JPS6214924A - Denitration apparatus having catalyst regeneration apparatus incorporated therein - Google Patents

Denitration apparatus having catalyst regeneration apparatus incorporated therein

Info

Publication number
JPS6214924A
JPS6214924A JP60155833A JP15583385A JPS6214924A JP S6214924 A JPS6214924 A JP S6214924A JP 60155833 A JP60155833 A JP 60155833A JP 15583385 A JP15583385 A JP 15583385A JP S6214924 A JPS6214924 A JP S6214924A
Authority
JP
Japan
Prior art keywords
temp
exhaust gas
raised
gas
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60155833A
Other languages
Japanese (ja)
Inventor
Shinichi Sakata
真一 坂田
Tomihisa Ishikawa
石川 富久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60155833A priority Critical patent/JPS6214924A/en
Publication of JPS6214924A publication Critical patent/JPS6214924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To decompose and remove acidic ammonium sulfate being precipitated and adhered by guiding exhaust gas raised in temp. to a catalyst bed from the temp. raised gas injected pipe of a flow passage of which the damper is closed, by providing the dampers of a plurality of flow passages in a reactor, a temp. raised gas injection apparatus and a catalyst bed. CONSTITUTION:The inlet damper 7-1 of one section 6-1 of a reactor 1 is closed. NH3 is injected in a main duct 12 from the NH3 injection nozzle 3 provided to said main duct 12 and the temp. of bypassed exhaust gas B containing NH3 is raised to acidic ammonium sulfate decomposition temp. by a temp. raising apparatus 4 and this temp. raised gas C is injected in the section 6-1 by a temp. raised gas injection pipe 8 to simultaneously perform the regeneration of a catalyst bed 2-1 and the denitration of the temp. raised gas C. After regeneration treatment is finished, the injection of the temp. raised gas C is stopped and, when a damper 7-1 is opened, the section 6-1 returns to usual denitration. Succeedingly, the same operation is repeatedly performed in other section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、脱硝装置に係り、より詳細には、排ガスの脱
硝と触媒再生とン同時に行うことができる脱硝装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a denitrification device, and more particularly to a denitrification device that can simultaneously denitrate exhaust gas and regenerate a catalyst.

〔従来の技術及び解決しようとする問題点〕Son ’
に含む排ガスの脱硝法は、排ガスにNH。
[Prior art and problems to be solved] Son'
The denitrification method of exhaust gas contains NH.

を注入して脱硝反応器内に導き、触媒層で脱硝する方法
であるが、低温排ガスを使用する場合には、NH3注入
ノズルより注入さnたNH,と排ガス中の803とが反
応し、生じた酸性硫安(NH4H8O4)が触媒層に析
出付着して脱硝性能を著しく損う。
This method involves injecting NH3 into the denitrification reactor and denitrating it in a catalyst layer. However, when using low-temperature exhaust gas, the NH3 injected from the NH3 injection nozzle reacts with 803 in the exhaust gas. The generated acidic ammonium sulfate (NH4H8O4) deposits and adheres to the catalyst layer, significantly impairing the denitrification performance.

そこで、従来は、■脱硝反応器の前流側に排ガス昇温装
置を設け、排ガス全量の温度乞酸性硫安の析出温度以上
に上げて酸性硫安が生成しない温度域で脱硝する方式や
、■一定期間毎に排ガス温度l排ガス昇温装置で酸性硫
安分解温度まで上げて触媒男性を行う方式などが採用さ
nていた。
Conventionally, there have been two methods: (1) installing an exhaust gas temperature riser on the upstream side of the denitrification reactor to raise the temperature of the entire amount of exhaust gas above the precipitation temperature of acidic ammonium sulfate, and denitrating in a temperature range where acidic ammonium sulfate is not generated; A method was adopted in which the exhaust gas temperature was raised to the acidic ammonium sulfate decomposition temperature using an exhaust gas heating device every period, and the catalyst was heated.

しかし、こnらの方式にはいずnも以下のような問題が
あった。
However, all of these methods have the following problems.

すなわち、上記■の方式にあっては、全量の排ガスな常
時昇温するためにランニングコストが非常に高くつき、
大容量の設備が必要となる。
In other words, in the method (■) above, the running cost is extremely high because the temperature of the entire amount of exhaust gas is constantly raised.
Large-capacity equipment is required.

