JPS62147362A - Measuring device of slow-speed and flow direction of ground water - Google Patents

Measuring device of slow-speed and flow direction of ground water

Info

Publication number
JPS62147362A
JPS62147362A JP60287556A JP28755685A JPS62147362A JP S62147362 A JPS62147362 A JP S62147362A JP 60287556 A JP60287556 A JP 60287556A JP 28755685 A JP28755685 A JP 28755685A JP S62147362 A JPS62147362 A JP S62147362A
Authority
JP
Japan
Prior art keywords
electrode
chamber
inner tube
solution
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60287556A
Other languages
Japanese (ja)
Other versions
JPH0246904B2 (en
Inventor
Motoi Kasai
河西 基
Yoichi Hirata
洋一 平田
Seikichi Komatsuda
小松田 精吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Taisei Kiso Sekkei Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Taisei Kiso Sekkei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Taisei Kiso Sekkei Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP60287556A priority Critical patent/JPS62147362A/en
Publication of JPS62147362A publication Critical patent/JPS62147362A/en
Publication of JPH0246904B2 publication Critical patent/JPH0246904B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To improve accuracy of measured values, by constructing the device with an inner tube with an inlet port retractable toward an electrode chamber by a cylinder mechanism and a means of supply of a constant volume of solution into the inner tube. CONSTITUTION:When ground water is introduced into an electrode chamber 20 through a guard mesh 23, distilled water existed in the special electrode 21 at the center id diluted by in-coming ground water by replacement and distilled water is gradually pushed outward of the chamber 20 through a number of through holes from the special electrode 21 located at the center of the chamber 20 and when reaching any of electrodes 22 arranged radially, as resistance values of the electrodes 22 are changed, slow-speed and flow direction of ground water corresponding to attitude and time of the change can be measured. Further, when the measuring operations of the flow speed and direction are finished and a renewed measurement is attempted, pressure liquid is introduced into the upper chamber 11 of the cylinder for lowering a cylinder 10 and insertion of an inner tube 15 into the electrode 21, a valve 18 is opened and a valve 19 is closed for filling distilled water in the tube 15 and allowing distilled water to remain in the electrode and thus, repeated measuring operations become available.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は地下水の微流速および流向測定装置に関し、測
定値の精度向上ならびに測定の簡易化をはかることを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a device for measuring minute flow velocity and flow direction of groundwater, and an object of the present invention is to improve the accuracy of measured values and simplify the measurement.

(従来の技術) 水資源の中でも最も重要な役割を果たす地下水に関し、
その汚染等に種々の問題が提起されている。
(Conventional technology) Regarding groundwater, which plays the most important role among water resources,
Various problems have been raised regarding its contamination.

そこで地下水の汚染の程度や範囲を知り、地下水の動き
を正確に把握することは重要であり、とくに地下水の流
速ならびに流向を知る方法に関しても、これまでに種々
研究されてきた。
Therefore, it is important to know the extent and extent of groundwater contamination and to accurately understand the movement of groundwater, and in particular, various studies have been conducted on methods for determining the flow velocity and direction of groundwater.

その代表的なものとして、流水にてプロペラが回転する
流速計をポーリング孔内に降下させ、プロペラの回転数
の変化によって流速および流向を測定する方法があり、
また特公昭45−25029号に開示される如く、円板
をポーリング孔内に降下させ、円板に作用する孔内水の
上昇流および下降流による圧力から地下水の流動状況を
推定する試み、あるいはラジオアイソトープ(R1)を
流水に投入し、流水による放射線量の分布変化をトレー
スして流速および流向を測定する試みがある。
A typical method is to lower a current meter with a rotating propeller into a polling hole in flowing water and measure the flow speed and direction based on changes in the propeller rotation speed.
Further, as disclosed in Japanese Patent Publication No. 45-25029, an attempt is made to lower a disk into a poling hole and estimate the flow condition of groundwater from the pressure caused by the upward and downward flow of water in the hole acting on the disk, or There has been an attempt to measure the flow velocity and direction by injecting a radioisotope (R1) into flowing water and tracing changes in the radiation dose distribution caused by the flowing water.

