JPS62147286A - Method of controlling temperature of blast furnace gas - Google Patents
Method of controlling temperature of blast furnace gasInfo
- Publication number
- JPS62147286A JPS62147286A JP28571485A JP28571485A JPS62147286A JP S62147286 A JPS62147286 A JP S62147286A JP 28571485 A JP28571485 A JP 28571485A JP 28571485 A JP28571485 A JP 28571485A JP S62147286 A JPS62147286 A JP S62147286A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- exhaust gas
- blast furnace
- temperature
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、Bガス(高炉ガス、約900■ぐcal /
NrH”の低カロリーガス)を多く燃料として使用し
ている高炉ガス焚ボイラに適用される高炉ガス温度制御
方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to B gas (blast furnace gas, approximately 900 gcal/
The present invention relates to a blast furnace gas temperature control method applied to a blast furnace gas fired boiler that uses a large amount of NrH (low calorie gas) as fuel.
従来の技術
共同火力の様に製鉄所稼動により発生する副像ガスであ
るCガス(コークス炉ガス約5200 Kcal/Nr
rl’)およびBガス(高炉ガス約920 Kcal
/ Nm” )を燃料とするガス焚ボイラにおいては、
安価で供給量が多い低カロリーガスのBガス(高炉ガス
)が多く使用されている。Bガス使用の場合はCガス、
重油に比較してBガス量が多く必要となるので排ガス量
も増大し、エアヒータのみでは排ガス温度は下らず、し
たがってボイラ熱損失の内でも最も大きい排ガス損失が
大きくなってボイラ効率が低下する。このため、従来で
は、このボイラ効率をJ−げるために、水を使用して排
ガス熱を回17.S4し、これによって排ガス温度を下
げてボイラ効率を上げるとともにBガス量の増大を可能
とし、更に熱交換により得た温水でBガス(高炉ガス)
の温度を上げて良好な燃焼温度を得ている。C gas (coke oven gas approximately 5200 Kcal/Nr
rl') and B gas (blast furnace gas approximately 920 Kcal
/ Nm”) in a gas-fired boiler,
B gas (blast furnace gas), a low-calorie gas that is inexpensive and available in large quantities, is often used. If using B gas, use C gas,
Since a large amount of B gas is required compared to heavy oil, the amount of exhaust gas also increases, and the exhaust gas temperature cannot be lowered by the air heater alone, so the exhaust gas loss, which is the largest among boiler heat losses, increases and boiler efficiency decreases. . For this reason, in the past, in order to increase this boiler efficiency, water was used to recover exhaust gas heat. S4, this lowers the exhaust gas temperature, increases boiler efficiency, and increases the amount of B gas, and furthermore, the hot water obtained by heat exchange is used to convert B gas (blast furnace gas).
A good combustion temperature is obtained by increasing the temperature.
この系統を第3図に示す。図中、符号1はエアヒータ、
2はエアヒータ入口排ガスダンパ、3は排ガスクーラ入
口ダンパ、4は排ガスクーラ、5は循環ポンプ、6はB
ガスヒータ、7は押込送風機、8は誘引ファンである。This system is shown in Figure 3. In the figure, code 1 is an air heater;
2 is an air heater inlet exhaust gas damper, 3 is an exhaust gas cooler inlet damper, 4 is an exhaust gas cooler, 5 is a circulation pump, 6 is B
A gas heater, 7 a forced air blower, and 8 an induced fan.
炉からの排ガスはエアヒータlの上流側から一部を抽気
されて排ガスクーラ4に入る。排ガスクーラ4にて循環
媒体である循環水は熱交換され、加熱される。加熱され
た循環水は循環水ポンプ5によりBガスヒータ6に送ら
れ、ここでBガスと熱交換した後、再び排ガスクーラ4
へと循環される。A portion of the exhaust gas from the furnace is extracted from the upstream side of the air heater 1 and enters the exhaust gas cooler 4. In the exhaust gas cooler 4, circulating water, which is a circulating medium, undergoes heat exchange and is heated. The heated circulating water is sent to the B gas heater 6 by the circulating water pump 5, where it exchanges heat with the B gas, and then is sent to the exhaust gas cooler 4 again.
It is circulated to.
この第3図の系統の制御系統を第4図に示す。A control system for the system shown in FIG. 3 is shown in FIG.
