, N iOr? Al! tAg, Pb,
Zn, Ni, Au, Or,
Mo, Ir.

Nb、Ta、V、Ti 、Pt等の金属で真空蒸着、電
子ビーム蒸着、スパッタリング等で処理し、又は前記金
属でラミネート処理しで、その表面が導電処理される。
The surface is treated with a metal such as Nb, Ta, V, Ti 2 , Pt, etc. by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal, thereby making the surface conductive.

支持体の形状としては、円筒状。The shape of the support is cylindrical.

ベルト状、板状寺、任意の形状とし]−所望によって、
その形状が決定されるコ 基体は、基渾と漢との密着性及び反応性を考慮して上記
の中より選ぶのが好ましい。更に両者の熱膨張の差が大
きいと膜中に多量の歪が生じ、良品質の膜が得られない
場合があるので、両者の熱膨張の差が近接している基体
を選択して使用するのが好ましい。
Belt-like, plate-like, arbitrary shape]--as desired,
The co-substrate whose shape is determined is preferably selected from among the above, taking into consideration the adhesion and reactivity between the substrate and the substrate. Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, and a high-quality film may not be obtained, so select and use a substrate with a close difference in thermal expansion between the two. is preferable.

又、基体の表面状態は、膜の構造(配向)や錐状組織の
発生に直接関係するので、所望の特性が得られる様なg
構造と膜組織となるIfこ基体の弐面を処理するのが望
ましい。基体は、膜質及び膜厚等の均一性を増すために
、本発明によるガス放出口の使用に加えて成膜空間内に
おいて、回転。
In addition, since the surface condition of the substrate is directly related to the structure (orientation) of the film and the occurrence of cone-shaped structures, it is necessary to adjust the g
It is desirable to treat the second side of the substrate for the structure and membrane structure. In order to increase the uniformity of film quality and film thickness, the substrate is rotated within the film forming space in addition to using the gas outlet according to the present invention.

振動等の*きを加えることもできる。*Additional effects such as vibration can also be added.

以下、本発明の堆積膜形成装置を図面の実施例により、
吏に詳しく説明するが、本発明の堆積膜形成装置はこれ
によって限定されるものではない。
Hereinafter, the deposited film forming apparatus of the present invention will be explained with reference to the embodiments shown in the drawings.
Although this will be explained in detail below, the deposited film forming apparatus of the present invention is not limited thereto.

第1図(1)〜(12)は、本発明の堆積膜形成装置に
おいて用いられる、堆積膜形成用の気体状にし得る原料
物質と、該原料物質にば化作用をする性質を有する気体
状ハロゲン系酸化剤との放出口を交互−こ配置した時の
放出口側から見た時の略図であり、第2図は本発明の堆
積膜形成法を具現するに好適な装置の1例を示すもので
ある。
Figures 1 (1) to (12) show a raw material for forming a deposited film that can be made into a gaseous state and a gaseous material that has the property of oxidizing the raw material, which is used in the deposited film forming apparatus of the present invention. This is a schematic diagram when viewed from the discharge port side when the discharge ports for the halogen-based oxidizing agent and the halogen-based oxidizing agent are arranged alternately. It shows.

第1図(1)〜(12)において、101は堆積膜形成
用の気体状にし得る原料物質の放出口、102は気体状
ノ・ロゲ/系酸化剤の放出口であり、これらは図中に白
ヌキ及び斜線で示した通り交互に配置さnている。ただ
し、101を気体状ハロゲン系酸化剤の放出口、102
そ堆積1嘆形成用の気体状にし得る原料物質の放出口と
しても本質的に得られる堆積膜の膜質が変化することは
ない0103は放出口101と放出口102との端R間
の距t1を表わしている。
In Figures 1 (1) to (12), 101 is a discharge port for a raw material that can be made into a gas for forming a deposited film, and 102 is a discharge port for a gaseous oxidizing agent. They are arranged alternately as indicated by white blanks and diagonal lines. However, 101 is a gaseous halogen oxidant outlet, 102
0103 is the distance t1 between the end R of the discharge port 101 and the discharge port 102, which essentially does not change the film quality of the deposited film that is obtained as a discharge port for the raw material that can be made into a gaseous state for deposition. It represents.