しかしながら流水にて機械的測定手段を駆動する方法に
あっては、例えば毎秒2cm以下の流速を正確に測定す
ることは極めて困難であり、また放射性物質を利用する
方法は免許が必要であって取り扱いが難しいのみならず
、装置が極めて高価なものとなってしまう。
However, with methods that drive mechanical measuring means with flowing water, it is extremely difficult to accurately measure flow velocities of less than 2 cm per second, and methods that use radioactive materials require a license to handle. Not only is this difficult, but the equipment becomes extremely expensive.

そこでさらに本発明者らはこれらを解決すべく、特定の
電極に対して等間隔位置に複数の電極を配設し、特定電
極との間における各電極の電位差(電気的抵抗値差)ま
たは変化により地下水の動向を測定する方法を開発し、
すでに実用化されるに至っている。
Therefore, in order to further solve these problems, the present inventors arranged a plurality of electrodes at equal intervals with respect to a specific electrode, and the potential difference (electrical resistance value difference) of each electrode between the specific electrode and the change developed a method to measure groundwater trends,
It has already been put into practical use.

(発明の解決すべき問題点) しかしながら上記の方法による場合には電極間に最初に
注入すべきトレーサー材(追跡剤)としてNacl溶液
あるいはRI等の放射性物質含有溶液などを用いるため
に環境汚染の問題があるばかりでなく、とくにトレーサ
ー材の設置が1回的で繰り返し設定できないところから
試験値の精度を正確に確認できないという問題があり、
また上記トレーサー材を井戸内に設置された各電極間に
注入する装置が複雑で必然的に大型化するために測定器
具類が大損りとなり非経済的であるのみならず、トレー
サー材を各電極間に正確に定量供給することが実際上著
しく難しいために測定値の正確性には限度があり、ある
程度の測定誤差は止むを得ないものとされていた。
(Problems to be Solved by the Invention) However, in the case of the above method, a NaCl solution or a solution containing a radioactive substance such as RI is used as the tracer material (tracking agent) to be first injected between the electrodes, which may cause environmental pollution. Not only are there problems, but there is also the problem that the accuracy of test values cannot be accurately confirmed, especially since the tracer material is only installed once and cannot be set repeatedly.
In addition, the equipment for injecting the tracer material between each electrode installed in a well is complicated and inevitably large-sized, which results in a large loss of measuring instruments and is not only uneconomical, but also makes it difficult to inject the tracer material between each electrode. Since it is actually extremely difficult to accurately supply a fixed amount during the measurement period, there is a limit to the accuracy of the measured values, and a certain amount of measurement error is considered to be unavoidable.

(問題点を解決するための手段) 本発明は上記した従来技術の問題点を解決すべく、とく
に測定精度を著しく向上させたものであって、具体的に
は、内部中空の円筒状をした外郭体と、外郭体の下端部
に吊設された電極室とからなり、電極室は特定の電極に
対してそれぞれ等間隔毎に複数の電極が対設されている
とともに、外郭体には溶液タンク室と該溶液タンク室か
ら溶液を前記電極室内に一定量宛供給する注出部とを有
し、咳注出部はシリンダー機構により前記電極室内に向
けて出没自在のインナーチューブと、該インナーチュー
ブ内に一定量の溶液を供給する溶液供給手段とから構成
されていることを特徴とするものである。
(Means for Solving the Problems) In order to solve the problems of the prior art described above, the present invention significantly improves measurement accuracy. It consists of an outer shell and an electrode chamber suspended at the lower end of the outer shell.The electrode chamber has a plurality of electrodes arranged opposite each specific electrode at equal intervals, and the outer shell is filled with a solution. It has a tank chamber and a spouting part that supplies a fixed amount of solution from the solution tank chamber into the electrode chamber, and the cough spouting part has an inner tube that can freely extend and retract toward the electrode chamber by a cylinder mechanism, and The device is characterized by comprising a solution supply means for supplying a fixed amount of solution into the tube.