第4図において、符号9は温度調節計を示し、ここでB
ガスヒータ出ロBガス温度設定を行ない、Bガスヒータ
出ロBガス温度により一定温度制御信号を出力する。1
0は加算器であって、Bガスヒータ出ロBガス温度のみ
での単ループ制御では制御性が悪いので、先行信号とし
てBガス流量(温度補正済)を入力し計算された制御信
号を出力するものである。11は信号の上限制限器で、
エアヒータ排ガスダンパ2が全閉となり炉内圧が上昇す
るのを防止するためのものである。12および13はエ
アヒータ入口排ガスダンパ2および排ガスクーラ入口ダ
ンパ3の自動/手動操作器を示す。加算器10によって
出力された2つの制御信号により第5図に示したように
エアヒータ入口排ガスダンパ2および排ガスクーラ入口
ダンパ3の制御を行ない、排ガス量(熱量)の制御を行
なう。In FIG. 4, reference numeral 9 indicates a temperature controller, where B
The B gas temperature at the outlet of the gas heater is set, and a constant temperature control signal is output based on the B gas temperature at the outlet of the B gas heater. 1
0 is an adder, and since single-loop control using only the B gas heater output and B gas temperature has poor controllability, it inputs the B gas flow rate (temperature corrected) as a preceding signal and outputs the calculated control signal. It is something. 11 is a signal upper limit limiter;
This is to prevent the air heater exhaust gas damper 2 from being fully closed and the pressure inside the furnace from rising. Reference numerals 12 and 13 indicate automatic/manual operating devices for the air heater inlet exhaust gas damper 2 and the exhaust gas cooler inlet damper 3. The two control signals output by the adder 10 control the air heater inlet exhaust gas damper 2 and the exhaust gas cooler inlet damper 3 as shown in FIG. 5, thereby controlling the amount of exhaust gas (heat amount).
発明が解決しようとする問題点
従来の方法によれば、Bガスヒータ出ロBガス温度およ
びBガス流量を基にして排ガスダンパで排ガス量を制御
しても、熱回収した温水がBガスヒータまでに到達する
距離、および温水の流速によっては温度が安定するのに
時間がかかり、負荷変動やBガス流量変動のために温度
がなかなか安定せず、更に、温水の流量制御が行なわれ
ないため温度変化が激しく排ガスクーラ熱交換チューブ
の低温腐蝕のおそれがあった。Problems to be Solved by the Invention According to the conventional method, even if the amount of exhaust gas is controlled by an exhaust gas damper based on the B gas temperature at the B gas heater outlet and the B gas flow rate, the hot water that has recovered heat does not reach the B gas heater. Depending on the distance reached and the flow rate of hot water, it takes time for the temperature to stabilize, and it is difficult to stabilize the temperature due to load fluctuations and B gas flow rate fluctuations.Furthermore, the temperature may change because hot water flow rate is not controlled. There was a risk of severe low-temperature corrosion of the exhaust gas cooler heat exchange tube.
したがって、本発明は、Bガス焚ボイラの様に安価で供
給量の多いBガス(低カロリーガス)を大量に消化する
ボイラにお(・て、負荷変動およびBガス流量変動に対
し安定した温度制御ができ、循環ポンプ保護および排ガ
スクーラ熱交換チューブの低温腐蝕が防止できる高炉ガ
ス温度制御方法を目的とする。Therefore, the present invention provides a boiler such as a B gas-fired boiler that digests a large amount of B gas (low calorie gas), which is inexpensive and has a large amount of supply, to maintain a stable temperature against load fluctuations and B gas flow rate fluctuations. The object of the present invention is to provide a blast furnace gas temperature control method that can be controlled, protect the circulation pump, and prevent low-temperature corrosion of the exhaust gas cooler heat exchange tube.
問題点を解決するための手段
本発明によれば、エアヒータ上流側の排ガスの一部を抽
気し、抽気した排ガスと循環媒体とを熱交換して循環媒
体を加熱し、加熱された循環媒体と火炉に供給される前
の高炉ガスとを熱交換して高炉ガスを加熱し、高炉ガス
との熱交換で冷却された循環媒体は再び排ガスとの熱交
換のために送られる、高炉ガス焚ボイラの高炉ガス温度
制御方法において、ボイラ負荷および高炉ガス燃焼量か
ら抽気される排ガス量を求めて排ガス量を制御し、高炉
ガスとの熱交換後の循環媒体の温度が設定温度となるよ
う高炉ガスとの熱交換前の循環媒体の流量を制御し、循
環媒体の流量が所定の制御範囲の域を越えたとき抽気排
ガスの量を強制的に増減させる、高炉ガス温度制御方法
を提供するにある。Means for Solving the Problems According to the present invention, a part of the exhaust gas on the upstream side of the air heater is extracted, the extracted exhaust gas and the circulating medium are heated by exchanging heat, and the heated circulating medium and the circulating medium are heated. A blast furnace gas-fired boiler that heats the blast furnace gas by exchanging heat with the blast furnace gas before being supplied to the furnace, and the circulating medium that has been cooled by the heat exchange with the blast furnace gas is sent again for heat exchange with the exhaust gas. In the blast furnace gas temperature control method, the amount of exhaust gas to be extracted is determined from the boiler load and the amount of blast furnace gas combustion, and the amount of exhaust gas is controlled, and the temperature of the circulating medium after heat exchange with the blast furnace gas is adjusted to the set temperature. To provide a blast furnace gas temperature control method that controls the flow rate of a circulating medium before heat exchange with the blast furnace and forcibly increases or decreases the amount of extracted exhaust gas when the flow rate of the circulating medium exceeds a predetermined control range. .
