JPS62148594A - Chemical liquid fuel and production thereof - Google Patents

Chemical liquid fuel and production thereof

Info

Publication number
JPS62148594A
JPS62148594A JP29006785A JP29006785A JPS62148594A JP S62148594 A JPS62148594 A JP S62148594A JP 29006785 A JP29006785 A JP 29006785A JP 29006785 A JP29006785 A JP 29006785A JP S62148594 A JPS62148594 A JP S62148594A
Authority
JP
Japan
Prior art keywords
water
acetone
liquid fuel
chemical liquid
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29006785A
Other languages
Japanese (ja)
Inventor
Hiroo Kosaka
小坂 宏夫
Takao Sugimoto
孝雄 杉本
Toshio Sugimoto
杉本 登志男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29006785A priority Critical patent/JPS62148594A/en
Publication of JPS62148594A publication Critical patent/JPS62148594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To obtain an industrially producible chemical liquid fuel by a simple means from a raw material to be supplied stably, by dissolving or dispersing an acetylenic hydrocarbon, a paraffin hydrocarbon and a metallic ion in water and making them exist in it. CONSTITUTION:Calcium carbonate is reacted with water under pressure in the presence of a catalyst to give an acetylenic hydrocarbon, which, together with acetone blended with water, is dissolved in water. On the other hand, the paraffin hydrocarbon, acetone and an alcohol are heated in water and pressurized to produce a dilute paraffin component. Both the components are blended, a salt having high water solubility and metallic powder are added to the blend and the blended solution is aged and stabilized to give the aimed chemical liquid fuel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 これらの発明は、化学的に合成、配合してつくられる液
体燃料に関し、さらに限定していうと、水を主体とし、
これにアセチレン系炭化水素、パラフィン系炭化水素、
金属イオンを配合して溶解1分散、溶存させた液体燃料
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] These inventions relate to liquid fuels made by chemically synthesizing and blending.
This includes acetylenic hydrocarbons, paraffinic hydrocarbons,
This invention relates to a liquid fuel in which metal ions are blended, dissolved, dispersed, and dissolved.

〔従来の技術〕[Conventional technology]

今日における液体燃料は9石油系燃料が主体である。特
に、原油や重質油から精製して得られる軽質油は、単位
重量当たりの発生熱量が高く、多用途な燃料として需要
が高い。
Liquid fuels today are mainly 9 petroleum-based fuels. In particular, light oil obtained by refining crude oil or heavy oil has a high calorific value per unit weight and is in high demand as a versatile fuel.

しかし石油は、有限な天然資源であって、現状のま一消
費を続けていくと、近い将来に枯渇することは明らかで
ある。このため1石油系・燃料に代わる代替エネルギの
研究が進められている。その主なものは、植物等の醗酵
等によって得られるアルコールや2合成によって得られ
る水素ガスの利用である。
However, oil is a finite natural resource, and it is clear that if we continue to consume it at the current rate, it will run out in the near future. For this reason, research into alternative energies to replace petroleum-based fuels is underway. The main ones are the use of alcohol obtained by fermentation of plants, etc., and hydrogen gas obtained by 2-synthesis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらのエネルギについては、原料の安定入手
、大量生産に適した製法の確立等の課題があり、現時点
では、まだその実用化に至っていないのが実情である。
However, with regard to these energies, there are issues such as stable procurement of raw materials and establishment of manufacturing methods suitable for mass production, and the reality is that they have not yet been put into practical use.

これらの発明は、上記のような現状に鑑み。These inventions were made in view of the above-mentioned current situation.

軽質油等にくらべて、単位重量当たりの発熱量は低いが
5原料の安定入手が可能で、かつ簡易な製法によって工
業的な製造が可能な液体燃料を提供し1石油系燃料に一
部代替し得るエネルギとしての利用を開くことを目的と
する。
Compared to light oil, etc., the calorific value per unit weight is lower, but the raw materials can be stably obtained, and a liquid fuel that can be manufactured industrially using a simple manufacturing method is provided, partially replacing petroleum-based fuel. The purpose is to open up the possibility of using it as energy.