(実施例) 以下において本発明の1実施例を図示の実施例をもとに
説明すると、1は内部中空の円筒状をした外郭体、8は
外郭体の内部下方に設置された注出部、20は外郭体の
下端部に吊設された電極室をあられす。
(Embodiment) An embodiment of the present invention will be described below based on the illustrated embodiment. Reference numeral 1 denotes a hollow cylindrical outer body, and 8 a spouting part installed at the lower part of the inner part of the outer shell. , 20 denotes an electrode chamber suspended from the lower end of the outer shell.

外郭体1は上方に溶液タンク室3および該溶液タンク室
の外周側開口部に張設されたゴム製の可撓性薄膜4、お
よびさらに該薄膜4と外郭体lとの間に圧力バランスル
ーム5が設けられ、しかも該圧力バランスルーム5に対
応する外郭体1の周面には内外に通ずる複数の通孔6が
設けられ、しかも該通孔にはバランスフィルターが介装
されている。尚、溶液タンク室3内には蒸溜水が満たさ
れる。
The outer shell 1 has a solution tank chamber 3 above, a flexible thin film 4 made of rubber stretched over the outer opening of the solution tank chamber, and a pressure balance room between the thin film 4 and the outer shell 1. Furthermore, a plurality of through holes 6 communicating inside and outside are provided on the peripheral surface of the outer body 1 corresponding to the pressure balance room 5, and a balance filter is interposed in the through holes. Note that the solution tank chamber 3 is filled with distilled water.

電極室20は、上記外郭体lの下端部底板1aの下側に
該下端部底Fj−1aに対して長ボルト等により下方に
一定区間距離だけ移動自在に吊設されており、上記底板
1aの中央に穿孔された注出孔1bの直下に上端を固定
され、下端を電極保持板24の中央に固定させたところ
の円筒状であって周面に多数の通孔を穿設させたストレ
ーナ−を兼ねる特定電極21、および該特定電極を中心
とし、これと等間隔毎に対設させて上記底板1aと電極
保持板24との間に設けられた複数の電極22)および
それらの周縁であって各電極との間に若干の距離を隔て
て底板1aと電極保持板24との間に介在されたところ
の全周にわたり多数の透孔を有する固定した円筒状のガ
ードメソシュ23とから構成されており、さらに上記特
定電極21の外側とガードメソシュ23の内面側との間
には多数の粒状物25が充填されているとともに、さら
に上記ガードメツシュ23の外周部にはこれを包被すべ
く可撓性の一ネット27が張設され、しかも該ネット2
7とガードメツシュ23との間には多数のバックビーズ
28が充填されている。
The electrode chamber 20 is suspended below the lower end bottom plate 1a of the outer body l so as to be movable downward by a fixed distance with respect to the lower end bottom Fj-1a by a long bolt or the like. A cylindrical strainer with a cylindrical shape and a number of holes bored on its circumferential surface, the upper end of which is fixed directly below the pouring hole 1b bored in the center of the electrode holding plate 24, and the lower end fixed to the center of the electrode holding plate 24. - a specific electrode 21 which also serves as the center, and a plurality of electrodes 22) provided between the bottom plate 1a and the electrode holding plate 24 at equal intervals around the specific electrode, and their peripheral edges. It is composed of a fixed cylindrical guard mesh 23 having a large number of through holes around the entire circumference, which is interposed between the bottom plate 1a and the electrode holding plate 24 at a certain distance from each electrode. Furthermore, a large number of particles 25 are filled between the outside of the specific electrode 21 and the inner surface of the guard mesh 23, and a flexible part is provided on the outer periphery of the guard mesh 23 to cover the particles. A sex net 27 is set up, and the net 2
A large number of back beads 28 are filled between 7 and the guard mesh 23.