実施例
第1図に本発明による高炉ガス焚ボイラの系統線図を示
す。第1図において、符号1はエアヒータ、2はエアヒ
ータ入口排ガスダンパ、3は排ガスクーラ入口ダンパ、
4は排ガスクーラ、5は循環ポンプ、6はBガスヒータ
、14は循環水温度制御弁、15はBガスヒータ出口循
環水温度検出端(熱電対)である。Embodiment FIG. 1 shows a system diagram of a blast furnace gas-fired boiler according to the present invention. In FIG. 1, numeral 1 is an air heater, 2 is an air heater inlet exhaust gas damper, 3 is an exhaust gas cooler inlet damper,
4 is an exhaust gas cooler, 5 is a circulation pump, 6 is a B gas heater, 14 is a circulating water temperature control valve, and 15 is a circulating water temperature detection end (thermocouple) at the outlet of the B gas heater.
図示のように、本発明による方法では、循環水の系統に
Bガスヒータ出口循環水温度検出端15によって制御さ
れる循環水温度制御弁14が追加されている。第2図は
本発明方法を実施するためのBガス温度制御系統図を示
す。図中、符号1GはBガスヒータ出口循環水温度検出
端15かもの温度信号を受ける温度調節計で、Bガスヒ
ータ出口循環水温度を設定することにより温度変化に対
し一定に保持すべく循環水温度制御弁14の制旬11信
号を出力する。17は信号上限設定器で循環水温度制御
弁14の運転時に循環ポンプを保護するための全閉防止
用である。18は循環水温度制御弁14用の自動/手動
操作器である。19は負荷変動およびBガス燃焼量によ
り変化した信号を計算し出力する乗算器を示す。20は
折線関数器で、乗算器4より出力された信号を関数曲線
によりプログラム制御して排ガス側ダンパ開度信号を出
力する。21は加算器で、通常は折線関数器20からの
出力信号のみで排ガスダンパ制御を行なっている。22
はノ・イ/ローモニタで、自動/手動操作器18からの
制御出力を常時監視する。23お線にする変化率設定器
を示す。As illustrated, in the method according to the present invention, a circulating water temperature control valve 14 controlled by a B gas heater outlet circulating water temperature detection end 15 is added to the circulating water system. FIG. 2 shows a B gas temperature control system diagram for carrying out the method of the present invention. In the figure, reference numeral 1G is a temperature controller that receives a temperature signal from the B gas heater outlet circulating water temperature detection terminal 15, and by setting the B gas heater outlet circulating water temperature, the circulating water temperature is controlled to be kept constant against temperature changes. A signal 11 for controlling the valve 14 is output. Reference numeral 17 denotes a signal upper limit setting device for preventing the circulating water temperature control valve 14 from being completely closed to protect the circulating pump during operation. 18 is an automatic/manual operator for the circulating water temperature control valve 14. Reference numeral 19 denotes a multiplier that calculates and outputs a signal that changes depending on load fluctuations and the amount of B gas burned. Reference numeral 20 denotes a polygonal function unit which programmatically controls the signal output from the multiplier 4 using a function curve to output an exhaust gas side damper opening signal. Reference numeral 21 denotes an adder, which normally controls the exhaust gas damper using only the output signal from the linear function unit 20. 22
is a no.i/low monitor that constantly monitors the control output from the automatic/manual operating device 18. 23 shows the rate of change setting device.