また、上記■の方式に゛あっては、一度に全ての触媒層
を再生するために排ガス昇温コストが高くなり、大容量
の昇温設備が必要になり、更には、一度に全ての触媒層
に付着した酸性硫安を分解させるために煙突から大量の
SO3やNH3が排出さnるなどの問題がある。
In addition, in the method (2) above, the exhaust gas heating cost increases because all the catalyst layers are regenerated at once, large-capacity heating equipment is required, and furthermore, all the catalyst layers are regenerated at once. There are problems such as large amounts of SO3 and NH3 being emitted from the chimney to decompose the acidic ammonium sulfate adhering to the layer.

これらの問題に対処するため、触媒層の一部を反応器よ
り取り出して再生処理する方法も考えら扛るが、運転χ
一時中断しなけnばならないという別の問題が生ずる。
In order to deal with these problems, we are considering a method of removing part of the catalyst layer from the reactor and regenerating it, but the
Another problem arises in that it must be temporarily suspended.

なお、上記■の方式の問題点な更に詳述する。Incidentally, the problems with the method (2) above will be explained in more detail.

この方式に係る一般的な排ガス昇温装置付の脱硝装置の
系統図?第5図に示す。図中、反応器lの内部に触媒#
2が充填されており、その前流側のダク)11にはNH
,注入ノズル3と排ガス昇温装置4が設置さ扛ている。
Is there a system diagram of a general denitrification device with an exhaust gas heating device related to this method? It is shown in FIG. In the figure, catalyst # is inside reactor l.
2 is filled, and the duct (11) on the upstream side is filled with NH
, an injection nozzle 3 and an exhaust gas heating device 4 are installed.

このシステムにおいて、低温でSOs ?:含む排ガス
Aがダク)11内を流れると、NH,注入ノズル3から
注入さnたNHsと排ガスAに含ま扛ているSO3とが
反応し、触媒層2に酸性硫安(NH4H8O4)が析出
付着するので、脱硝性能の低下を招く。そこで、一定期
間毎に排ガスAの温度な昇温装置4によって酸性硫安の
分解温度以上に上げて分解除去をし、触媒再生を行9の
である。しかし、反応器1を流nる排ガス^の全′tを
昇温することはランニングコストが高くつき、更に触媒
層2に析出している酸性硫安を一度に分解するので、煙
突5から大量の803とN l(sが一度に排出さt、
二次公害を惹き起こすことになる。
In this system, SOs at low temperature? : When the contained exhaust gas A flows through the duct 11, NH, NHs injected from the injection nozzle 3, and SO3 contained in the exhaust gas A react, and acidic ammonium sulfate (NH4H8O4) is deposited on the catalyst layer 2. This results in a decrease in denitrification performance. Therefore, at regular intervals, the temperature of the exhaust gas A is raised to a temperature higher than the decomposition temperature of acidic ammonium sulfate using the temperature raising device 4 to decompose and remove it, and the catalyst is regenerated as shown in line 9. However, increasing the temperature of all the exhaust gas flowing through the reactor 1 increases running costs, and furthermore, since the acidic ammonium sulfate deposited on the catalyst layer 2 is decomposed at once, a large amount of exhaust gas flows from the chimney 5. 803 and N l(s is discharged at once t,
This will cause secondary pollution.

以上のような理由から、低温脱硝方式において安価で高
性能の脱硝装置の開発が望まnていた。
For the reasons mentioned above, it has been desired to develop a low-temperature denitrification system that is inexpensive and has high performance.

本発明の目的は、上記要請に応えるためになされたもの
であって、前述・の従来技術の欠点を解消し、安価でラ
ンニングコストが安く、しかも脱硝7行いながら触媒再
生が可能で、触媒再生時に二次公害?もたらすことが皆
無の脱硝装置を提供することにある。
The purpose of the present invention has been made to meet the above-mentioned demands, and it is capable of solving the drawbacks of the prior art described above, being inexpensive and having low running costs, and also being capable of catalyst regeneration while performing denitrification. Sometimes secondary pollution? The purpose of the present invention is to provide a denitrification device that has no negative effects.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的な連取するため、本発明に係る脱硝装置は、反
応器内を複数セクションの流路に分割し、各セクション
に開閉可能なダンパ、昇温ガス注入管及び触媒層を設け
、こ牡らのセクション前流側から分岐したバイパスダク
トに昇温装置を設けることにより、バイパスダクトで昇
温した排ガスをダンパ’に閉にしたセクションの昇温ガ
ス注入管より触媒層に導いて析出付着した酸性硫安を分
解除去するように構成したものである。
In order to continuously achieve the above purpose, the denitrification device according to the present invention divides the interior of the reactor into a plurality of flow passages, and each section is provided with a damper that can be opened and closed, a heated gas injection pipe, and a catalyst layer. By installing a heating device in the bypass duct that branches from the upstream side of the section, the exhaust gas heated in the bypass duct is guided to the catalyst layer through the heating gas injection pipe of the section closed by the damper, and the acid that has deposited is removed. It is constructed to decompose and remove ammonium sulfate.