一方注出部8は外郭体1の下方内部であって底板1aの
上面中央部に固定されたシリンダー9および該シリンダ
ー内に上下方向移動自在に嵌装され、しかも下降時に前
記注出孔1bから特定電極21内に進入し、また上昇時
に特定電極21内から上方へ移動自在のインナーチュー
ブ15を一体に有するピストン10、そしてシリンダー
10の上部中央に上端を固定させるとともに先端をピス
トン10の上面を貫通してピストン10の中空室10a
内に臨ませた固定チューブ16、さらに該固定チューブ
16と前記溶液タンク3との間を連絡するホース17、
シリンダー9の上室内に連絡する送排液用パイプ13、
シリンダー9の下室内に連絡する送排液用パイプ14と
より構成される。
On the other hand, the spouting part 8 is fitted into a cylinder 9 which is located inside the lower part of the outer shell 1 and is fixed to the center of the upper surface of the bottom plate 1a, and is fitted into the cylinder so as to be movable in the vertical direction, and when it is lowered, from the spouting hole 1b. A piston 10 integrally has an inner tube 15 that enters into the specific electrode 21 and is movable upward from the specific electrode 21 when rising.The upper end is fixed to the upper center of the cylinder 10 and the tip is connected to the upper surface of the piston 10. Hollow chamber 10a of piston 10 through
a fixed tube 16 facing inside, and a hose 17 communicating between the fixed tube 16 and the solution tank 3;
A liquid supply/drainage pipe 13 that communicates with the upper chamber of the cylinder 9;
It is composed of a liquid supply/drainage pipe 14 that communicates with the lower chamber of the cylinder 9.

尚、固定チューブ16、およびインナーチューブ15の
各先端部には開閉バルブ18.19がそれぞれ取りつけ
られている。さらに外郭体1の上方には航空機や船舶の
姿勢制御用として一般に用いられているジャイロを超小
型化させたジャイロ装置26が装備されている。
Note that opening/closing valves 18 and 19 are attached to the distal ends of the fixed tube 16 and the inner tube 15, respectively. Further, above the outer shell 1, a gyro device 26 is installed, which is an ultra-miniaturized version of the gyro commonly used for attitude control of aircraft and ships.

(作用) 上記した実施例の構成において、ポーリング孔内に第1
図に示した装置を測定深度まで降下させる。その際電極
室およびその周面に有するパ・ツクビーズ28はその電
極保持板24の下側に吊設された下部パッカーおよびシ
リンダー(共に図示省略)等の重量により下方に伸ばさ
れた状態となっており、所定の深さに達して下部パ・ツ
カ−を膨張させることによりストレーナ−29の内壁面
に固定させたとき、はじめて測定器本体の重量により上
記シリンダー内をピストン(標示省略)が下方に移動し
、これに伴って電極室20の周囲に装備したバンクビー
ズ28が上下方向から圧縮される。パックビーズ28は
上下方向より圧縮された分だけ次第に肉厚となり、放射
方向に膨張してストレーナ−29の内壁面に圧着される
。さらにあらかじめシリンダー9の上室内に圧力液体を
圧送してピストン10を下降させてインナーチューブ1
5を特定電極21内に挿入させた状態においてバルブ1
8を開き、しかもバルブ19を閉じたままの状態におい
て溶液タンク3内からピストンの中空室10aを通して
インナーチューブ15内に一定量の蒸留水を注出する。
(Function) In the configuration of the embodiment described above, the first
The device shown in the figure is lowered to the measurement depth. At this time, the pack beads 28 in the electrode chamber and its surrounding surface are stretched downward due to the weight of the lower packer and cylinder (both not shown) suspended below the electrode holding plate 24. When the strainer reaches a predetermined depth and is fixed to the inner wall surface of the strainer 29 by expanding the lower part, the piston (not shown) moves downward inside the cylinder due to the weight of the measuring instrument body. As the bank beads 28 are moved, the bank beads 28 provided around the electrode chamber 20 are compressed from above and below. The packed beads 28 gradually become thicker as they are compressed in the vertical direction, expand in the radial direction, and are pressed against the inner wall surface of the strainer 29. In addition, pressure liquid is fed into the upper chamber of the cylinder 9 in advance, and the piston 10 is lowered to lower the inner tube 1.
5 inserted into the specific electrode 21, the valve 1
8 is opened, and with the valve 19 kept closed, a certain amount of distilled water is poured out from the solution tank 3 into the inner tube 15 through the hollow chamber 10a of the piston.