第1図(1)は円形のものを横一列に隙間lよく配置し
′f:場合、第1図(2)は円形のものを距離103を
あけて横一列に配置した場合、第1図t、13)は信置
形のものを償−列に隙間なく配置した場合、第1図(4
)は楕円形のものを距離103をあけて横一列に配置し
た場合、第1図(5)はスリット状のものを縦方向に隙
間なく配置した場合、第1図(6)はスリット状のもの
を縦方向に距離10:3をあけて配ゴデした場合、第1
図(7)は円形のものを放射状に距離103をあけて配
置したもの、第1図(8)は円形のものを放射状に配置
したもの、第1図(9)は円形のものを放射状に距離1
03をあけ、かつ周方向に放出されるガスの槓類を変え
て配置した場合、第1図Qlはスリット状のものを放射
状に配置した場合、第1図(11)は円形のものを縦及
び横方向に隙間なく配置した場合、第1図(12)はス
リット状のものを横方向に隙間なく配置した場合を示し
でいる。
Fig. 1 (1) shows the case where circular objects are arranged horizontally in a row with a good gap l 'f; Fig. 1 (2) shows the case where circular objects are arranged horizontally in a horizontal row with a distance of 103. t, 13) is shown in Figure 1 (4
) is the case when elliptical objects are arranged horizontally in a row with a distance of 103, Fig. 1 (5) is the case when slit-like objects are arranged vertically without gaps, and Fig. 1 (6) is the case when slit-like objects are arranged horizontally in a row with a distance of 103. If objects are arranged vertically with a distance of 10:3, the first
Figure (7) shows circular objects arranged radially at a distance of 103, Figure 1 (8) shows circular objects arranged radially, and Figure 1 (9) shows circular objects arranged radially. distance 1
03 and the gas emitted in the circumferential direction is arranged differently. Figure 1 Ql shows the case where slit-shaped ones are arranged radially, and Figure 1 (11) shows the case where circular ones are arranged vertically. FIG. 1 (12) shows a case where slit-like objects are arranged without any gaps in the horizontal direction.

ここに示した例はほんの1例であって、所望する基体の
大きさζζ合イっせて放出口の配置を変えることができ
る。
The example shown here is just one example, and the arrangement of the outlets can be varied depending on the desired size of the substrate.

第2図に示す堆積膜形成装置は、装装置本体、排気71
マ及びガス供給系の3つに大別さ几る。
The deposited film forming apparatus shown in FIG.
It is broadly divided into three types: gas supply system and gas supply system.

装置本体には、反応空間及び成膜空間が設けられている
The apparatus main body is provided with a reaction space and a film forming space.

201〜105は夫々、成膜する際に使用されるガスが
充填さaでいるボンベ、201a〜205aは夫々ガス
共姶パイプ、201b〜205bは夫々谷ボンベからの
ガスの流量調整用のマスフローコントローラー、20 
% c〜205cはそfしぞnガス圧力計、201d〜
2054及び201 e 〜20 ’F+ eは夫々パ
ルプ、20工f〜20’%fは夫々対C5Tるガスボン
ベ内の圧力を示す圧力計である。
201 to 105 are cylinders filled with gas used in film formation, 201a to 205a are gas pipes, and 201b to 205b are mass flow controllers for adjusting the flow rate of gas from the valley cylinders, respectively. , 20
%c~205c is the same gas pressure gauge, 201d~
2054 and 201e to 20'F+e are pulps, respectively, and 20f to 20'%f are pressure gauges that indicate the pressure inside the gas cylinders, respectively.

2)2は真空チャンバーであって、上部にガス導入用の
配管が設けられ、配管の下流に反応空間が形成される構
造を有し、且つ該配管のガス排出口に対向して、基体2
)0が設置される様に基体ホールダー214が設けられ
た成膜空間が形成される構造を有する。ガス導入用の配
管は、第1図(1)〜(12)に示したうちのいす几力
1の配置構造となっており、ガスボンベ101,102
よりのガスが導入される第1のガス導入管213、ガス
ボンベ203〜205よりのガスが尋人さてしる第2の
ガス導入管を有し、第1のガス導入管と第2のガス導入
管とが交互tこ配置されている。
2) Reference numeral 2 denotes a vacuum chamber, which has a structure in which a piping for introducing gas is provided at the upper part and a reaction space is formed downstream of the piping.
) 0 is installed, and has a structure in which a film forming space is formed in which a substrate holder 214 is provided. The piping for gas introduction has the arrangement structure of chair 1 shown in FIG.
It has a first gas introduction pipe 213 into which the gas from the gas cylinders 203 to 205 is introduced, and a second gas introduction pipe into which the gas from the gas cylinders 203 to 205 is introduced. The tubes are arranged alternately.

各纒入管へのポンペカ)らのガスの供給は、ガス11a
バイグライン2)3,2)4によってなされさらにガス
分配器210,211によって分配され、夫々のガス導
入管へ導びかわる。
Gas 11a is supplied to each inlet pipe.
The gas is distributed by the big lines 2) 3, 2) 4, further distributed by the gas distributors 210, 211, and led to the respective gas introduction pipes.

各ガス導入管、各ガス供給バイブライ/及び真空チャン
バー2)2は、メインJc窒バルブ2)1を介して不図
示の真空排気装置により真空排気される。
Each gas introduction pipe, each gas supply vibrator/and vacuum chamber 2) 2 is evacuated by a vacuum evacuation device (not shown) via a main Jc nitrogen valve 2) 1.

基体2)0は基体ホルダー214を上下に移動させるこ
とtこよって各ガス導入管の位置より適宜所望の距離に
設まされる。
By moving the substrate holder 214 up and down, the substrate 2) 0 is placed at a desired distance from the position of each gas introduction pipe.

本発明の場曾、この基体とガス導入管のガス排出口の距
離は、形成される堆積膜の種類及びその所望される特性
、ガス流量、真空チャ/バーの内圧等を考慮して迩切な
状態lどなる。様に決められるが、好ましくは、数mm
〜20cIIL、より好ましくは5 myn−15CI
tLg Kとされるのが望ましい。
In the case of the present invention, the distance between the substrate and the gas outlet of the gas inlet pipe is determined by taking into account the type of deposited film to be formed and its desired characteristics, gas flow rate, internal pressure of the vacuum chamber, etc. State l yells. It can be determined as desired, but preferably several mm
~20cIIL, more preferably 5 myn-15CI
It is desirable to set it to tLgK.

215は、基体2)0を成膜時に適当な温度iこ加熱し
たり、或いは、成膜前に基本2)0を予備刃l]熱した
り、更には、成膜後、膜をアニールする為に7J11熱
する基体加熱用ヒータである。
215 is used to heat the base 2) 0 to an appropriate temperature during film formation, or to heat the base 2) 0 before film formation, or to anneal the film after film formation. This is a heater for heating the substrate that heats up to 7J11.

基体加熱ヒータ215は、導線216を介して11t啄
217により電力が供給される。
The base body heater 215 is supplied with electric power by a 11t pipe 217 via a conductive wire 216 .

218は、基体温度(Ts )のt温度を測定する為の
熱電対で温度茨示装置219に電気的に接続されている
218 is a thermocouple for measuring the t temperature of the substrate temperature (Ts), and is electrically connected to the temperature fluctuation indicator 219.

以下、実IA列に従って、本発明を具体的に説明する。The present invention will be specifically described below in accordance with the real IA sequence.

実施例1 第2図に示す成模装!dを用いて、次の様にして本発明
の方法による堆積膜を作成した。
Example 1 Modeling shown in Figure 2! A deposited film according to the method of the present invention was prepared in the following manner using d.

ガス放出口は第1図(1)に示した横一列fこ配置した
タイプのもので、ガス導入管212,213の形状は円
形で直径5 mynのものが、横一列に651固配置さ
れでいる。
The gas discharge ports are of the type shown in Fig. 1 (1), arranged in a horizontal row f, and the gas inlet pipes 212, 213 are circular in shape and have a diameter of 5 myin, and are arranged in a horizontal row 651 times. There is.

ボンベ201に充填さ几ているS iH4カスそ流i2
0secmでガス4入営213より、ボンベ203に充
填さ几ているF2ガスf a 1z 5 s CCQI
、ボンベ204に充填されているHeガスヲ流■20s
ecmでガス導入管212より真空チャンバー2)2内
に導入した。
S iH4 waste stream i2 filled in cylinder 201
F2 gas f a 1z 5 s CCQI is filled into cylinder 203 from gas 4 input 213 at 0sec.
, the flow of He gas filled in the cylinder 204 ■20s
ECM was introduced into the vacuum chamber 2) 2 through the gas introduction pipe 212.

このとき、A空チャ/バー2)217’iの圧力を真空
パルプ2)1の開閉度を調整して0.9Torrにした
。基体に石英ガラス(30crILX 1 cTL)を
用いガス導入口212,213と基体との距離は3ci
に設定した。SiH4ガスとF2ガスの混せ域で庁白い
発光が強くみらnた。基体温度(T’s)は250″O
fこ設定した。
At this time, the pressure of the A empty chamber/bar 2) 217'i was adjusted to 0.9 Torr by adjusting the opening/closing degree of the vacuum pulp 2) 1. The base is made of quartz glass (30crILX 1cTL), and the distance between the gas inlets 212, 213 and the base is 3ci.
It was set to A strong white luminescence was observed in the mixed area of SiH4 gas and F2 gas. Substrate temperature (T's) is 250''O
I set f.

この状態で3時間ガスを流すと、表1に示T様な膜厚の
S i : H: F膜が基体上に堆積した。
When gas was allowed to flow in this state for 3 hours, a Si:H:F film having a thickness of T shown in Table 1 was deposited on the substrate.

又膜厚の分布むらは縦、横方向とも3%以同におさまっ
た。特性についても均一であった。成膜したS i :
 H: I−膜は′電子板回折によって非晶質であるこ
とが5ff1mさnた。
Moreover, the unevenness in film thickness distribution was suppressed to 3% or less in both the vertical and horizontal directions. The characteristics were also uniform. Film-formed Si:
H: The I-film was found to be amorphous by electron plate diffraction.

この非晶質s b ::H:: F +膜上にAlのく
し形電極(ギャップ長200μm)を蒸着し、等電率測
定用の試料を作成した。各試料を真空クライオスタット
中にいれ重圧100vを印加し、微少電流計(Y)JP
4140B)で電流を測定し、暗導電率((d)を求め
た0又600 nm 、 0.3mw /crttの元
を照射し、光導電率(σp)を求めた。更に元の吸収よ
り光学的バンドギャップ(Eg  opt) f求メタ
Al comb-shaped electrodes (gap length 200 μm) were deposited on this amorphous s b ::H::F + film to prepare a sample for isoelectric constant measurement. Place each sample in a vacuum cryostat, apply a heavy pressure of 100 V, and use a microcurrent meter (Y) JP.
4140B), and the dark conductivity (d) was determined.The source of 0 or 600 nm, 0.3 mw/crtt was irradiated to determine the photoconductivity (σp). Target bandgap (Eg opt) f-metal.

これらの結果は挾1に示した。These results are shown in Box 1.

実施例2〜工2 実施列1と同じ成膜装置を用い、ガス流量、圧力等は一
定にしてガス放出口は夫々第1図(2)〜(12)に示
\した形状のもので第4次に示した寸法のものを用い、
基体は石英ガラス製で、第1衣〜第3表中Iこ示した寸
法のものを用いて堆積膜を作成した。
Example 2 to Step 2 The same film forming apparatus as in Example 1 was used, the gas flow rate, pressure, etc. were kept constant, and the gas discharge ports were of the shapes shown in Figures 1 (2) to (12), respectively. 4. Using the dimensions shown below,
The substrate was made of quartz glass and had the dimensions shown in Tables 1 to 3 to form deposited films.

結果を第1表〜第3次中に示した。The results are shown in Tables 1 to 3.

膜厚むら及び特性が基体表面の全面において非常に均一
性の良い堆積膜が得られた。
A deposited film with very uniform thickness and properties over the entire surface of the substrate was obtained.

〔効果〕〔effect〕

以上の詳細な説明及び各実施例より、本発明の堆積膜形
成装置によれば、省エネルギー化を計ると同時に膜品質
の管理が容易で大面積に亘って均一物理特性の堆積膜が
峙ら几る。又、生殖性、量産性に優几、高品賀で電気的
2元学的、半導体的等の物理特性に優れた膜を簡便に得
ることが出来る。
From the above detailed description and each example, it is clear that the deposited film forming apparatus of the present invention saves energy, makes it easy to control film quality, and allows deposited films with uniform physical properties to be formed over a large area. Ru. In addition, it is possible to easily obtain a film that is excellent in reproductive performance, mass production, high quality, and excellent physical properties such as electrical binary and semiconducting properties.

る。Ru.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の芙IMクリに用いた原料物質及びハロ
ゲン系酸化剤との放出口の模式的概略図である。 第2図は本発明の実施例に用いた成膜装置の模式的概略
図である。 第3図は従来のプラズマ発生装置による成膜装置の模式
的概略図でグ)る。 101.102・・・気体状にし得る原料切買放出口及
び、気体状ハロゲン系酸化剤 放出口 103  ・・・放出口IMjの距離 201〜205・・・ガス導/ぺ 201a〜205a・・ガスの導入′ば201b〜20
5b・・マスフローメーター201c〜205c・・・
ガス圧力計 201d 〜205d、  201e 〜205e・・
・パルプ 201f〜205f・・・圧力計 210.211・・・ガス分配器 212.213・・・ガス尋人管 214 ・・・ 基体ホルダー 215 ・・・ 基体加熱用ヒーター 216 ・・・ 4 練 217 ・・・ 屯 隙 218 ・・・ 基本温度モーター用熱心対“シ19 
・・ 温度表示装置賃 2)0・・・基体 2)1 ・・・ 真空排気パルプ 2)2 ・・・ 真空チャンバー 302 ・・・ 基体支榛砕 303  ・・・  基  体 304 ・・ 壜体加熱用ヒーター 305  ・・・  導  線 306〜309・・・ガス洪給源 a・・分岐管   b・・・流送形   C・・・圧力
計d、e・・・パルプ 310 ・・・ 原料ガス導入・g 311 ・・・ プラズマ発生装置 312  ・・・ 排気パルプ 313 ・・・ 排気g を夫々表わしている。 出頭人 ギヤノン沫弐会社 第10 袷1図
FIG. 1 is a schematic diagram of a discharge port for a raw material and a halogen-based oxidizing agent used in the Fu IM chestnut of the present invention. FIG. 2 is a schematic diagram of a film forming apparatus used in an example of the present invention. FIG. 3 is a schematic diagram of a film forming apparatus using a conventional plasma generating apparatus. 101.102... Distance between raw material purchase outlet that can be made into a gas and gaseous halogen oxidizer outlet 103... Distance of outlet IMj 201-205... Gas guide/pe 201a-205a... Gas Introduction of 201b~20
5b...Mass flow meter 201c-205c...
Gas pressure gauges 201d to 205d, 201e to 205e...
・Pulp 201f to 205f...Pressure gauge 210.211...Gas distributor 212.213...Gas gas pipe 214...Substrate holder 215...Substrate heating heater 216...4 Kneading 217 ... Tun Gap 218 ... Basic temperature motor dedicated pair "S19"
... Temperature display device 2) 0 ... Substrate 2) 1 ... Evacuated pulp 2) 2 ... Vacuum chamber 302 ... Substrate support crushing 303 ... Substrate 304 ... Bottle heating Heater 305... Conductor wires 306 to 309... Gas supply source a... Branch pipe b... Flow type C... Pressure gauges d, e... Pulp 310... Raw material gas introduction... g 311 ... plasma generator 312 ... exhaust pulp 313 ... exhaust gas g. Appearing person: Gyanon Nishi Company No. 10, Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状にし得る原料物質と、該原
料物質に酸化作用をする性質を有する気体状ハロゲン系
酸化剤と、を反応空間内に導入して接触させることで励
起状態の前駆体を含む複数の前駆体を化学的に生成し、
これらの前駆体の内少なくとも1つの前駆体を堆積膜構
成要素の供給源として成膜空間内にある基体上に堆積膜
を形成する堆積膜形成装置において、前記気体状にし得
る原料物質の放出口と前記気体状ハロゲン系酸化剤の放
出口とを交互に複数個配置したことを特徴とする堆積膜
形成装置。
(1) A raw material that can be made into a gas for forming a deposited film and a gaseous halogen-based oxidizing agent that has the property of oxidizing the raw material are introduced into a reaction space and brought into contact with each other to form an excited state. chemically producing a plurality of precursors including a precursor;
In a deposited film forming apparatus that forms a deposited film on a substrate in a film forming space by using at least one of these precursors as a supply source of deposited film constituent elements, the discharge port for the raw material that can be made into a gaseous state is provided. and a plurality of discharge ports for the gaseous halogen-based oxidizing agent are arranged alternately.
(2)前記気体状にし得る原料物質の放出口と、前記気
体状ハロゲン系酸化剤の放出口との形状が円形、楕円形
、又はスリット状である特許請求の範囲第1項に記載の
堆積膜形成装置。
(2) The deposition according to claim 1, wherein the outlet for the source material that can be made into a gas and the outlet for the gaseous halogen-based oxidant have a circular, elliptical, or slit shape. Film forming device.
(3)前記気体状にし得る原料物質の放出口と、前記気
体状ハロゲン系酸化剤の放出口が交互に横方向に一列に
配列している特許請求の範囲第1項に記載の堆積膜形成
装置。
(3) Deposited film formation according to claim 1, wherein the discharge ports for the raw material that can be made into a gas and the discharge ports for the gaseous halogen-based oxidizing agent are alternately arranged in a row in the lateral direction. Device.
(4)前記気体状にし得る原料物質の放出口と、前記気
体状ハロゲン系酸化剤の放出口が交互に横方向及び縦方
向に複数配列している特許請求の範囲1項に記載の堆積
膜形成装置。
(4) The deposited film according to claim 1, wherein a plurality of discharge ports for the raw material that can be made into a gas and a plurality of discharge ports for the gaseous halogen-based oxidizing agent are arranged alternately in the horizontal and vertical directions. Forming device.
(5)前記気体状にし得る原料物質の放出口と、前記気
体状ハロゲン系酸化剤の放出口が交互に放射状に複数配
列している特許請求の範囲第1項に記載の堆積膜形成装
置。
(5) The deposited film forming apparatus according to claim 1, wherein a plurality of discharge ports for the source material that can be made into a gas and a plurality of discharge ports for the gaseous halogen-based oxidant are alternately arranged in a radial manner.
(6)前記気体状にし得る原料物質の放出口と、前記気
体状ハロゲン系酸化剤の放出口の材質が、金属、樹脂、
又はセラミック表である特許請求の範囲第1項に記載の
堆積膜形成装置。
(6) The material of the outlet for the raw material that can be made into a gas and the outlet for the gaseous halogen-based oxidizing agent is metal, resin,
The deposited film forming apparatus according to claim 1, which is a ceramic surface.
JP60291065A 1985-12-24 1985-12-24 Deposited film formation method Expired - Lifetime JPH0811828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60291065A JPH0811828B2 (en) 1985-12-24 1985-12-24 Deposited film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60291065A JPH0811828B2 (en) 1985-12-24 1985-12-24 Deposited film formation method

Publications (2)

Publication Number Publication Date
JPS62149881A true JPS62149881A (en) 1987-07-03
JPH0811828B2 JPH0811828B2 (en) 1996-02-07

Family

ID=17763967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60291065A Expired - Lifetime JPH0811828B2 (en) 1985-12-24 1985-12-24 Deposited film formation method

Country Status (1)

Country Link
JP (1) JPH0811828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150961B2 (en) 2009-11-16 2015-10-06 Fei Company Gas delivery for beam processing systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130435A (en) * 1981-02-05 1982-08-12 Mitsubishi Electric Corp Annealing method of matter by light beam

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130435A (en) * 1981-02-05 1982-08-12 Mitsubishi Electric Corp Annealing method of matter by light beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150961B2 (en) 2009-11-16 2015-10-06 Fei Company Gas delivery for beam processing systems

Also Published As

Publication number Publication date
JPH0811828B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
TW308706B (en)
US5391232A (en) Device for forming a deposited film
JP2566914B2 (en) Thin film semiconductor device and method of forming the same
JPS62152171A (en) Thin-film transistor
US5160543A (en) Device for forming a deposited film
JPS6248753B2 (en)
JPH0645886B2 (en) Deposited film formation method
JPS61288074A (en) Deposited film forming device by cvd method
JPS62151573A (en) Deposited film forming device
JPS62149881A (en) Apparatus for forming deposited film
JP2000068215A (en) Method for growing vapor phase thin film and device therefor
JPS6338581A (en) Functional deposited film forming device
JPS62142778A (en) Formation of deposited film
JPS62228477A (en) Deposited film forming device
JPS62152121A (en) Deposited film forming device
JPS6347363A (en) Formation of functional deposited film
JPH0645891B2 (en) Deposited film formation method
JPS6357774A (en) Formation of functional deposited film
JPS63166214A (en) Deposition film forming method
JPS62199771A (en) Formation of deposited film
JPS6345374A (en) Device for forming functional deposited film
JPS62156270A (en) Deposited film forming device
JPS6299463A (en) Deposited film formation
JPS61288073A (en) Deposited film forming device by cvd method
JPS62228481A (en) Formation of deposited film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term