以下に本発明?図示の実施例に基づいて詳細に説明する
The invention below? A detailed explanation will be given based on the illustrated embodiment.

〔実施例〕〔Example〕

第1図及び第2図は本発明の一実施例に係る脱硝装置の
系統図で、第1図中、反応器1を複数個のセクション6
に分割し、各セクション6には入口ダンバフ及び昇温ガ
ス注入管8を設けると共に触媒層2が充填さnている。
1 and 2 are system diagrams of a denitrification apparatus according to an embodiment of the present invention. In FIG. 1, a reactor 1 is connected to a plurality of sections 6.
Each section 6 is provided with an inlet damp buff and a heating gas injection pipe 8, and is filled with a catalyst layer 2.

昇温ガス注入管8に供給する昇温ガスは、各セクション
6の前R側f)メインダクト12から分岐したバイパス
ダクト9により供給されるもので、このバイパスダクト
9の流路には排ガス昇温装置4を設け、ダクト内排ガス
を昇温しでファンlOによって供給できる構造を有して
いる。バイパスダクト9を通過するガス量は再生処理す
る触媒量に見合ったガス量に調節することが可能で、再
生処理を実施していない各セクションに供給さnるガス
量は常に一定となる。この効果は後述する、 触媒を再生する場合、第2図に示すように、まず反応器
lの1つのセクション6−1の入口ダンハフ −1’に
閉じ、一方、メインダクト12に設けたNHs注入ノズ
ル3からNH3が注入され、バイパスし1こNH3’l
含む排ガスBg昇温装置4によって酸性硫安分解温度に
まで昇温し、この昇温ガスC’!’ 昇温ガス注入管8
−1によりセクション6−1に注入し、触媒N2−1の
再生と昇温ガスCの脱硝ン同時に行う。その際、バイパ
スダクト9内に設けられた排ガス昇温装置4でバイパス
排ガスBを昇温するため、セクション6−1で処W−j
るガフtは熱膨張で増加するが、温度上昇による触媒性
能のアップが一般的に大きいので、必要性能?:#足す
ることが可能である。
The heated gas supplied to the heated gas injection pipe 8 is supplied by a bypass duct 9 branched from the main duct 12 on the front R side of each section 6. A heating device 4 is provided to raise the temperature of the exhaust gas in the duct and to supply it by a fan IO. The amount of gas passing through the bypass duct 9 can be adjusted to match the amount of catalyst to be regenerated, and the amount of gas supplied to each section not undergoing regeneration is always constant. This effect will be described later. When regenerating the catalyst, as shown in FIG. NH3 is injected from nozzle 3, bypassed and 1 NH3'l
The temperature of the exhaust gas Bg containing Bg is raised to the acidic ammonium sulfate decomposition temperature by the temperature raising device 4, and this heated gas C'! ' Heating gas injection pipe 8
-1 is injected into section 6-1, and regeneration of catalyst N2-1 and denitrification of heated gas C are performed simultaneously. At that time, in order to raise the temperature of the bypass exhaust gas B with the exhaust gas temperature raising device 4 provided in the bypass duct 9, the treatment W-j is heated in the section 6-1.
The gaff t increases due to thermal expansion, but since the increase in catalyst performance due to temperature rise is generally large, is it necessary to determine the required performance? :# It is possible to add.

次に、再生処理が終了した後は、昇温ガスCの注入を停
止し、ダンパ7−IFa’開らくとセクション6−1は
通常の脱硝に戻る。続いて、他のセクジョン6−2.6
−3・・・においても順次同様の操作を繰り返して行う
Next, after the regeneration process is completed, the injection of the heated gas C is stopped, and when the damper 7-IFa' is opened, the section 6-1 returns to normal denitration. Next, the other section 6-2.6
-3... The same operation is repeated in sequence.

上記構成による同時脱硝再生方式によれば、再生する触
媒層2を小分けできるので昇温ガスCの童も少なくて済
み、酸性硫安分解時に発生するSO2、NHaの量も少
ない。また更には、使用触媒量の節減効果もある。
According to the simultaneous denitrification and regeneration method having the above configuration, the catalyst layer 2 to be regenerated can be divided into smaller portions, so the amount of heated gas C can be reduced, and the amounts of SO2 and NHa generated during acidic ammonium sulfate decomposition are also small. Furthermore, there is also the effect of reducing the amount of catalyst used.

すなわち、第3図は、同一の反応器を用いて3つの方式
で運転した場合における脱硝率と経過時間の関係を示し
たもので、従来の昇温法(D)と排ガス全量同時再生法
(E)並びに本発明による同時脱硝再生法CF)につい
て運転時間に対する脱硝率の変化?模式的に示している
。同図かられかるように、昇温法(D)は安定した性能
乞有するが、既述の如く全排ガス昇温に美大な憔焼費を
費やすという欠点がある。また、排ガス全量同時再生法
(E)は脱硝率の変化幅が極めて大きく、触媒量は最も
低い脱硝率で決定されることから、使用触媒量が増大す
るという欠点がある。以上の2方式に比べ、本発明によ
る同時脱硝再生法(F)は脱硝率の変化幅が小さく、安
定した脱硝性能が得られ、同時に必要触媒量も少なくて
済むという利点がある。
In other words, Figure 3 shows the relationship between the denitrification rate and the elapsed time when the same reactor is operated using three methods. E) and the change in the denitrification rate with respect to the operating time for the simultaneous denitrification and regeneration method CF) according to the present invention? Shown schematically. As can be seen from the figure, the temperature raising method (D) has stable performance, but has the drawback that, as mentioned above, a large amount of sintering cost is required to raise the temperature of the entire exhaust gas. In addition, the total amount of exhaust gas simultaneous regeneration method (E) has a drawback that the amount of catalyst used increases because the range of change in the denitrification rate is extremely large and the amount of catalyst is determined based on the lowest denitrification rate. Compared to the above two methods, the simultaneous denitrification and regeneration method (F) according to the present invention has the advantage that the range of change in the denitrification rate is small, stable denitrification performance can be obtained, and at the same time, the amount of catalyst required is small.

更に付言するならば、本発明による同時脱硝再生法では
、バイパスダクトを通過するガス量を各セクションの触
媒量に見合ったガス量に調節するため、脱硝処理に使用
する触媒層を通過するガス曾は触媒の再生を実施するし
ないに拘わらず一定で65、このため、一方のセクショ
ンで触媒の再生を行いながら、他方のセクションで脱硝
処理も同時に実施できる。
Furthermore, in the simultaneous denitrification and regeneration method according to the present invention, in order to adjust the amount of gas passing through the bypass duct to the amount of gas commensurate with the amount of catalyst in each section, the amount of gas passing through the catalyst layer used for denitration treatment is is constant 65 regardless of whether or not the catalyst is regenerated, so that while the catalyst is regenerated in one section, the denitrification process can be performed simultaneously in the other section.

次に第4図に本発明の他の実施例1示す。特にバイパス
ダクト9内の排ガス昇温装置4による昇温温度が非常に
高温に達する場合、バイパスダクト90分岐点よp前流
側のメインダクト12にNH,注入管3Y:設けると°
(第1図)、排ガス中に含まnるN Hsが分解し、N
Oxに転化される恐nがある。こtta’防止するには
、メインダクト12に設けるNHs注入管3’a’バイ
パスダクト9の分岐点よりも後流側に設けると共に、バ
イパスダクト9の排ガス昇温装置4の後流側にもNH3
注入管3増設けるとよい。なお、第4図で他の構成は第
1図と同様である。
Next, FIG. 4 shows another embodiment 1 of the present invention. In particular, when the temperature raised by the exhaust gas temperature raising device 4 in the bypass duct 9 reaches a very high temperature, it is recommended to install an NH injection pipe 3Y in the main duct 12 on the upstream side of the bypass duct 90 branch point.
(Fig. 1), N Hs contained in the exhaust gas decomposes, and N
There is a risk that it will be converted to Ox. In order to prevent this, the NHs injection pipe 3'a' provided in the main duct 12 is installed on the downstream side of the branch point of the bypass duct 9, and also on the downstream side of the exhaust gas temperature raising device 4 of the bypass duct 9. NH3
It is recommended to add 3 injection tubes. Note that the other configurations in FIG. 4 are the same as in FIG. 1.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によ扛ば、脱硝
乞行いながら触媒再生を行うことができ。
As is clear from the above description, according to the present invention, catalyst regeneration can be performed while denitration is being performed.

排ガス昇温コストも安く、触媒再生時に生ずる反応器後
流側の803やNH3の増加を抑えら詐る。
The cost of raising the exhaust gas temperature is low, and the increase in 803 and NH3 on the downstream side of the reactor that occurs during catalyst regeneration can be suppressed.

また脱硝率の変化幅も小さいので使用触媒量も節減でき
ることを含め、設備費の低減化が可能である。
Furthermore, since the range of change in the denitrification rate is small, the amount of catalyst used can be reduced, and equipment costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る脱硝装置の系統図、第
2図は第1図の系統図の一部詳細説明図。 第3図は各種脱硝再生方式における脱硝率と運転時間の
関係を示す図、第4図は本発明の他の実施例の系統図、
第5図は従来の排ガス昇温装置付き脱硝装置の系統図で
ある。 1・・・反応器、2・・・触媒層、2−1、・・・2−
5・・・触媒層セクション、3.3′・・・NH,注入
管、4・・・排ガス昇温装置、5・・・煙突、6.6−
1.・・・、6−5・・・反応器セクション、7.7−
1、・・・、7−5・・・入ロダンバ、8.8−1、・
・・、8−5・・・昇温ガス注入管、9・・・バイパス
ダクト、10・・・ファン、11・・・ダクト、12・
・・メインダクト。
FIG. 1 is a system diagram of a denitrification device according to an embodiment of the present invention, and FIG. 2 is a partially detailed explanatory diagram of the system diagram in FIG. 1. FIG. 3 is a diagram showing the relationship between denitrification rate and operating time in various denitrification and regeneration methods, and FIG. 4 is a system diagram of another embodiment of the present invention.
FIG. 5 is a system diagram of a conventional denitrification device equipped with an exhaust gas temperature raising device. 1... Reactor, 2... Catalyst layer, 2-1,...2-
5...Catalyst layer section, 3.3'...NH, injection pipe, 4...Exhaust gas temperature raising device, 5...Chimney, 6.6-
1. ..., 6-5...reactor section, 7.7-
1,..., 7-5... Enter Rodanba, 8.8-1,...
..., 8-5... Temperature rising gas injection pipe, 9... Bypass duct, 10... Fan, 11... Duct, 12.
・Main duct.

Claims (1)

【特許請求の範囲】[Claims] (1)ダクトより導く排ガスを脱硝反応器内の触媒層で
脱硝すると共に必要時に該排ガスを昇温して該触媒の再
生を行う脱硝装置において、前記脱硝反応器内を複数セ
クションの流路に分割し、各セクションに開閉可能なダ
ンパを入口に設けると共に昇温ガス注入管及び触媒層を
設け、また全セクションの更に前流側で非分割のメイン
ダクトからバイパスダクトを分岐せしめ、該バイパスダ
クトに排ガス昇温装置を設けて昇温した排ガスを前記各
昇温ガス注入管に供給するように構成したことを特徴と
する触媒再生装置を内蔵した脱硝装置。
(1) In a denitrification device that denitrates exhaust gas led from a duct with a catalyst layer in a denitrification reactor and regenerates the catalyst by raising the temperature of the exhaust gas when necessary, the inside of the denitrification reactor is formed into a plurality of flow channels. A damper that can be opened and closed is provided at the inlet of each section, and a heated gas injection pipe and a catalyst layer are also provided, and a bypass duct is branched from the undivided main duct on the upstream side of all sections. 1. A denitrification device incorporating a catalyst regeneration device, characterized in that an exhaust gas temperature raising device is provided in the denitration device, and the heated exhaust gas is supplied to each of the heated gas injection pipes.
JP60155833A 1985-07-15 1985-07-15 Denitration apparatus having catalyst regeneration apparatus incorporated therein Pending JPS6214924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60155833A JPS6214924A (en) 1985-07-15 1985-07-15 Denitration apparatus having catalyst regeneration apparatus incorporated therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60155833A JPS6214924A (en) 1985-07-15 1985-07-15 Denitration apparatus having catalyst regeneration apparatus incorporated therein

Publications (1)

Publication Number Publication Date
JPS6214924A true JPS6214924A (en) 1987-01-23

Family

ID=15614494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60155833A Pending JPS6214924A (en) 1985-07-15 1985-07-15 Denitration apparatus having catalyst regeneration apparatus incorporated therein

Country Status (1)

Country Link
JP (1) JPS6214924A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140296A (en) * 1990-01-31 1992-08-18 Fuji Electronic Corporation, Ltd. Voltage-dependent nonlinear resistor
WO1996015844A1 (en) * 1994-11-18 1996-05-30 Komatsu Ltd. Method for catalytic decomposition of aliphatic halogen compound and equipment therefor
EP1028795A1 (en) * 1997-02-19 2000-08-23 Goal Line Environmental Technologies Llc Apparatus for removing contaminants from gaseous stream
EP2486971A1 (en) * 2011-02-11 2012-08-15 Lab Sa Method for on-line thermal regeneration of a catalyst for fume denitrification, and fume-purification facility allowing the implementation of said method
JP2013544339A (en) * 2010-12-01 2013-12-12 ルノー・トラックス Engine device with exhaust gas aftertreatment system
WO2017208502A1 (en) * 2016-05-31 2017-12-07 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140296A (en) * 1990-01-31 1992-08-18 Fuji Electronic Corporation, Ltd. Voltage-dependent nonlinear resistor
WO1996015844A1 (en) * 1994-11-18 1996-05-30 Komatsu Ltd. Method for catalytic decomposition of aliphatic halogen compound and equipment therefor
EP1028795A1 (en) * 1997-02-19 2000-08-23 Goal Line Environmental Technologies Llc Apparatus for removing contaminants from gaseous stream
EP1028795A4 (en) * 1997-02-19 2002-01-02 Goal Line Environmental Tech Apparatus for removing contaminants from gaseous stream
JP2013544339A (en) * 2010-12-01 2013-12-12 ルノー・トラックス Engine device with exhaust gas aftertreatment system
EP2486971A1 (en) * 2011-02-11 2012-08-15 Lab Sa Method for on-line thermal regeneration of a catalyst for fume denitrification, and fume-purification facility allowing the implementation of said method
FR2971435A1 (en) * 2011-02-11 2012-08-17 Lab Sa METHOD FOR ONLINE REGENERATION OF A CATALYST OF DENITRIFICATION OF SMOKE, AND FUME PURIFYING PLANT FOR CARRYING OUT SAID METHOD
WO2017208502A1 (en) * 2016-05-31 2017-12-07 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method
JP2017215083A (en) * 2016-05-31 2017-12-07 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method
CN109196277A (en) * 2016-05-31 2019-01-11 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method
CN109196277B (en) * 2016-05-31 2019-11-22 日立造船株式会社 Exhaust gas denitration device, incinerator and exhaust gas denitration method
US10974196B2 (en) 2016-05-31 2021-04-13 Hitachi Zosen Corporation Flue gas denitration system, incinerator, and flue gas denitration method

Similar Documents

Publication Publication Date Title
CN104822914B (en) Reducing agent spraying controlling system
CN203829919U (en) Device for SCR (Selective Catalytic Reduction) denitration system of coal-fired power plant boiler
JP4716325B2 (en) Flue gas denitration device and operation method thereof
KR101236782B1 (en) A smoke reduction apparatus of a exhaust gas
SE0000019L (en) Process and arrangement for treating a gas flow
JPS6214924A (en) Denitration apparatus having catalyst regeneration apparatus incorporated therein
JPH05285343A (en) Denitrification device
KR102067851B1 (en) Selective catalytic reduction system
KR101613796B1 (en) Selective catalytic reuction system
JPH0365214B2 (en)
CN207042257U (en) A kind of on-line regeneration facility for low temperature SCR denitration system
JPH04338217A (en) Method for controlling catalyst for denitrator of flue gas in thermal power plant
US5897687A (en) Ammonia adsorption apparatus
KR101636208B1 (en) Power plant with selective catalytic reuction system
KR102153836B1 (en) Denitrification apparatus that improves denitrification efficiency using pellet catalyst
JP2002028450A (en) Flue gas denitrification equipment
KR102012101B1 (en) Apparatus for Selective Catalytic Reduction
KR102229475B1 (en) Catalyst regeneration system improved regenerative effect of SCR catalyst
CN112780390B (en) Sectional cooling type three-effect catalytic tail gas aftertreatment device and aftertreatment method
JP3358894B2 (en) Foreign matter removal device for reducing agent injection nozzle in denitration equipment
JPH0251657B2 (en)
KR102719945B1 (en) Marine diesel engine high pressure SCR ventilation pressure stabilization system and vessel equipped with same
JP2000254453A (en) Process and equipment for waste gas treatment
JPS6049012B2 (en) How to regenerate denitrification catalyst
JPH0544224U (en) Denitration equipment