その後、バルブ18を閉じるとともにバルブ19を開い
たままの状態にてシリンダーの下室12内に圧力液体を
圧送し、上室1)内の圧力液体を排液すると、シリンダ
ー10の上昇に伴って特定電極21内よりインナーチュ
ーブ15が引き上げられて、蒸留水(試験溶液)のみが
体積変化をおこすことなく特定電極21内に残留される
Thereafter, while closing the valve 18 and keeping the valve 19 open, the pressure liquid is fed into the lower chamber 12 of the cylinder, and the pressure liquid in the upper chamber 1) is drained. The inner tube 15 is pulled up from within the specific electrode 21, and only distilled water (test solution) remains within the specific electrode 21 without causing any volume change.

この状態において特定電極15とこれを中心として放射
状に配設された各電極との間に一定の微弱電流を印加さ
せて各電極間における抵抗値の変化を地上に設置した電
圧指示計(図示省略)により測定することにより地下水
の流速および流向を知る。
In this state, a constant weak current is applied between the specific electrode 15 and each electrode arranged radially around the specific electrode 15, and the change in resistance between each electrode is measured by a voltage indicator (not shown) installed on the ground. ) to know the flow velocity and flow direction of groundwater.

具体的には地下水がガードメソシュ23を通じて電極室
20内に流入したとき、中央の特定電極21内にあった
蒸留水が流入した地下水と置換希釈されて次第に蒸留水
が電極室20の中央部にある特定電極21内から多数の
透孔を通じて電極室20の外方へ向けて押し出され、放
射状に配設されたいずれかの電極に達したとき、当該電
極の抵抗値に変化を生ずるのでその変化の態様および時
間に応じて地下水の微流速および流向を測定できる。
Specifically, when groundwater flows into the electrode chamber 20 through the guard mesh 23, the distilled water that was in the central specific electrode 21 is replaced and diluted with the inflowing groundwater, and the distilled water gradually flows into the center of the electrode chamber 20. When the specific electrode 21 is pushed outward from the electrode chamber 20 through a large number of through holes and reaches one of the radially arranged electrodes, the resistance value of the electrode changes. The minute flow velocity and flow direction of groundwater can be measured depending on the mode and time.

向上記の場合において、圧力バランスルーム5内にはバ
ランスフィルター6を介して常時地下水が出入りし、そ
の水圧を薄膜4を介してそのまま溶液タンク3内の蒸留
水に伝えることができるために地下水と接している電極
室20内の水圧と溶液タンク3内の水圧とが常に平衡状
態を保つようになっている。
In the case described above, groundwater constantly flows in and out of the pressure balance room 5 via the balance filter 6, and the water pressure can be directly transmitted to the distilled water in the solution tank 3 via the thin film 4, so that the groundwater is not connected to the groundwater. The water pressure in the electrode chamber 20 and the water pressure in the solution tank 3, which are in contact with each other, are always kept in equilibrium.

さらに流速流向測定作業が終了し、再度測定をおこなう
場合においてはシリンダーの上室1)内に圧力液体を圧
送し、シリンダー10を下降させてインナーチューブ1
5を特定電極21内に挿入させるとともにバルブ18を
開き、パルプ19を閉じて前記したのと同一の操作によ
りインナーチューブ15内に蒸留水を充填させ、さらに
これを特定電極21内に残留させることにより、そのま
ま繰り返し測定作業を継続することが可能である。
Furthermore, when the flow velocity and direction measurement work is completed and the measurement is to be performed again, pressurized liquid is fed into the upper chamber 1) of the cylinder, the cylinder 10 is lowered, and the inner tube 1
5 into the specific electrode 21, open the valve 18, close the pulp 19, fill the inner tube 15 with distilled water by the same operation as described above, and further leave this in the specific electrode 21. Therefore, it is possible to continue the repeated measurement work.

またジャイロ装置26を活用すれば測定装置の特定部分
の方位を直ちに知ることが可能である。
Further, by utilizing the gyro device 26, it is possible to immediately know the orientation of a specific part of the measuring device.