循環水温度制御弁14が制御範囲を超えると−・イ/ロ
ーモニタ22がこれを検出して信号発生器23.24に
指令信号が出力される。もし、循環水の温度が高くなり
すぎると、信号発生器23を作動し、(−)側の信号が
変化率設定器26を介して加算器21に入力され、排ガ
スクーラ入口ダンパ:(It’l−閉方向、エアヒータ
入口排ガスダンパ2は開方向にそれぞれ作動し、排ガス
量を少なくする方向に制御する。また、逆忙循環水の温
度が低い場合は信号発生器24が作動し、(+)側の信
号が加算器21に入力され、排ガス人口ダンパ3は開方
向、エアヒータ入口排ガスダンパ2は閉方向にそれぞれ
作動して排ガス量を多くする方向に制御する。When the circulating water temperature control valve 14 exceeds the control range, the I/L monitor 22 detects this and outputs a command signal to the signal generators 23 and 24. If the temperature of the circulating water becomes too high, the signal generator 23 is activated and the (-) side signal is input to the adder 21 via the change rate setting device 26, and the exhaust gas cooler inlet damper: (It' The exhaust gas damper 2 operates in the l-closing direction and the air heater inlet exhaust gas damper 2 operates in the open direction, respectively, to control the amount of exhaust gas to be reduced.In addition, when the temperature of the reverse busy circulating water is low, the signal generator 24 operates, and (+ ) side signal is input to the adder 21, the exhaust gas artificial damper 3 is operated in the opening direction, and the air heater inlet exhaust gas damper 2 is operated in the closing direction, thereby controlling the amount of exhaust gas to be increased.
27および28は加算器21の出力信号を微調整して温
度制御性を上げるためのバイアス設定器、11は運転中
におけるエアヒータ入口排ガスダンパ2の全閉防止用の
信号上限制限器、12および13は自動/手動操作器(
各ダンパ開閉用)、2はエアヒータ入口排ガスダンパ、
3は排ガスクーラ入口ダンパである。27 and 28 are bias setting devices for finely adjusting the output signal of the adder 21 to improve temperature controllability; 11 is a signal upper limit limiter for preventing the air heater inlet exhaust gas damper 2 from being completely closed during operation; 12 and 13 is an automatic/manual operator (
(for each damper opening/closing), 2 is the air heater inlet exhaust gas damper,
3 is an exhaust gas cooler inlet damper.
以上の制御系統により、ボイラ負荷および高炉ガス燃焼
量から抽気される排ガス量を求めて排ガス量を制御し、
高炉ガスとの熱交換後の循環媒体の温度が設定温度とな
るよう高炉ガスとの熱交換前の循環媒体の流量を制御し
、循環媒体の流量が所定のコントロール範囲の域を越え
たときに抽気排ガスの量を強制的に増減させることによ
って、Bガス(高炉ガス)温度制御および循環ポンプ保
護、更には排ガスクーラ熱交換チューブ低温腐蝕防止が
可能となるのである。With the above control system, the amount of exhaust gas extracted from the boiler load and blast furnace gas combustion amount is determined, and the amount of exhaust gas is controlled.
The flow rate of the circulating medium before heat exchange with the blast furnace gas is controlled so that the temperature of the circulating medium after heat exchange with the blast furnace gas is the set temperature, and when the flow rate of the circulating medium exceeds a predetermined control range. By forcibly increasing or decreasing the amount of extracted exhaust gas, it is possible to control the B gas (blast furnace gas) temperature, protect the circulation pump, and furthermore prevent low-temperature corrosion of the exhaust gas cooler heat exchange tube.
第1図は本発明の適用対象である高炉ガス焚ボイラの系
統線図、第2図は本発明による高炉ガス温度制御系統線
図、第3図は従来の高炉ガス焚ボイラの系統線図、第4
図は従来の制御系統線図、第5図はダンパ開度の関係を
示す図である。
1・・エアヒータ、2・・エアヒータ入口排ガスダンパ
、3・・排ガスクーラ入口ダンパ、4・・排ガスクーラ
、5・・循環ポンプ、6・・Bガスヒータ、14・・循
環水温度制御弁、15・・Bガスヒータ出口循環水温度
検出端、16・・温度調節計、17・・信号上限設定器
、18・・自動/手動操作器、19・・乗算器、20・
・折線関数器、21・・加算器、22・・・・イ/ロー
モニタ、23.24・・信号発生器、25・・切替器、
26・・変化率設定器、27.28・・バイアス設定器
。
、′)・
第 4 閃FIG. 1 is a system diagram of a blast furnace gas-fired boiler to which the present invention is applied, FIG. 2 is a system diagram of a blast furnace gas temperature control system according to the present invention, and FIG. 3 is a system diagram of a conventional blast furnace gas-fired boiler. Fourth
The figure is a conventional control system diagram, and FIG. 5 is a diagram showing the relationship between damper opening degrees. 1. Air heater, 2. Air heater inlet exhaust gas damper, 3. Exhaust gas cooler inlet damper, 4. Exhaust gas cooler, 5. Circulation pump, 6. B gas heater, 14. Circulating water temperature control valve, 15.・B gas heater outlet circulating water temperature detection end, 16. Temperature controller, 17. Signal upper limit setting device, 18. Automatic/manual operation device, 19. Multiplier, 20.
- Linear function unit, 21... Adder, 22... I/Low monitor, 23.24... Signal generator, 25... Switcher,
26... Rate of change setter, 27.28... Bias setter. ,')・Fourth Flash
Claims (1)
ガスと循環媒体とを熱交換して 循環媒体を加熱し、加熱された循環媒体と火炉に供給さ
れる前の高炉ガスとを熱交換して高炉ガスを加熱し、高
炉ガスとの熱交換で冷却された循環媒体は再び排ガスと
の熱交換のために送られる、高炉ガス焚ボイラの高炉ガ
ス温度制御方法において、ボイラ負荷および高炉ガス燃
焼量から抽気される排ガス量を求めて排ガス量を制御し
、高炉ガスとの熱交換後の循環媒体の温度が設定温度と
なるよう高炉ガスとの熱交換前の循環媒体の流量を制御
し、循環媒体の流量が所定の制御範囲の域を越えたとき
抽気排ガスの量を強制的に増減させる、高炉ガス温度制
御方法。[Claims] Part of the exhaust gas on the upstream side of the air heater is extracted, the extracted exhaust gas and the circulating medium are heated by exchanging heat, and the heated circulating medium and the blast furnace are heated before being supplied to the furnace. In a blast furnace gas temperature control method for a blast furnace gas-fired boiler, the circulating medium that has been cooled by heat exchange with the blast furnace gas is sent again for heat exchange with the exhaust gas, The amount of exhaust gas extracted from the boiler load and blast furnace gas combustion amount is determined to control the amount of exhaust gas, and the temperature of the circulating medium after heat exchange with blast furnace gas is adjusted to the set temperature. A blast furnace gas temperature control method that controls the flow rate of the circulating medium and forcibly increases or decreases the amount of extracted exhaust gas when the flow rate of the circulating medium exceeds a predetermined control range.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28571485A JPS62147286A (en) | 1985-12-20 | 1985-12-20 | Method of controlling temperature of blast furnace gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28571485A JPS62147286A (en) | 1985-12-20 | 1985-12-20 | Method of controlling temperature of blast furnace gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62147286A true JPS62147286A (en) | 1987-07-01 |
Family
ID=17695076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28571485A Pending JPS62147286A (en) | 1985-12-20 | 1985-12-20 | Method of controlling temperature of blast furnace gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62147286A (en) |
-
1985
- 1985-12-20 JP JP28571485A patent/JPS62147286A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08121703A (en) | Waste heat recovery apparatus | |
JPH07113110A (en) | Device for recovering heat in converter and control method thereof | |
JPS62147286A (en) | Method of controlling temperature of blast furnace gas | |
JP4062810B2 (en) | Control method and apparatus for air preheater bypass damper | |
JP2002106831A (en) | Pulverized coal fired boiler facility | |
JPH09287013A (en) | Device for utilizing heat in hot stove | |
JPS6235011B2 (en) | ||
JP2948346B2 (en) | Control method of heat recovery device | |
RU2383629C2 (en) | Method of utilisation of heat of exhaust gases of process aggregates | |
JPH0729364Y2 (en) | Independent steam superheater | |
JPS62280320A (en) | Exhaust gas pressure control device for refining furnace | |
JPS5928030Y2 (en) | Exhaust heat recovery device for regenerative hot blast stove | |
JPH0223928Y2 (en) | ||
JP3845905B2 (en) | Outlet feed water temperature control device for gas high pressure feed water heater in exhaust recombustion combined cycle plant | |
JPH05256515A (en) | Hot water feeder and control method thereof | |
JP3097430B2 (en) | Water heater | |
JP2830539B2 (en) | Bath equipment with water heater | |
JPS61235685A (en) | Temperature control device in waste heat retrieving device for thermal plant | |
JP3159737B2 (en) | Control unit for desulfurization unit | |
JPH11132443A (en) | Method and device for controlling boiler exhaust gas flow rate of air preheater in exhaust re-burning type combined cycle power plant | |
JP3659659B2 (en) | Exhaust gas boiler | |
JPS5829172Y2 (en) | soaking furnace | |
JPH07286703A (en) | Pressurized fluidized-bed boiler composite power plant and operating method therefor | |
JPH035837Y2 (en) | ||
SU987122A1 (en) | Control system of central heating turboelectric plant |