JPS62149050A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS62149050A
JPS62149050A JP60290050A JP29005085A JPS62149050A JP S62149050 A JPS62149050 A JP S62149050A JP 60290050 A JP60290050 A JP 60290050A JP 29005085 A JP29005085 A JP 29005085A JP S62149050 A JPS62149050 A JP S62149050A
Authority
JP
Japan
Prior art keywords
layer
recording medium
heat
light beam
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60290050A
Other languages
Japanese (ja)
Inventor
Tadashi Kobayashi
忠 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60290050A priority Critical patent/JPS62149050A/en
Publication of JPS62149050A publication Critical patent/JPS62149050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve heat absorption efficiency to a light beam by forming an optothermorecording medium layer and heat absorptive layer having the heat absorptivity larger than the heat absorptivity of said medium layer on a glass substrate. CONSTITUTION:The optothermorecording medium 2 and the heat absorptive layer 3 are formed on the glass substrate 1 and the light beam 4 is made incident thereon from the substrate side. The layer 3 is formed of a thin Bi2Te3 alloy film having low heat conductivity and excellent heat accumulating property. The surface reflectivity thereof is decreased to accumulate the heat energy of the light beam in the film. The layer 2 is formed of a thin Ag-Zn alloy film contg. 37.8wt% Zn and is heated by the heat conduction from the thin film 3. The film 2 is silver white at an ordinary temp. and has 95% reflectivity to light of about 800nm wavelength. The reflectivity thereof decreases to 80% when the layer is heated at >=285 deg.C by the heat of the light beam. The thermal efficiency to the light beam is thereby improved and the writing and reading of information are made possible.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、光記録媒体に係り、特に光を照射してその照
射部の温度を上胃させM4j当変化を生せしめることに
より記録を行なう光記録媒体の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an optical recording medium, and in particular to an optical recording medium that performs recording by irradiating light to raise the temperature of the irradiated area and causing an M4j change. Concerning improvements in recording media.

〔発明の技術的背反およびその問題点]近年、記録再生
デバイスとしてレーザ光等を用いた光デイスク装置は、
比較的低価格で大容ωの記憶を実現できる可能性を有す
ることから、各方面で注目され、実用化への研究が進め
られている。
[Technical contradiction of the invention and its problems] In recent years, optical disk devices that use laser beams etc. as recording and reproducing devices have
Because it has the potential to realize large-capacity ω memory at a relatively low cost, it has attracted attention from various quarters, and research toward practical application is progressing.

ところで、銅−アルミニウム (Cu−Al)合金薄膜
、射−亜鉛(A g−Z n )合金薄膜等は、ある時
定の合金組織をもつとき共析変態を行なうことが知られ
ており、この共析変態に伴い可逆的な表面反QJ率ある
いは色調の変化を呈することから、これを光ディスク等
の光記録媒体としての使用が検討されている。
By the way, it is known that copper-aluminum (Cu-Al) alloy thin films, zinc-coated zinc (Ag-Zn) alloy thin films, etc. undergo eutectoid transformation when they have a certain time-determined alloy structure. Since it exhibits a reversible change in surface QJ ratio or color tone due to eutectoid transformation, its use as an optical recording medium such as an optical disk is being considered.

すなわち、レーザ光線等の光エネルギーを前記合金薄膜
に照射し、この光エネルギーの熱的作用によって検出可
能な物理的変化−共析変態−を生ぜしめこれを、記録に
使用しようというわけである。
That is, the alloy thin film is irradiated with light energy such as a laser beam, and the thermal action of this light energy causes a detectable physical change - eutectoid transformation, which is then used for recording.

従来、光記録媒体としては、第3図に示す如くガラス基
板11等の支持台上に光熱記録媒体層12として、Cu
−Al合金薄膜、Ag−Zn合金薄膜を成膜したものが
使用されており、基板側からの光照射13によって記録
が行なわれる。
Conventionally, as an optical recording medium, Cu is used as a photothermal recording medium layer 12 on a support such as a glass substrate 11 as shown in FIG.
-Al alloy thin films and Ag-Zn alloy thin films are used, and recording is performed by light irradiation 13 from the substrate side.

しかしながら、これらの合金薄膜は概して表面反射率が
大きく、照射された光に対する熱吸収率が良くないため
、記録に際して大きな光エネルギーを必要とするという
欠点があった。
However, these alloy thin films generally have a high surface reflectance and a poor heat absorption rate with respect to irradiated light, so they have the drawback of requiring a large amount of light energy for recording.

(発明の目的) 本発明は、前記実情に鑑みてなされたもので、光ビーム
に対する熱吸収効率の高い光記録媒体を提供することを
目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an optical recording medium with high heat absorption efficiency for light beams.

〔発明の概要] そこで本発明の光記録媒体で(よ、該光熱配録媒体層よ
りも熱吸収効率の大きい物質から<−rる熱吸収層を具
備するようにしている。
[Summary of the Invention] Therefore, the optical recording medium of the present invention is provided with a heat absorption layer made of a material having a higher heat absorption efficiency than the photothermal recording medium layer.

これにより、Cu−Al合金薄膜、Aq−Zn合金薄膜
等の熱吸収効率のよくない光熱記録媒体層を用いる際に
も、光ビームの熱エネルギーが効率良く、光熱記録媒体
層に伝えられる。
As a result, even when using a photothermal recording medium layer with poor heat absorption efficiency, such as a Cu-Al alloy thin film or an Aq-Zn alloy thin film, the thermal energy of the light beam can be efficiently transmitted to the photothermal recording medium layer.

すなわら、熱吸収層に効率良く吸収せしめられた光ビー
ムはその領域(の熱吸収層)を加熱する。
In other words, the light beam efficiently absorbed by the heat absorption layer heats that area (of the heat absorption layer).

そして熱吸収層内で光ビームのもつ熱エネルギーが有効
に蓄熱ゼしめられ、光熱記録媒体−を間接的に加熱する
Thermal energy of the light beam is effectively stored and energized within the heat absorption layer, indirectly heating the photothermal recording medium.

このようにして、光ビームのもつ熱エネルギーが効率良
く供給され、光熱記録媒体層は被照11−J領域におい
て11111変化を生ぜしめられることにより、記録が
達成されるわけである。
In this way, the thermal energy of the light beam is efficiently supplied and the photothermal recording medium layer undergoes a 11111 change in the irradiated area 11-J, thereby achieving recording.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明実施例の光デイスク用の光記録媒体の
断面構造を示す図である。
FIG. 1 is a diagram showing a cross-sectional structure of an optical recording medium for an optical disk according to an embodiment of the present invention.

この光記録媒体は、ガラス基板1と、光熱記録媒体層2
としてのznを37.8重Mパーセント(wt%)含有
するAg−Zn  (AQ−37,8wt%Zn)合金
薄膜との間に、熱吸収層3としてテルル化ビスマス (
B 12Te3)合金薄膜を介在せしめてなるものであ
る。
This optical recording medium includes a glass substrate 1 and a photothermal recording medium layer 2.
As a heat absorbing layer 3, bismuth telluride (
B12Te3) alloy thin film is interposed therebetween.

ここで、記録に際して、光ビーム4は、ガラス基板1側
から入射せしめられる。
Here, during recording, the light beam 4 is made to enter from the glass substrate 1 side.

そして、熱伝導度が小さく蓄熱性に優れたBi2Te3
合金薄膜の存在によって多重干渉効果に起因して表面反
射率が低下せしめられ光ビームはこの膜内に有効に吸収
されるとjtに、このBi2Te3合金薄膜層内に、該
光ビーム4のもつ熱エネルギーが有効に蓄熱せしめられ
、光ビームの被照射領域にあるAC+−37,8wt%
Zn合金薄膜2が熱伝導により間接的に加熱せしめられ
る。
Bi2Te3 has low thermal conductivity and excellent heat storage properties.
When the presence of the alloy thin film reduces the surface reflectance due to multiple interference effects and the light beam is effectively absorbed within this film, the heat of the light beam 4 is absorbed within this Bi2Te3 alloy thin film layer. Energy is effectively stored and AC+-37.8wt% in the area irradiated with the light beam.
The Zn alloy thin film 2 is heated indirectly by thermal conduction.

このAQ−37,8wt%Zn合&Ajj膜は、室温で
の色調は銀白色であり、波長800nm付近の光に対す
る反射率【よ約95%であるが、上述の如く光ビームの
熱エネルギーにより285℃以上に加熱急冷すると共析
変態が生じその色調は、彩かなピンク色となり、波長8
00 n m (−j近での反射率は約80%に変化す
る。このようにして、加熱による共析変態によって情報
の害き込みがなされ、再生時にはこれを光によって読み
取り再生するわけである。
This AQ-37, 8 wt% Zn composite & Ajj film has a silver-white color tone at room temperature, and has a reflectance of approximately 95% for light with a wavelength of around 800 nm, but as mentioned above, the thermal energy of the light beam reduces the reflectance to 285%. When heated and rapidly cooled to temperatures above
00 nm (The reflectance near -j changes to about 80%. In this way, information is corrupted by eutectoid transformation due to heating, and during reproduction, this is read and reproduced by light. .

このようにして光エネルギーは、有効に光熱記録媒体層
への情報の占ぎ込みに用いられるため、従来に比べて小
さな光エネルギーで良好な記録を行なうことができる。
In this way, the light energy is effectively used to inject information into the photothermal recording medium layer, so that good recording can be performed with less light energy than in the past.