(発明の効果) 本発明は上記した通り、外郭体内に溶液タンク室および
該溶液タンク室から溶液を電極室内に一定量宛供給する
注出部を有し、しかも該注出部はシリンダー機構により
電極室内中央部に向けて出没自在のインナーチューブお
よび該インナーチューブ内に一定量の溶液を供給する溶
液供給手段とから構成されているために、電極室内中央
部に対する溶液の供給に際し、供給された溶液は体積変
化をおこすことなしに常に正確な位置に定量供給される
結果、測定値の精度が著しく向上するばかりでなく、装
置全体としても小型化をはかることができ、取り扱いを
一層便利なものとすることができる。
(Effects of the Invention) As described above, the present invention has a solution tank chamber in the outer shell and a pouring section for supplying a fixed amount of solution from the solution tank chamber into the electrode chamber, and the pouring section is provided with a cylinder mechanism. Since it is composed of an inner tube that can freely extend and retract toward the center of the electrode chamber and a solution supply means that supplies a certain amount of solution into the inner tube, when supplying the solution to the center of the electrode chamber, the As a result of the solution being constantly supplied in a fixed amount to the correct position without causing any volume change, not only the accuracy of the measured values is significantly improved, but the entire device can also be made smaller, making it even more convenient to handle. It can be done.

また電極室はその周囲を網状のガードメソシュで包被す
るとともに、その内方に多数の粒状物が充填されており
、しかも上記網状ガードメツシュの外周側にも多数のパ
ンクビーズを配設包被させて構成しているために地下水
流の流線に歪みを生ずることがな(、電極室内における
地下水流の自然流を維持することができる。
In addition, the electrode chamber is surrounded by a mesh-like guard mesh, and the inside of the electrode chamber is filled with a large number of granules, and a large number of puncture beads are also arranged and covered on the outer periphery of the mesh-like guard mesh. Because of this structure, the streamlines of the groundwater flow are not distorted (and the natural flow of the groundwater flow within the electrode chamber can be maintained).

また溶液タンク室の少なくとも一部には可撓性水密シー
トを貼着するとともに、該水密シートの露呈位置に対応
させて外郭体の周面に1又は2以上のバランスフィルタ
ー孔を開設したために、バランスフィルターを通して地
下水圧が溶液タンク室内の溶液に伝わり、該溶液と電極
室内の水圧とを常に平衡に保持させることができ、測定
精度をより一層向上させることに寄与する。
In addition, a flexible watertight sheet is attached to at least a portion of the solution tank chamber, and one or more balance filter holes are formed on the circumferential surface of the outer body in correspondence with the exposed position of the watertight sheet. Groundwater pressure is transmitted to the solution in the solution tank chamber through the balance filter, and the solution and the water pressure in the electrode chamber can always be maintained in equilibrium, contributing to further improvement of measurement accuracy.

さらに外郭体内に小型化されたジャイロ装置を組み込ん
であるために測定装置の特定部分の方位を従来よりもさ
らに深い位置においても直ちに知ることができるために
、従来のような測定装置の位置合わせの不便や、不正確
性を解決することができる。
Furthermore, since a miniaturized gyro device is built into the outer shell, the orientation of a specific part of the measuring device can be immediately known even at a deeper position than before, making it possible to easily align the measuring device as in the past. Inconveniences and inaccuracies can be resolved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であるところの地下水の微流
速および流向測定装置の要部縦断面図である。 1・・・・・・外郭体    3・・・・・・溶液タン
ク室4・・・・・・可撓性薄1)!   5・・・圧力
バランスルーム6・・・・・・通孔     8・・・
・・・注出部9・・・・・・シリンダー  10・・・
・・・ピストン15・・・・・・インナーチューブ 16・・・・・・固定チューブ 18.19・・・・・
・開閉バルブ20・・・・・・電極室    21・・
・・・・特定電極22・・・・・・電極     23
・・・・・・ガードメツシュ25・・・・・・粒状物 
   26・・・・・・ジャイロ装置27・・・・・・
可撓性ネット 28・・・・・・パックビーズ発明者 
河 西   基
FIG. 1 is a vertical cross-sectional view of a main part of an apparatus for measuring the minute current velocity and flow direction of underground water, which is an embodiment of the present invention. 1...Outer body 3...Solution tank chamber 4...Flexible thin 1)! 5... Pressure balance room 6... Through hole 8...
... Pour part 9 ... Cylinder 10 ...
... Piston 15 ... Inner tube 16 ... Fixed tube 18.19 ...
・Opening/closing valve 20... Electrode chamber 21...
...Specific electrode 22... Electrode 23
... Guard mesh 25 ... Particulate matter
26... Gyro device 27...
Flexible net 28...Inventor of pack beads
Hajime Kawanishi