〔問題を解決するための手段〕[Means to solve the problem]

まず、第一の発明による化学液体燃料について説明する
と、アセチレン系炭化水素を、アセトンと共に水に溶解
させた溶液と、パラフィン系炭化水素をアセトンとアル
コールに熔融させた希薄パラフィン成分とを混合し、上
記水の中に金属イオンを溶存させたものである。
First, to explain the chemical liquid fuel according to the first invention, a solution in which an acetylene hydrocarbon is dissolved in water together with acetone, and a dilute paraffin component in which a paraffin hydrocarbon is dissolved in acetone and alcohol are mixed. Metal ions are dissolved in the above water.

次に、上記化学燃料の製造方法について説明すると、加
圧下で、炭化カルシウムと水とを。
Next, the method for producing the above chemical fuel will be explained. Calcium carbide and water are mixed under pressure.

触媒のもとで反応させ、これによって生成したアセチレ
ン系炭化水素を、水の中に加配したアセトンと共に水に
溶解させる。他方、パラフィン系炭化水素をアセトンと
アルコールと共に水中で加熱、加圧して、希薄パラフィ
ン成分を作り1 これらを混合する。さらに、その中に
水溶性の高い塩類を添加し、この配合溶液を養生して安
定化させる。
The reaction is carried out in the presence of a catalyst, and the resulting acetylene hydrocarbons are dissolved in water together with acetone added to the water. On the other hand, paraffinic hydrocarbons are heated and pressurized in water with acetone and alcohol to produce a dilute paraffin component, and these are mixed. Furthermore, highly water-soluble salts are added thereto, and this mixed solution is cured and stabilized.

〔実 施 例〕〔Example〕

次に、これらの発明の実施例と望ましい実施態様につい
て、第二の発明の液体燃料の製法に従って説明する。
Next, examples and preferred embodiments of these inventions will be described according to the liquid fuel manufacturing method of the second invention.

図面に示すように2反応槽1の中に水を満たし、この中
に炭化カルシウムを投入する。また。
As shown in the drawing, two reaction vessels 1 are filled with water, and calcium carbide is introduced into them. Also.

溶剤としてアセトンを、触媒として水銀塩を加える。上
記反応槽1を5〜10kg/cffl程度に加圧し、炭
化カルシウムと水3を反応させると、アセチレンが発生
する。
Add acetone as a solvent and mercury salt as a catalyst. When the reaction tank 1 is pressurized to about 5 to 10 kg/cffl and calcium carbide and water 3 are reacted, acetylene is generated.

CaC2+2H20−IC2H2+Ca  (OH)2
発生したアセチレンは、水銀塩等の触媒のもとで、水と
反応し、アセトアルデヒドが生成する。
CaC2+2H20-IC2H2+Ca(OH)2
The generated acetylene reacts with water under a catalyst such as a mercury salt to generate acetaldehyde.

C2H2+H2O−CH5CHO 反応槽lが高圧、加熱された状態のもとでは。C2H2+H2O-CH5CHO When the reaction tank 1 is under high pressure and heat.

アセチレンと水蒸気による反応で、アセトンが生成され
、このアセトンの一部は、アセチレンと反応してアセト
アルデヒドを作る。アセチレンガス応しないアセトンは
2反応槽1に投入した他のアセトンと共に水中に溶存す
る。
The reaction between acetylene and water vapor produces acetone, and some of this acetone reacts with acetylene to form acetaldehyde. Acetone, which does not react with acetylene gas, is dissolved in water together with other acetone charged into the second reaction tank 1.

また、高圧下のもとでは、アセチレンが水から水素を奪
い、エチレンが発生する。
Also, under high pressure, acetylene removes hydrogen from water, producing ethylene.