また、書き込まれた情報を演去する際には、同様に光の
もつ熱エネルギーによって145〜280 ’Cで加熱
した後、徐冷すると、ピンク色と化したAg−37,8
wt%Zn合金膜は、元の銀白色に戻る。
In addition, when processing the written information, the Ag-37.
The wt% Zn alloy film returns to its original silvery white color.

ところで、このBi21−63合金薄膜の融点は585
°Cであり、Ag−37,8wt%Zn合金薄膜の記録
温度が285℃を越えても、溶融することかないため、
記録「、テにおいてし多重干渉効果を保持することがで
きる。
By the way, the melting point of this Bi21-63 alloy thin film is 585
°C, and even if the recorded temperature of the Ag-37.8 wt% Zn alloy thin film exceeds 285 °C, it will not melt.
In the recording mode, multiple interference effects can be preserved.

また、Bi2Te2合金薄摸は熱伝導率が小さいため、
12録時の光ビームi!’I DJによって浩(hされ
た熱エネルギーは、熱吸収1書3である3i2Te、3
合金薄映内では拡散しにクク、熱伝導率の大さな光熱記
録媒体層2へ伝導せしめられる。従って光ビームの熱エ
ネルギーは効璋良く光熱記録媒体層に伝えられ、高分解
能の記録が可能となる。
In addition, since the Bi2Te2 alloy thin model has low thermal conductivity,
12 recording time light beam i! 'Thermal energy extracted by DJ is 3i2Te, 3 which is heat absorption 1 book 3
The light diffuses within the alloy film and is conducted to the photothermal recording medium layer 2, which has a high thermal conductivity. Therefore, the thermal energy of the light beam is efficiently transmitted to the photothermal recording medium layer, enabling high-resolution recording.

なお、実施例においては、熱吸収層として、Bi210
3合金薄膜を用いたがこれに限定されるものではなく、
この他、セし・ン化ビスマス(Bi2Se3)合金薄膜
、テルル化アンチモン(Sb2F’e3)合金源pA等
先光熱記録媒体層りも熱吸収率の高い物質のうちから沿
宜選択可能である。このとぎ、加熱急冷が必要であるこ
とから、敢然性の面からの8血も行ないつつ熱吸収層の
材質を選択プる必要がある。
In addition, in the example, Bi210 is used as the heat absorption layer.
3 alloy thin film was used, but it is not limited to this.
In addition, the photothermal recording medium layer may be selected from materials with high heat absorption, such as bismuth selenide (Bi2Se3) alloy thin film, antimony telluride (Sb2F'e3) alloy source pA, etc. At this point, heating and rapid cooling are required, so it is necessary to select the material for the heat absorbing layer while taking precautions.

また、熱吸収層は、単層のみならず、多層構造としても
よい。
Further, the heat absorption layer may have not only a single layer structure but also a multilayer structure.

更に、実Mb例においては熱吸収層を昌根と光熱記録媒
体層との間に介在ぜしめるようにしたが。
Furthermore, in the actual Mb example, a heat absorption layer was interposed between the layer and the photothermal recording medium layer.

この他、基板21上に光熱記録媒体層22、熱吸収層2
3の順に槓jビjゼしめた構造 (第2図(a))、基
板31、第1の熱吸収層33a、光熱記録媒体層32、
第2の熱吸収層33bの順に検層υしめ、光熱記録媒体
層32の両面に、=吸収響を配した(M造(第2図(b
))等も有効である。
In addition, a photothermal recording medium layer 22 and a heat absorption layer 2 are provided on the substrate 21.
3 in this order (FIG. 2(a)), a substrate 31, a first heat absorption layer 33a, a photothermal recording medium layer 32,
The second heat absorption layer 33b was logging υ in the order of
)) etc. are also valid.

加えて、光熱記録媒体層についても、Aq−37,8w
t%Zn合金薄膜の他、他の物質を用いた場合にも有効
であることはいうまでもないが、特にCu−Al合金薄
膜、銅−アルミニウム−ニッケル(Cu−Al−Ni)
系合金薄膜等光ビームの熟成1R率の良くない物質を用
いる場合に本発明の構造は有効である。
In addition, for the photothermal recording medium layer, Aq-37,8w
It goes without saying that it is effective when using other materials in addition to the t%Zn alloy thin film, but in particular Cu-Al alloy thin film, copper-aluminum-nickel (Cu-Al-Ni)
The structure of the present invention is effective when using a material having a poor 1R rate of ripening with a light beam, such as a thin film of an alloy.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本it明によれば、熱吸収層
をイjしているため、光ビーl\の熱吸収効率の高い光
記録媒体を提供することが可能となる。
As explained above, according to the present invention, since the heat absorption layer is removed, it is possible to provide an optical recording medium with high heat absorption efficiency for optical beams.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例の光記録媒体の断面構造を示す
図、第2図(a)および(b)は、本光明の他の実施例
を示す図、第3図は、従来の光記録媒体の断面構造を示
す図である。 1.11.21.31・・・基板、2.12,22゜3
2・・・光熱記録媒体[鍔、3.23.33a、33b
・・・熱吸収層、4・・・光ビーム。 パ−ニュー)j 第1図 第2図(a) 第2図(b) 第3図
FIG. 1 is a diagram showing a cross-sectional structure of an optical recording medium according to an embodiment of the present invention, FIGS. 2(a) and (b) are diagrams showing another embodiment of the present invention, and FIG. 3 is a diagram showing a conventional optical recording medium. 1 is a diagram showing a cross-sectional structure of an optical recording medium. 1.11.21.31...Substrate, 2.12, 22゜3
2... Photothermal recording medium [Tsuba, 3.23.33a, 33b
...Heat absorption layer, 4...Light beam. Figure 1 Figure 2 (a) Figure 2 (b) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)基板と、光熱記録媒体層と、該光熱記録媒体層よ
りも熱吸収率の大きい物質からなる熱吸収層とを具えた
ことを特徴とする光記録媒体。
(1) An optical recording medium comprising a substrate, a photothermal recording medium layer, and a heat absorption layer made of a substance having a higher heat absorption coefficient than the photothermal recording medium layer.
(2)前記光熱記録媒体層は、銅−アルミニウム(Cu
−Al)系合金薄膜層、銅−アルミニウム−ニッケル(
Cu−Al−Ni)系合金薄膜層、銀−亜鉛(Ag−Z
n)合金薄膜等の共析変態を有する合金薄膜からなるこ
とを特徴とする特許請求の範囲第(1)項記載の光記録
媒体。
(2) The photothermal recording medium layer is made of copper-aluminum (Cu
-Al) based alloy thin film layer, copper-aluminum-nickel (
Cu-Al-Ni) based alloy thin film layer, silver-zinc (Ag-Z
n) An optical recording medium according to claim (1), characterized in that it is made of an alloy thin film having eutectoid transformation such as an alloy thin film.
(3)前記熱吸収層は、テルル化ビスマス(Bi_2T
e_3)合金薄膜、テルル化アンチモン(Sb_2Te
_3)合金薄膜、セレン化ビスマス(Bi_2Se_3
)合金薄膜あるいはこれらの組み合わせからなる合金薄
膜からなることを特徴とする特許請求の範囲第(1)項
または第(2)項記載の光記録媒体。
(3) The heat absorption layer is bismuth telluride (Bi_2T
e_3) Alloy thin film, antimony telluride (Sb_2Te
_3) Alloy thin film, bismuth selenide (Bi_2Se_3
2.) The optical recording medium according to claim 1 or 2, characterized in that it is made of an alloy thin film or an alloy thin film made of a combination thereof.
JP60290050A 1985-12-23 1985-12-23 Optical recording medium Pending JPS62149050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60290050A JPS62149050A (en) 1985-12-23 1985-12-23 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60290050A JPS62149050A (en) 1985-12-23 1985-12-23 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS62149050A true JPS62149050A (en) 1987-07-03

Family

ID=17751135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60290050A Pending JPS62149050A (en) 1985-12-23 1985-12-23 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS62149050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830779B2 (en) 2003-10-08 2010-11-09 Panasonic Corporation Method of recording information, equipment thereof and information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830779B2 (en) 2003-10-08 2010-11-09 Panasonic Corporation Method of recording information, equipment thereof and information recording medium

Similar Documents

Publication Publication Date Title
JP2830557B2 (en) Phase change optical disk
JPH04838B2 (en)
JPS62149050A (en) Optical recording medium
TWI246080B (en) High density recording media with super high resolution near field structure, having a mask layer of high melting point metal oxide or silicon oxide
US4970711A (en) Bulk eraser for optical memory media
JP2002298433A (en) Phase change optical recording medium
JPH0777040B2 (en) Optical recording medium
JPH0256746A (en) Information carrier disk
JPH0863781A (en) Phase change type optical disk
JPH01159839A (en) Optical recording medium
JPH1173680A (en) Optical recording medium
JPS62226445A (en) Optical recording medium
JPS62200544A (en) Optical recording medium
JPS62227050A (en) Material for optical recording medium
JPS6326466B2 (en)
JPH01165043A (en) Optical recording medium
JPH02189738A (en) Optical recording medium
JPH0376238B2 (en)
JPS61133059A (en) Optical disk consisting of color tone recording alloy
JPH0554428A (en) Optical recording medium
JPS61134294A (en) Information recording medium
JPH0416856B2 (en)
JP2002312977A (en) Optical recording medium and recording and reproducing method therefor
JPS62145554A (en) Production of optical recording medium
JPS58203644A (en) Light recording system