Claims (6)

【特許請求の範囲】[Claims] (1)内部中空の円筒状をした外郭体と、外郭体の下端
部に吊設された電極室とからなり、電極室は特定の電極
に対してそれぞれ等間隔毎に複数の電極が対設されてい
るとともに、外郭体には溶液タンク室と該溶液タンク室
から溶液を前記電極室内に一定量宛供給する注出部とを
有し、該注出部はシリンダー機構により前記電極室内に
向けて出没自在のインナーチューブと、該インナーチュ
ーブ内に一定量の溶液を供給する溶液供給手段とから構
成されていることを特徴とする地下水の微流速および流
向測定装置。
(1) Consists of a hollow cylindrical outer shell and an electrode chamber suspended from the lower end of the outer shell, and the electrode chamber has multiple electrodes facing each specific electrode at equal intervals. In addition, the outer body has a solution tank chamber and a spouting part for supplying a fixed amount of solution from the solution tank chamber into the electrode chamber, and the spouting part is directed into the electrode chamber by a cylinder mechanism. What is claimed is: 1. A device for measuring minute flow velocity and flow direction of underground water, comprising an inner tube that can be freely moved in and out, and a solution supply means that supplies a certain amount of solution into the inner tube.
(2)特許請求の範囲第1項に記載のものにおいて、電
極室はその周囲を網状のネットで包被するとともに、そ
の内方には多数の粒状物を充填したものであるところの
地下水の微流速および流向測定装置。
(2) In the device described in claim 1, the electrode chamber is surrounded by a mesh-like net, and the inside of the electrode chamber is filled with a large number of granular materials. Microflow velocity and direction measurement device.
(3)特許請求の範囲第1項に記載のものにおいて、電
極室内の特定の電極は、該室内の中央であって該室内に
出没するインナーチューブの出没位置に設けられたとこ
ろの該インナーチューブより幾分大径の電極ストレーナ
ーであるところの地下水の微流速および流向測定装置。
(3) In the item set forth in claim 1, the specific electrode within the electrode chamber is located in the inner tube provided at the center of the chamber and at the retractable position of the inner tube that protrudes and retracts into the chamber. A groundwater microcurrent velocity and flow direction measurement device that is a somewhat larger diameter electrode strainer.
(4)特許請求の範囲第1項に記載のものにおいて、電
極室内に出没するインナーチューブ内に一定量の溶液を
供給する溶液供給手段は、上記インナーチューブを進退
させるシリンダー内に該シリンダーの進退方向から気密
に差し込まれた固定チューブであるところの地下水の微
流速および流向測定装置。
(4) In the device described in claim 1, the solution supply means for supplying a certain amount of solution into the inner tube recessed and recessed into the electrode chamber is configured to move the inner tube forward and backward within the cylinder that moves the inner tube forward and backward. A groundwater microflow velocity and flow direction measurement device that is a fixed tube that is inserted airtight from the direction.
(5)特許請求の範囲第1項に記載のものにおいて、溶
液タンク室の少なくとも一部には可撓性水密シートを貼
着するとともに、該水密シートの露呈位置に対応させて
外郭体の周面に1又は2以上のバランスフィルター孔を
開設してなるところの地下水の微流速および流向測定装
置。
(5) In the product as set forth in claim 1, a flexible watertight sheet is attached to at least a part of the solution tank chamber, and a flexible watertight sheet is attached to the periphery of the outer body in correspondence with the exposed position of the watertight sheet. A device for measuring the microflow velocity and flow direction of underground water, which has one or more balance filter holes in its surface.
(6)特許請求の範囲第1項に記載のものにおいて、外
郭体内にはジャイロを組み込んでなるところの地下水の
微流速および流向測定装置。
(6) A device for measuring the minute current velocity and flow direction of underground water according to claim 1, which comprises a gyro built into the outer shell.
JP60287556A 1985-12-20 1985-12-20 Measuring device of slow-speed and flow direction of ground water Granted JPS62147362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287556A JPS62147362A (en) 1985-12-20 1985-12-20 Measuring device of slow-speed and flow direction of ground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287556A JPS62147362A (en) 1985-12-20 1985-12-20 Measuring device of slow-speed and flow direction of ground water