C2H2+H2C2Ha 皇料の水には、純水を使用することもてきるが、ナトリ
ウム、マグネシウム、カルシウム等の金属イオンを含む
もの1例えばf・)d水等を使用することができる。こ
の場合1発生したアセチレンは、これらの金属イオンと
反応し、アセチ′Jトが生成する。
C2H2+H2C2Ha Pure water can be used as the royal water, but water containing metal ions such as sodium, magnesium, and calcium, such as f.)d water, can also be used. In this case, the generated acetylene reacts with these metal ions to produce acetylene.

C2H2+ N a +−C2N a 2これろアセチ
レン系炭化水素は、アセトンと共に水に溶解する。アセ
チレン系炭化水素は。
C2H2+ Na + -C2N a 2 These acetylenic hydrocarbons dissolve in water together with acetone. Acetylenic hydrocarbons.

後述するパラフィン系炭化水素と共に、燃焼エネルギ発
生要素の主体となるものである。特に。
Along with paraffinic hydrocarbons, which will be described later, they are the main combustion energy generating elements. especially.

アセチリドは爆燃性がある。Acetylide is deflagrative.

上記の反応は、常温下でも行うことができるが、実際に
は120℃程度に加熱するのが望ましい。
Although the above reaction can be carried out at room temperature, it is actually preferable to heat it to about 120°C.

反応後の生成液中に占める水の量が重量比で50%を越
えると、出来上がった液体燃料の燃焼性が悪くなるため
、水分量はこれ以下、できれば40%以下であることが
望ましい。原料は、予めこれを目安として配合するが、
具体的には水100に対して、炭化カルシウム10.ア
セトン40といった割合が標準的である。
If the amount of water in the product liquid after the reaction exceeds 50% by weight, the combustibility of the resulting liquid fuel will deteriorate, so it is desirable that the amount of water is less than this, preferably 40% or less. The raw materials are mixed in advance using this as a guide, but
Specifically, 10 parts of calcium carbide to 10 parts of water. A ratio of 40 parts acetone is standard.

炭化カルシウムが過剰であるときは、沈澱する水酸化カ
ルシウムの量が多くなり、また少なすぎるときは、アセ
チレンの発生量が少ない。
When calcium carbide is in excess, the amount of precipitated calcium hydroxide increases, and when it is too little, the amount of acetylene generated is small.

なお、炭化カルシウムと水との反応に際しては、水にl
容存しきれないアセチレンガスやエチレンガスが発生す
る。これらのガスは、ガス貯蔵タンク5に簗められる。
In addition, when reacting calcium carbide with water,
Acetylene gas and ethylene gas that cannot be stored are generated. These gases are stored in the gas storage tank 5.

一方、熔融槽2の中で、パラフィン系炭化水素をアセト
ンやアルコールに熔融させる。パラフィン系炭化水素は
、燃焼エネルギの発止要素になると共に、燃料の燃焼を
持続させる保燃性を得るためのものである。即ち、液体
燃料の粘性を確保し、燃焼時に蒸発しやすいアセチレン
系炭化水素、アセトン、アルコール、その他補燃剤等と
の燃焼の調和を図るために重要である。
Meanwhile, in the melting tank 2, paraffinic hydrocarbons are melted into acetone or alcohol. The paraffin hydrocarbon serves as a combustion energy generating element and also provides flame retentivity to sustain the combustion of the fuel. That is, it is important to ensure the viscosity of the liquid fuel and to achieve harmonious combustion with acetylene hydrocarbons, acetone, alcohol, and other refueling agents that easily evaporate during combustion.

しかし、パラフィン系炭化水素(アルカン)は1強い疎
水性があるため、そのま\水に溶解させることが困難で
ある。そこで、ケロシン等のパラフィン系炭化水素を、
アセトンやアルコールを分散媒として水中に浸透1分散
させるため、まずこれらを加圧槽2の中に入れ、60〜
80℃前後の温度に加熱すると共に5 kg / c1
11前後の圧力を加えて熔融させる。これによって、パ
ラフィン系炭化水素がアセトンやアルコールに熔融され
、希薄パラフィン成分が得られる。
However, paraffinic hydrocarbons (alkanes) have strong hydrophobicity, so it is difficult to dissolve them directly in water. Therefore, paraffin hydrocarbons such as kerosene,
In order to permeate and disperse acetone or alcohol as a dispersion medium in water, first put them into a pressurized tank 2 and heat them at 60~
Heating to a temperature of around 80℃ and 5 kg/c1
Melt by applying pressure around 11. As a result, paraffinic hydrocarbons are melted into acetone or alcohol, and a dilute paraffin component is obtained.

パラフィン系炭化水素とその溶剤の配合割合は、上記ア
セチレン系炭化水素の生成工程で使用された水を40部
とした場合、容積比でアセトンとアルコールがそれぞれ
20部、パラフィンが5〜6部程度が適当である。
The blending ratio of paraffinic hydrocarbons and their solvents is approximately 20 parts each of acetone and alcohol and 5 to 6 parts of paraffin by volume, assuming that the water used in the acetylenic hydrocarbon production process is 40 parts. is appropriate.

次に、上記アセチレン系炭化水素の生成溶液と、パラフ
ィン系炭化水素の溶液を、混合槽3に導き、その中で混
合する。これによって、希薄パラフィン成分の中に含ま
れるパラフィン系炭化水素が、アセトンとアルコールを
分散媒として、水の中に浸透5分散される。このとき。
Next, the acetylene hydrocarbon production solution and the paraffin hydrocarbon solution are introduced into the mixing tank 3 and mixed therein. As a result, paraffinic hydrocarbons contained in the dilute paraffin component are permeated into water and dispersed using acetone and alcohol as a dispersion medium. At this time.

希薄パラフィン成分の中のパラフィン系炭化水素が多い
場合は、アセトン等の分散媒と共に水中に分散している
パラフィン系炭化水素が水中に遊離し1表面に油膜が生
じやすい。しかし。
When there are many paraffinic hydrocarbons in the dilute paraffin component, the paraffinic hydrocarbons dispersed in the water together with a dispersion medium such as acetone are likely to be liberated in the water and an oil film is likely to be formed on the surface. but.

通常の場合は、この油膜も時間の経過に伴って安定化さ
れ、水中に浸透1分散する。
Normally, this oil film is also stabilized over time and permeates into the water.

さらに、これら混合液の中に水溶性の高い塩類や金属粉
を添加する。塩類としては2例えば鉄、アルミニウム、
亜鉛、カルシウム、ナトリウム等の塩化物等、1jll
解性が高く、水中にイオンの状態で溶存されやすいもの
を使用する。また2金属粉としては、マグネシウム粉等
、水に熔融しやすいものを使用する。これらは、イオン
化1頃向の強い金属イオンを含み、常温でも水を分解し
て水素を発生しやすく、燃焼エネルギの発注に大きな役
割を持つ。
Furthermore, highly water-soluble salts and metal powder are added to these mixed liquids. Examples of salts include iron, aluminum,
Chlorides of zinc, calcium, sodium, etc., 1jll
Use materials that are highly dissolvable and easily dissolved in the form of ions in water. Further, as the two-metal powder, one that is easily soluble in water, such as magnesium powder, is used. These contain metal ions with strong ionization, easily decompose water and generate hydrogen even at room temperature, and play a major role in the production of combustion energy.

上記の混合液には、さらに必要に応じてトルエンやイソ
プロピルアルコール等の補燃剤を添加することもできる
A refueling agent such as toluene or isopropyl alcohol may be further added to the above-mentioned liquid mixture as necessary.

以上のようにして合成、配合された液体燃料を、貯蔵槽
4に導き、暫く養生して、性状の安定化を図った後、燃
料として使用に供される。
The liquid fuel synthesized and blended as described above is introduced into the storage tank 4, cured for a while to stabilize its properties, and then used as a fuel.

次に、これらの発明の具体的な実施例について説明する
Next, specific examples of these inventions will be described.

(実施例1) 円筒形の反応槽1の中に1重量比で水400に対して炭
化カルシウムを40.  アセトンを160゜水銀塩を
1の割合で投入し5反応槽1の中を8kg / ctA
の圧力に維持し、温度120”Cのもとて15分間反応
させた。これによって、アセトアルデヒド、アセトン、
水、エチレン等を主とする溶液を得た。
(Example 1) In a cylindrical reaction tank 1, 40% calcium carbide was added to 400% water at a weight ratio of 1. Acetone was added at a ratio of 160° and mercury salt was added at a ratio of 1 part to 8 kg/ctA in 5 reaction vessels 1.
The reaction was maintained at a pressure of
A solution containing mainly water, ethylene, etc. was obtained.

他方、上記反応槽1に投入した水400に対して1重量
比でそれぞれ160の割合のアセトンとメタノール、及
び50の割合のケロシンとトルエンの混合液を熔融槽2
の中に導入し、これらを5 kg / ctAの圧力の
下で80℃の温度を加えて5分間混合し、希薄パラフィ
ン成分を得た。
On the other hand, a mixed solution of acetone and methanol in a ratio of 160 and kerosene and toluene in a ratio of 50 to 400 parts of water put into the reaction tank 1 was added to the melting tank 2.
These were mixed under a pressure of 5 kg/ctA at a temperature of 80°C for 5 minutes to obtain a dilute paraffin component.

上記アセチレン系炭化水素の溶液と、希薄パラフィン成
分を混合槽3に導入し、これらを常温で混合すると共に
、この中に塩化第二鉄、塩化亜鉛、塩化アルミニウムを
、上記反応槽1で使用した水400gに対してそれぞれ
3gずつ。
The acetylenic hydrocarbon solution and the dilute paraffin component were introduced into the mixing tank 3 and mixed at room temperature, and ferric chloride, zinc chloride, and aluminum chloride were added thereto to the mixture used in the reaction tank 1. 3g of each per 400g of water.

マグネシウム粉末を4g加え、混合した。これを貯蔵槽
4に導き、Wく養生させ、第一の発明による液体燃料を
得た。
4g of magnesium powder was added and mixed. This was introduced into the storage tank 4 and cured in W to obtain a liquid fuel according to the first invention.

この液体燃料のPl+は、 6.2.比重は、 0.8
8.引火点は9℃であった。
Pl+ of this liquid fuel is 6.2. Specific gravity is 0.8
8. The flash point was 9°C.

また、廃油用ボイラを使用し、この液体燃料の燃焼試験
を行い、断熱々9計を使用して発熱量を測定したところ
、 5003kcal/kgの発熱量が実測された。
In addition, a combustion test was conducted on this liquid fuel using a waste oil boiler, and the calorific value was measured using an adiabatic meter, and the calorific value was actually measured to be 5003 kcal/kg.

燃焼時には、楽に感知できる程度の軽い燃焼臭が認めら
れた。また、燃焼後の残滓の組成は。
During combustion, a light combustion odor was observed that was easily detected. Also, what is the composition of the residue after combustion?

水分が80.5%、メタノールが4.38%、塩化ナト
リウムが3.28%であり、ごく微量の酢酸とアセトン
が検出された。
Moisture was 80.5%, methanol was 4.38%, sodium chloride was 3.28%, and trace amounts of acetic acid and acetone were detected.

(実施例2) 上記実施例1において、アセチレン系炭化水素の溶液と
希薄パラフィン成分とに塩化第二鉄。
(Example 2) In Example 1 above, ferric chloride was added to the acetylene hydrocarbon solution and the dilute paraffin component.

塩化亜鉛、塩化アルミニウム及びマグネシウム粉末を添
加するに当たり1反応槽1に導入した水4に対してIの
割合の水をさらに加え、これ以外は同実施例1と同じ方
法と条件で液体燃料を作った。
When adding zinc chloride, aluminum chloride, and magnesium powder, water was further added at a ratio of I to 4 of the water introduced into 1 reaction tank 1, and a liquid fuel was produced in the same manner and under the same conditions as in Example 1 except for this. Ta.

こうして得られた液体燃料の引火点は、6℃であり、こ
れについて上記実施例1と同様にして燃焼試験を行った
ところ、 4280kcal/ kgの発熱量が実測さ
れた。
The flash point of the liquid fuel thus obtained was 6°C, and when a combustion test was conducted on it in the same manner as in Example 1, a calorific value of 4280 kcal/kg was actually measured.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、これらの発明によれば。 As explained above, according to these inventions.

水の他、原油の中に多量に含まれ、軽質油の精製に際し
て分離されるパラフィン系炭化水素等1安定供給が可能
な原料によって、簡易な手段で液体燃料が得られる。こ
れによって、需要の多い軽質油を補充する形で、R源の
有効利用が可能となる。
In addition to water, liquid fuel can be obtained by simple means using raw materials that can be stably supplied, such as paraffin hydrocarbons, which are contained in large amounts in crude oil and are separated during the refining of light oil. This makes it possible to effectively utilize the R source in the form of supplementing light oil, which is in high demand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の製造プロセスを示す概念図である
。 1−反応槽       2・−熔融槽3−混合槽  
     4−貯蔵槽 5−ガス貯蔵タンク 発明者 出版 先夫 特許出願人  小 坂  宏 夫 同 上 材木 孝雄
FIG. 1 is a conceptual diagram showing the manufacturing process of this invention. 1-Reaction tank 2--Melting tank 3-Mixing tank
4-Storage Tank 5-Gas Storage Tank Inventor Publisher Former Patent Applicant Hiroshi Kosaka Same as above Takao Zaimoku

Claims (1)

【特許請求の範囲】 1、アセチレン系炭化水素を、アセトンと共に水に溶解
させた溶液と、パラフィン系炭化水素をアセトンとアル
コールに熔融させた希薄パラフィン成分とを混合し、上
記水の中に金属イオンを溶存させてなることを特徴とす
る化学液体燃料。 2、加圧下で、炭化カルシウムと水とを、触媒のもとで
反応させ、これによって生成したアセチレン系炭化水素
を、水の中に加配したアセトンと共に水に溶解させ、他
方、パラフィン系炭化水素をアセトンとアルコールと共
に水中で加熱、加圧して、希薄パラフィン成分を作り、
これらを混合すると共に、その中に水溶性の高い塩類や
金属粉を添加し、この配合溶液を養生して安定化させて
なることを特徴とする化学液体燃料の製造方法。
[Claims] 1. A solution of acetylenic hydrocarbons dissolved in water together with acetone and a dilute paraffin component obtained by dissolving paraffinic hydrocarbons in acetone and alcohol are mixed, and metals are added to the water. A chemical liquid fuel characterized by being made by dissolving ions. 2. Under pressure, calcium carbide and water are reacted in the presence of a catalyst, and the resulting acetylenic hydrocarbons are dissolved in water together with acetone added to the water, while paraffinic hydrocarbons are dissolved in water. is heated and pressurized in water with acetone and alcohol to create a dilute paraffin component.
A method for producing a chemical liquid fuel, which comprises mixing these, adding highly water-soluble salts and metal powder therein, and curing and stabilizing this mixed solution.
JP29006785A 1985-12-23 1985-12-23 Chemical liquid fuel and production thereof Pending JPS62148594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29006785A JPS62148594A (en) 1985-12-23 1985-12-23 Chemical liquid fuel and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29006785A JPS62148594A (en) 1985-12-23 1985-12-23 Chemical liquid fuel and production thereof

Publications (1)

Publication Number Publication Date
JPS62148594A true JPS62148594A (en) 1987-07-02

Family

ID=17751357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29006785A Pending JPS62148594A (en) 1985-12-23 1985-12-23 Chemical liquid fuel and production thereof

Country Status (1)

Country Link
JP (1) JPS62148594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438262A (en) * 2006-05-13 2007-11-21 John William Carson Reagent for surface calcination of minerals and ashes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123204A (en) * 1975-04-19 1976-10-27 Shinnitsutou Kagaku Kk Process for producing fuel oil additives with good stability
JPS5590588A (en) * 1978-12-27 1980-07-09 Calgon Corp Conditioning agent for residual fuel oil containing metal salt aqueous solution
JPS5652950A (en) * 1979-10-08 1981-05-12 Hitachi Ltd Circuit control method of data highway system
JPS56156800A (en) * 1981-02-10 1981-12-03 Kobe Steel Ltd Descaling method for stainless sheet
JPS57123294A (en) * 1981-01-26 1982-07-31 Kingo Yoshida Ultrafine metal powder-mixed liquid fuel and gaseous fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51123204A (en) * 1975-04-19 1976-10-27 Shinnitsutou Kagaku Kk Process for producing fuel oil additives with good stability
JPS5590588A (en) * 1978-12-27 1980-07-09 Calgon Corp Conditioning agent for residual fuel oil containing metal salt aqueous solution
JPS5652950A (en) * 1979-10-08 1981-05-12 Hitachi Ltd Circuit control method of data highway system
JPS57123294A (en) * 1981-01-26 1982-07-31 Kingo Yoshida Ultrafine metal powder-mixed liquid fuel and gaseous fuel
JPS56156800A (en) * 1981-02-10 1981-12-03 Kobe Steel Ltd Descaling method for stainless sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2438262A (en) * 2006-05-13 2007-11-21 John William Carson Reagent for surface calcination of minerals and ashes

Similar Documents

Publication Publication Date Title
Kumar et al. Enhanced carbon dioxide hydrate formation kinetics in a fixed bed reactor filled with metallic packing
US3567412A (en) Gasification of carbonaceous fuels
Gong et al. Carriers for methane hydrate production: Cellulose-based materials as a case study
EP3445835B1 (en) Vanadium corrosion inhibitors in gas turbine applications
Lal et al. Gas hydrate promoters
JPS62148594A (en) Chemical liquid fuel and production thereof
JPS6291597A (en) Synthesis of excessive base additive under constant pressureof carbon dioxide
US2751284A (en) Gelling hydrocarbon liquids with liquid gelling agents
JPS63308094A (en) Chemically synthesized liquid fuel and production thereof
JPH11140470A (en) Water-fossil fuel mixed emulsion
US1332525A (en) Solvent for acetylene gas and the like
CN107513454B (en) The gas synergist of long-acting stabilization
JP2000144159A (en) Production of hydrated gas material
US3000817A (en) Method of sweetening petroleum distillate
US1405805A (en) Process of producing liquid fuels
US1577171A (en) Process of metal cutting, welding, or the like
US2794003A (en) Preparation of gel compositions
US1208265A (en) Fuel and process of making the same.
US607017A (en) Process of desulfurizing petroleum
US3523767A (en) Fuel oil additive and method of making the same
US1993271A (en) Denaturant for alcohol and method of preparing the same
JP3005677B1 (en) Method for solidifying hydrocarbon and method for regenerating hydrocarbon from solid aggregate
US2103182A (en) Process for making gas
EA023454B1 (en) Fuel and combustible mixture used as a substitute for fossil fuels in thermoelectric power plants, industrial and central heating furnaces
KR100407185B1 (en) Additivated gas for oxy-cutting and/or heating applications, composition and use of an additivated gas