Publications (2)

Publication Number Publication Date
JPS62147362A true JPS62147362A (en) 1987-07-01
JPH0246904B2 JPH0246904B2 (en) 1990-10-17

Family

ID=17718872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287556A Granted JPS62147362A (en) 1985-12-20 1985-12-20 Measuring device of slow-speed and flow direction of ground water

Country Status (1)

Country Link
JP (1) JPS62147362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279888A (en) * 1994-04-07 1995-10-27 Applied Materials Inc Evacuator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714833B2 (en) * 2006-03-22 2011-06-29 鹿島建設株式会社 Low-flow velocity groundwater flow direction velocity measurement method and apparatus
JP4793883B2 (en) * 2008-10-25 2011-10-12 鹿島建設株式会社 Method and apparatus for measuring vertical flow velocity of groundwater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279888A (en) * 1994-04-07 1995-10-27 Applied Materials Inc Evacuator

Also Published As

Publication number Publication date
JPH0246904B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
US3861196A (en) Apparatus for measuring in situ the permeability of a civil engineering working stratum
US6799634B2 (en) Tracer release method for monitoring fluid flow in a well
US11280180B2 (en) Portable in-situ gas pressure measuring device for shallow gas-bearing stratum and measuring method thereof
CN108732331A (en) A kind of device tested with the soil water, vapour, heat, salt simultaneous transport for unsaturation
CN111982781A (en) Sample cylinder sealing structure for rock soil sample permeability detection
CN207701131U (en) A kind of high temperature and pressure surveys the visualization large-sized model experimental provision of sweep efficiency
US5520248A (en) Method and apparatus for determining the hydraulic conductivity of earthen material
EP0353247A1 (en) A system for determining liquid flow rate through leaks in impermeable membrane liners
US3871218A (en) Method and apparatus for determining the permeability characteristics of a porous or fissured medium
JPS62147362A (en) Measuring device of slow-speed and flow direction of ground water
US2949766A (en) Apparatus for measuring fluid permeability of porous materials
Johnson et al. Specific yield--column drainage and centrifuge moisture content
JPS62198782A (en) Method for measuring extremely slow velocity and direction of flow of ground water
US3574284A (en) Pore pressure apparatus and method
CN208721546U (en) A kind of antifouling barrier materials chemistry compatibility test device in underground
US3116450A (en) Tracer liquid release tube having frangible elements at opposite ends of the tube
GB1388016A (en) Method and apparatus for determining the permeability characteristics of a porous or fissured medium especially of soils and of rocks
CN207570911U (en) A kind of KO consolidation apparatus
JPS63309837A (en) Constant-water level infiltration testing device
CN218156996U (en) Hydrology water resource sampling device
JP2001214427A (en) Method of water penetration test for ground
CN211498978U (en) Water injection type pit digging volume detection device for roadbed compactness detection
US3130583A (en) Method and apparatus for ascertaining the level of a liquid in casings and drilled holes
FR2435025A1 (en) Manometric pressure meter for civil engineering applications - uses deformable cell to communicate fluid borne hydrostatic pressure
CN212540435U (en) Oil gas or rock debris upward-returning speed detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees