JPS62147183A - Four port connection vavle for refrigerating cycle - Google Patents

Four port connection vavle for refrigerating cycle

Info

Publication number
JPS62147183A
JPS62147183A JP28864785A JP28864785A JPS62147183A JP S62147183 A JPS62147183 A JP S62147183A JP 28864785 A JP28864785 A JP 28864785A JP 28864785 A JP28864785 A JP 28864785A JP S62147183 A JPS62147183 A JP S62147183A
Authority
JP
Japan
Prior art keywords
valve
cylinder
pair
holder
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28864785A
Other languages
Japanese (ja)
Inventor
Tokinori Araki
荒木 時則
Masaharu Asada
朝田 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP28864785A priority Critical patent/JPS62147183A/en
Publication of JPS62147183A publication Critical patent/JPS62147183A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a four port connection valve for a refrigerating cycle with high reliability as to switching operation and operable for switchover at all times by providing a solenoid to be used for moving cylindrical sliders for switching refrigerant passages in the axial direction of the cylinders. CONSTITUTION:Cylindrical sliders 24, 25 for switching respective refrigerant passages 21, 22, 23, 17 include a stem 35 having one end fixed through a spring 34, and a solenoid coil 32 is disposed around the stem 35. Therefore, in the above four port connection valve for a refrigerating cycle, energization of the solenoid coil 32 causes the stem 35 to be pulled up, permitting free valve operation even when the air conditioner is stopped, and furthermore improved reliability is obtainable because of its electromagnetic control.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍サイクル、特にヒートポンプ型の空調機の
冷房・暖房の切換に用いる冷凍サイクル用四方弁に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle, and particularly to a four-way valve for a refrigeration cycle used for switching between cooling and heating in a heat pump type air conditioner.

従来の技術 近年、冷凍サイクル西方弁は、空調機のヒートポンプ化
が進むにつれて、その需要は急増しており、小型化、低
コスト化の要求が強くなっている。
BACKGROUND OF THE INVENTION In recent years, the demand for refrigeration cycle western valves has increased rapidly as air conditioners increasingly use heat pumps, and there is a strong demand for smaller size and lower cost.

以下、図面を参照しながら、従来の冷凍サイクル西方弁
の一例について説明する。
Hereinafter, an example of a conventional refrigeration cycle west valve will be described with reference to the drawings.

第4図は、従来の冷凍サイクル用四方弁の断面を示すも
のである。1は密閉された円筒状の弁本体、2,3は前
記弁本体2,3の周面の両側に反対方向に接続された吐
出管と吸入管である。4゜6は前記吸入管3を中央にし
て両側に設けられた第一、第二の導管であり、第一の導
管4は室内側熱交換器(以下°′室内器″)(図示せず
)に接続され、第二の導管5は室外側熱交換器(以下゛
室外器″)(図示せず)に接続されている。上記各接続
管2,3,4.5はそれぞれ弁本体1内に開口しており
、並設した接続管2,4.5の開口端は弁本体1の軸方
向に面一にシート6で弁本体1に固定されている。7は
前記弁本体の内部にあって前記シート6面を軸方向に摺
動する摺動弁であり、前記吸入管3と第一の導管4、又
は吸入管3と第二の導管6を択一的に連通せしめるU字
状の凹面7aを有している。8,9は前記摺動弁7の両
側に連結板10で連結されて配設され微小孔8a、9a
を有するピストン体である。11.12は前記弁本体1
の端面を密封する蓋である。13゜14は前記蓋j1.
12の間の空間R1,R2に開口し、電磁式パイロット
バルブ15の通電操作により前記吸入管3と択一的に切
換連通して低圧ガスを導入する抽気管である。
FIG. 4 shows a cross section of a conventional four-way valve for a refrigeration cycle. Reference numeral 1 denotes a sealed cylindrical valve body, and 2 and 3 denote a discharge pipe and a suction pipe connected to opposite sides of the circumferential surfaces of the valve bodies 2 and 3, respectively. 4゜6 are first and second conduits provided on both sides with the suction pipe 3 in the center, and the first conduit 4 is connected to an indoor heat exchanger (hereinafter referred to as "indoor unit") (not shown). ), and the second conduit 5 is connected to an outdoor heat exchanger (hereinafter referred to as "outdoor unit") (not shown). Each of the connecting pipes 2, 3, 4.5 opens into the valve body 1, and the open ends of the connecting pipes 2, 4.5 arranged in parallel are flush with a sheet 6 in the axial direction of the valve body 1. It is fixed to the valve body 1. 7 is a sliding valve that is inside the valve body and slides in the axial direction on the seat 6 surface, and the suction pipe 3 and the first conduit 4 or the suction pipe 3 and the second conduit 6 are selected. It has a U-shaped concave surface 7a that allows communication. 8 and 9 are connected to each other by a connecting plate 10 on both sides of the sliding valve 7, and have minute holes 8a and 9a.
It is a piston body having. 11.12 is the valve body 1
It is a lid that seals the end face of the 13°14 is the lid j1.
This is a bleed pipe that opens into the space R1, R2 between 12 and selectively communicates with the suction pipe 3 by energizing the electromagnetic pilot valve 15 to introduce low pressure gas.

以上のように構成された冷凍サイクル用四方弁について
その動作を説明する。
The operation of the four-way valve for the refrigeration cycle constructed as above will be explained.

電磁式パイロットバルブ16の通電操作により抽気管1
3.14を介して空間R1,あるいは空間R2と吸入管
3を択一的に連通して空間内圧力を低下させるとともに
ピストン体8,9の微小孔8a、9aを介して弁本体1
内の吐出側圧力を反対側の空間に導入して高圧とするこ
とにより、雨空間の高低圧力差でピストン体8,9に連
結する摺動弁7を移動させ、吐出管2より導入される高
圧冷媒を第二の導管と連通させて室内器を凝縮器として
用いて室内を暖房し、又は高圧冷媒を第一の導管4と連
通させて室外器を凝縮器に、室内器を蒸発器として室内
を冷房するものである。
The bleed pipe 1 is opened by energizing the electromagnetic pilot valve 16.
3.14, the space R1 or space R2 is selectively communicated with the suction pipe 3 to reduce the pressure inside the space, and the valve body 1 is also connected through the micro holes 8a, 9a of the piston bodies 8, 9.
By introducing the pressure on the discharge side of the inside into the space on the opposite side and making it high pressure, the slide valve 7 connected to the piston bodies 8 and 9 is moved by the difference in high and low pressures in the rain space, and the pressure is introduced from the discharge pipe 2. A high-pressure refrigerant is communicated with the second conduit and the indoor unit is used as a condenser to heat the room, or a high-pressure refrigerant is communicated with the first conduit 4 and the outdoor unit is used as a condenser and the indoor unit is used as an evaporator. It cools the room.

発明が解決しようとする問題点 しかしながら上記構成では、電磁式パイロットバルブ1
6の作動により高低圧の圧力変換を行い、その圧力差に
よって弁を切換えているためパイロットバルブ16その
ものの付帯が不可欠であり構造複雑でコストが非常に高
く、又弁本体1も大きく暖房時に弁本体1での熱損失が
大きく、システムの暖房能力を大きく低下させていた。
Problems to be Solved by the Invention However, in the above configuration, the electromagnetic pilot valve 1
6 converts high and low pressures, and the valve is switched based on the pressure difference. Therefore, the pilot valve 16 itself is indispensable, and the structure is complicated and the cost is very high. Furthermore, the valve body 1 is also large and cannot be used during heating. Heat loss in the main body 1 was large, greatly reducing the heating capacity of the system.

又、弁本体の他に弁機構が数箇所もあり、弁部でのシー
ル不良が問題となっていた。更にパイロットバルブ15
と弁本体1が抽気管13.14で接続されているため接
続箇所が多くコスト高とガス洩れの恐れを招いていた。
In addition, there are several valve mechanisms in addition to the valve body, and poor sealing at the valve parts has been a problem. Furthermore, pilot valve 15
Since the valve body 1 and the valve body 1 are connected by air bleed pipes 13 and 14, there are many connection points, resulting in high costs and the risk of gas leakage.

また弁の作動は圧力差によって切換わるものであるだめ
の圧力差のない状態では作動不可となり、ある一定の圧
力差を必要とするもので空調機等が必ず運転しなければ
切換ができず切換初期における運転ロスを生じていた。
In addition, the operation of the valve is switched depending on the pressure difference, so it cannot operate when there is no pressure difference in the reservoir.It requires a certain pressure difference, so it cannot be switched unless the air conditioner etc. is running. This caused operational losses in the early stages.

本発明は上記問題点に鑑み、低コストでシンプル構造の
パイロットバルブレス型で、シカモソレノイドが小型で
切換作動の信頼性が高く、更に暖房時弁体での熱損失の
小さい冷凍サイクル用四方弁を提供するものである。
In view of the above problems, the present invention provides a four-way valve for refrigeration cycles that is low cost, has a simple structure, has no pilot valve, has a small Shikamo solenoid, has high reliability in switching operation, and has low heat loss at the valve body during heating. This is what we provide.

問題点を解決するだめの手段 上記問題点を解決するために本発明の冷凍サイクル用四
方弁は、シリンダ内にそのシート面を平行に固定し、前
記シリンダの円周方向に長い長円ボート形状をした導出
口及び第一、第二の通口を各々有する一対のバルブシー
トを有し、前記一対のバルブシートに当接してその内外
をシールする同一形状の円形のスライドシートリングを
固着した一対の円筒状スライダを、その両端に収納した
円筒形ホルダを配設し、ソレノイドを用いて前記ホルダ
をシリンダ軸方向に移動することにより、導出口に連通
される通口を選択し、冷媒通路を切換える様構成したも
のである。
Means for Solving the Problems In order to solve the above problems, the four-way valve for a refrigeration cycle of the present invention has its seat surface fixed in parallel within a cylinder, and has an elongated boat shape elongated in the circumferential direction of the cylinder. A pair of valve seats each having an outlet port and a first and second port, each having a circular slide seat ring of the same shape fixed thereto that contacts the pair of valve seats and seals the inside and outside of the valve seats. A cylindrical holder containing a cylindrical slider is disposed at both ends, and a solenoid is used to move the holder in the axial direction of the cylinder, thereby selecting a passage communicating with the outlet and opening the refrigerant passage. It is configured so that it can be switched.

作   用 本発明は、上記した構成によってシステムの高低差圧が
スライダ及びホルダの内外に加わっても両者ともその圧
力差による付勢力を受けずに中立点に保持されるため、
スライドシートリングが内外をシールするために必要な
面圧に抗するだけのわずかな力でスライダをシリンダ軸
方向に移動できることから、弁切換を従来の如くパイロ
ットバルブ機構を用いなくても可能となり、大幅な低コ
スト化とシンプル化、信頼性向上が図れる。さらに、各
バルブシートに設けた導出口及び第一、第二の通口をシ
リンダの周方向に長い長円ポート形状としたことにより
、各開口ポートの流路;断面積を確保しながらシリンダ
軸方向の各開口ポートピッチを短かくすることができる
ため、導出口に連通される通口を切換えるために必要な
ホルダのシリンダ軸方向移動量は大幅に削減でき、ソレ
ノイドの吸引負荷が大幅に低下し、ソレノイドの小型化
が図れると共に、シリンダの全長が短くでき、 ゛弁体
の小型化が図れるものである。
Operation The present invention has the above-described configuration, so that even if a pressure difference between the heights of the system is applied to the inside and outside of the slider and the holder, both of them are maintained at a neutral point without being subjected to the biasing force due to the pressure difference.
Since the slider can be moved in the cylinder axial direction with a small amount of force that is sufficient to resist the surface pressure required for the slide seat ring to seal the inside and outside, valve switching can be performed without using a pilot valve mechanism as in the past. Significant cost reduction, simplification, and improved reliability can be achieved. Furthermore, by making the outlet and the first and second ports provided on each valve seat into oval port shapes that are long in the circumferential direction of the cylinder, the flow path of each opening port; Since the pitch of each opening port in the direction can be shortened, the amount of movement of the holder in the cylinder axis direction required to switch the port connected to the outlet can be significantly reduced, and the suction load on the solenoid is significantly reduced. However, the solenoid can be made smaller, the overall length of the cylinder can be shortened, and the valve body can be made smaller.

実施例 以下、本発明の一実施例の冷凍サイクル用四方弁につい
て図面を参照しながら説明する。第1図。
EXAMPLE Hereinafter, a four-way valve for a refrigeration cycle according to an example of the present invention will be described with reference to the drawings. Figure 1.

第2図は本発明の一実施例における冷凍サイクル用四方
弁の非通電時の断面図を示すものである。
FIG. 2 shows a cross-sectional view of a four-way valve for a refrigeration cycle in an embodiment of the present invention when no current is applied.

16は弁本体を形成するシリンダで側面に圧縮機の吐出
側に接続される吐出パイプ17の導入口17aが開口し
ている。18は前記シリンダ16の一端16aに嵌合溶
接された蓋である。19゜20は前記シリンダ16の内
壁にシート面19a。
Reference numeral 16 denotes a cylinder forming a valve body, and an inlet 17a of a discharge pipe 17 connected to the discharge side of the compressor is opened on the side surface. Reference numeral 18 denotes a lid that is fitted and welded to one end 16a of the cylinder 16. 19. 20 is a seat surface 19a on the inner wall of the cylinder 16.

20aを互いに平行に対向させて固定した第一。20a are fixed so as to face each other in parallel.

第二のバルブシートであり、第一のバルブシート19に
は圧縮機の吸入側に接続される吸入バイブ21が開口す
る前記シリンダ16の周方向に長い長円ポート形状の導
出口19bが開口している。
The first valve seat 19, which is the second valve seat, has an elongated port-shaped outlet 19b extending in the circumferential direction of the cylinder 16, through which the suction vibe 21 connected to the suction side of the compressor opens. ing.

又、第二のバルブシート20には、各々凝縮器又は蒸発
器として可逆的に機能する室外コイル、室内コイルに接
続される第一、第二の接続パイプ22.23が開口する
前記シリンダ16の周方向に長い長円ボート形状の第一
、第二の通口20b。
Further, the second valve seat 20 has a first and second connecting pipe 22, 23, which are connected to the outdoor coil and the indoor coil, each of which functions reversibly as a condenser or an evaporator, opening in the cylinder 16. The first and second ports 20b have an oval boat shape that is long in the circumferential direction.

20cがシリンダ16の軸方向に並設開口されている。20c are opened in parallel in the axial direction of the cylinder 16.

24.25は円筒状のスライダでシリンダ16内にあっ
て、前記第一、第二のバルブシート19.20のシート
面19a、2Oa間に位置し、円筒形状のホルダ26の
両端の内側に収納され、    一体となってシリンダ
16軸方向に摺動可能な略円筒形状の冷媒の流路を形成
している。
24.25 is a cylindrical slider located inside the cylinder 16, located between the seat surfaces 19a and 2Oa of the first and second valve seats 19.20, and stored inside both ends of the cylindrical holder 26. and integrally form a substantially cylindrical refrigerant flow path that is slidable in the axial direction of the cylinder 16.

スライダ24.26のバルブシート19.20との当接
側には前記バルブシート19,20のシート面19a、
20aと当接してスライダ24゜26のシート面を形成
する同一形状の円形スライドシートリング24a、26
aが固着されている。
On the side of the slider 24.26 in contact with the valve seat 19.20, there is a seat surface 19a of the valve seat 19, 20;
Circular slide seat rings 24a, 26 of the same shape that come into contact with 20a and form the seat surfaces of the sliders 24°26
a is fixed.

27.28はシールリングで略■字状で形成されており
、前記スライダ24.25の外周凹部24b、25bに
収納され、前記ホルダ26の内面に圧接して、前記スラ
イドシートリング24a。
Seal rings 27 and 28 are formed in a substantially square shape, and are housed in the outer circumferential recesses 24b and 25b of the slider 24 and 25, and press against the inner surface of the holder 26 to seal the slide seat ring 24a.

25bとともに、前記一対のスライダ24.25及びホ
ルダ26により形成される略円筒状流路の内外をシール
している。
25b, it seals the inside and outside of the substantially cylindrical flow path formed by the pair of sliders 24, 25 and holder 26.

29は円形の板バネで前記スライダ24.26の間に挿
入され、スライダ24.25をそれぞれシート面19a
、2Oa側に押しあてる方向に付勢している。30は前
記シリンダ16の他端を閉塞する蓋である。31は前記
蓋30の中央に固定的に取り付けられたソレノイドであ
り、固定鉄心32、電磁コイル33.復帰バネ34.前
記ホルダ26と連結されたプランジャ36より構成され
ている。そして、電磁コイル33への通電制御により前
記ホルダ26が前記シリンダ16内を軸方向に摺動する
。そして前記ホルダ26の両端に設けられた前記スライ
ダ24.25の両端に固着された前記スライドシートリ
ング24a、25aの位置は、第1図図示のスライダ2
4の第一の位置(電磁コイル33無通電)において前記
導出口19bと第一の通口20bを連通させ、電磁コイ
ル33の通電により前記プランジャ35及びホルダ26
を吸引した第二の位置(第4図)において前記導出口1
9bと第二の通口20 cを連通させる如く設計されて
いる。
Reference numeral 29 is a circular leaf spring inserted between the sliders 24 and 26, and the sliders 24 and 25 are connected to the seat surface 19a.
, 2Oa side. 30 is a lid that closes the other end of the cylinder 16. 31 is a solenoid fixedly attached to the center of the lid 30, and includes a fixed iron core 32, an electromagnetic coil 33. Return spring 34. It is composed of a plunger 36 connected to the holder 26. Then, the holder 26 slides in the cylinder 16 in the axial direction by controlling the supply of electricity to the electromagnetic coil 33. The positions of the slide seat rings 24a and 25a fixed to both ends of the sliders 24 and 25 provided at both ends of the holder 26 are the same as those of the sliders 24 and 25a shown in FIG.
4 in the first position (electromagnetic coil 33 is not energized), the outlet 19b and the first port 20b are communicated with each other, and the plunger 35 and the holder 26 are energized by the electromagnetic coil 33.
At the second position (Fig. 4) where the
9b and the second port 20c are designed to communicate with each other.

以上のように構成された冷凍サイクル用四方弁について
以下第1図〜第4図を用いてその動作を説明する。第1
図〜第3図は電磁コイル33の非通電時における態様を
示したもので、プランジャ35は復帰バネ32の作用に
より図の左方に付勢されてホルダ26が蓋18に当接し
て止まる。この結果、スライダ24.25及びホルダ2
6により導出口19bと第一の通口20bが連通され、
一方導入口17aと第二の通口20 cもシリンダ16
の内部を通して連通される。従って冷媒ガスは、圧縮機
−吐出パイブ17−第一の接続パイプ22−室外コイル
−膨張弁−室内コイル−第二の接、続パイプ23−吸入
バイブ21−圧@機の冷房サイクル回路となる。
The operation of the four-way valve for a refrigeration cycle constructed as described above will be explained below with reference to FIGS. 1 to 4. 1st
3 to 3 show the state when the electromagnetic coil 33 is not energized, and the plunger 35 is biased to the left in the figure by the action of the return spring 32, and the holder 26 comes into contact with the lid 18 and stops. As a result, sliders 24, 25 and holder 2
6 communicates the outlet 19b with the first port 20b,
On the other hand, the introduction port 17a and the second port 20c are also connected to the cylinder 16.
communicated through the interior of the Therefore, the refrigerant gas becomes the cooling cycle circuit of compressor - discharge pipe 17 - first connection pipe 22 - outdoor coil - expansion valve - indoor coil - second connection, connection pipe 23 - suction vibrator 21 - pressure@machine. .

次に電磁コイル33を通電状態にすると(第4図)、プ
ランジャ35は固定鉄心・32に吸着される。この結果
、スライダ24.25及びホルダ26により導出口19
bと第二の通口20 cが連通され、一方、導入口17
aと第一の通口20bもシリ/ター16の内部を通して
連通される。従って冷媒ガスは、圧縮機−吐出パイブ1
7−第二の接続バイブ23−室内コイル−膨張弁−室外
コイル−第一の接続パイプ22−吸入パイブ21−圧縮
機の暖房サイクル回路となる。
Next, when the electromagnetic coil 33 is energized (FIG. 4), the plunger 35 is attracted to the fixed iron core 32. As a result, the slider 24, 25 and the holder 26 cause the outlet 19 to
b and the second port 20c communicate with each other, while the inlet port 17
a and the first port 20b are also communicated through the interior of the cylinder/torter 16. Therefore, the refrigerant gas flows through the compressor-discharge pipe 1
7-Second connecting vibe 23-Indoor coil-Expansion valve-Outdoor coil-First connecting pipe 22-Suction pipe 21-Compressor heating cycle circuit.

以上のように本実施例によれば、シリンダ16内にその
シート面19a、20aを平行に固定し、前記シリンダ
16a円周方向に長い長円ボート形状をした導出口19
b及び第一、第二の通口2ob。
As described above, according to this embodiment, the seat surfaces 19a and 20a are fixed in parallel within the cylinder 16, and the outlet port 19 has an elongated boat shape that is long in the circumferential direction of the cylinder 16a.
b and the first and second ports 2ob.

20Cを各々有する一対のバルブシートを有し、前記バ
ルブシート19,20に当接してその内外をソールする
同一形状の円形のスライドシートリング24a、25a
を固着した円筒状の一対のスライダ24.25をその両
端に収納した円筒形ホルダ26を配設し、ソレノイド3
1を用いて直接そのホルダ26をシリンダ16軸方向に
移動することにより、導出口19bに連通される通口2
0b。
A pair of circular slide seat rings 24a and 25a having the same shape and having a pair of valve seats each having a diameter of 20C and abutting against the valve seats 19 and 20 and soles the inside and outside of the valve seats 19 and 20.
A cylindrical holder 26 is disposed in which a pair of cylindrical sliders 24 and 25 to which the solenoid 3 is fixed is housed at both ends.
By directly moving the holder 26 in the axial direction of the cylinder 16 using the
0b.

20Cを選択し、冷媒通路を切換える様構成したもので
あるから、システムの高低差圧がスライダ及びホルダの
内外に加わっても両者ともその圧力差による付勢力を受
けずに中立点に保持されるだめ、スライドシートリング
が内外をシールするために必要な面圧に抗するだけのわ
ずかな力でスライダをシリンダ軸方向に移動できること
から、弁切換を従来の如くパイロットバルブ機構を用い
なくても可能となり、大幅な低コスト化とシンプル化、
信頼性向上が図れる。さらに、各パルプソートに設けた
導出口及び第一、第二の通口をシリンダの周方向に長い
長円形状としたことにより、各開口の流路断面積を確保
しながらシリンダ軸方向の各開ロピノチを短かくするこ
とができるため、導出口に連通される通口を切換えるた
めに必要なホルダのシリンダ軸方向移動量は大幅に削減
でき、ソレノイドの吸引負荷が大幅に低下し、ソレノイ
ドの小型化が図れると共に、シリンダの全長が短くでき
、弁体の小型化が図れるものである。
20C is selected and is configured to switch the refrigerant passage, so even if the pressure difference between the height and the bottom of the system is applied to the inside and outside of the slider and holder, both are maintained at a neutral point without being subjected to the biasing force due to the pressure difference. However, since the slider can be moved in the cylinder axis direction with a small amount of force that is enough to resist the surface pressure required for the slide seat ring to seal the inside and outside, valve switching can be done without using the pilot valve mechanism as in the past. This results in significant cost reduction and simplification.
Reliability can be improved. Furthermore, by making the outlet and the first and second ports provided in each pulp sort into an elliptical shape that is long in the circumferential direction of the cylinder, the cross-sectional area of the flow path of each opening is ensured. Since the opening angle can be shortened, the amount of cylinder axial movement of the holder required to switch the port connected to the outlet can be significantly reduced, and the suction load on the solenoid is significantly reduced. It is possible to reduce the size of the valve body, reduce the overall length of the cylinder, and reduce the size of the valve body.

発明の効果 以上のように本発明はシリンダ内にそのシート面を平行
に固定し、前記シリンダの円周方向に長い長円形状をし
た導出口及び第一、第二の通口を各々有する一対のバル
ブシートを有し、前記一対のバルブシートに当接してそ
の内外をシールする同一形状の円形のスライドシートリ
ングを固着した一対の円筒状スライダをその両端に収納
した円筒形ホルダを配設し、ソレノイドを用いてそのホ
ルダをシリンダ軸方向に移動することにより、導出口に
連通される通口を選択し、冷媒通路を切換える様111
!成したことによりシステムの高低差圧がスライダ及び
ホルダの内外に加わっても両者ともその圧力差による付
勢力を受けずに中立点に保持されるため、スライドシー
トリングが内外をシールするだめに必要な面圧に抗する
だけのわずかな力でスライダをシリンダ軸方向に移動で
きることから、弁切換を従来の如くパイロットバルブ機
構を用いなくても可能となり、大幅な低コスト化とシン
グル化、信頼性向上が図れる。さらに、各バルブシート
に設けた導出口及び第一、第二の通口金シリンダの周方
向に長い長円形状としたことにより、各[1;40の流
路断面積を確保しながらシリンダ;軸方向の各開ロビッ
チを短かくすることができるため、導出口に連通される
通口を切換えるために必要なホルダのシリンダ軸方向移
動惜は大幅に削減でき、ソレノイドの吸引負荷が大幅に
低下し、ソ17ノイドの小型化が図れると共に、シリン
ダの全長が短くでき、弁体の小型化が図れるものでちる
Effects of the Invention As described above, the present invention provides a pair of cylinders whose seat surfaces are fixed parallel to each other in a cylinder, each having an elongated outlet and a first and second outlet in the circumferential direction of the cylinder. A cylindrical holder is disposed in which a pair of cylindrical sliders are housed at both ends, and a circular slide seat ring of the same shape is fixed to the pair of valve seats to seal the inside and outside of the pair of valve seats. , by moving the holder in the cylinder axial direction using a solenoid, the outlet communicating with the outlet is selected and the refrigerant passage is switched 111
! As a result, even if the pressure difference between the height and the bottom of the system is applied to the inside and outside of the slider and holder, both are held at a neutral point without receiving the biasing force due to the pressure difference, so the slide seat ring is necessary for sealing the inside and outside. Since the slider can be moved in the cylinder axial direction with a small amount of force that is sufficient to resist surface pressure, valve switching can be performed without using a pilot valve mechanism as in the past, resulting in significant cost reduction, single-use design, and reliability. Improvements can be made. Furthermore, by making the outlet port provided on each valve seat and the first and second through holes of the cylinder long in the circumferential direction, the cylinder and axis are secured while ensuring a flow passage cross-sectional area of [1; 40]. Since the opening distance in each direction can be shortened, the amount of movement of the holder in the cylinder axis direction required to switch the outlet connected to the outlet can be significantly reduced, and the suction load on the solenoid is significantly reduced. , the solenoid can be made smaller, the total length of the cylinder can be shortened, and the valve body can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における冷凍サイクル用四方
弁の冷房状態を示す断面図、第2図は第1図のx−x’
線断面図、第3図は第1図の弁切換機構を示す要部斜視
図、第4図は第1図の暖房状態を示す断面図、第5図は
従来の冷凍サイクル用四方弁を示す断面図である。 16・・・・・・シリンダ、19,20・・・・・バル
ブシート、19b・・・・・・導出口、20b、20c
・・・・・・第一。 第二の通口、24.25・・・・・・スライダ、24a
。 25a・・・・・−スライドシートリング、26・・・
・・・ホルダ、31 ・−−−ソレノイド。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/6
−−−y′ノア7゛ /デ、20−−− ハjレフ゛ンート 山−導エロ 204、20.−−− %−1の41口24.2j;−
−一 人ライク 第 1 図                24c、
2ja−−−X94ド>−1−V’/り′z6−−−ホ
ルダ at −−−’ルノうド ア6−−−  シ・ルア“ ノア −一−バール7“ンート /”l、−−−4エロ 第2図       24−大月7゛ Z6−−− ノT\ルゲ 31−m−ソレノイド 刀 /6−−− ジノン7゛ /y、ZO−−−パル7−シート 心−−−導ムロ 20g、 ?Jc −−−”4−第二hJロ第3図  
   24.25−8,17・z4α2ムー−−スライ
ドンーLIノン7゛26−− /7−ル7゛ /6−−− ジ゛)27゛ ノブ20−−−  バー47−il− nh −−−4f、口 ZO42θ、−−一 葛−オニの適口 笛 4 図                  24
.26−−− スラづり24ai64−一  人う1ド
>−1−’I ’、 7−Z6−−−ノT・ルアー 3I −一−9レノイド 一!44    シ5
FIG. 1 is a sectional view showing the cooling state of a four-way valve for a refrigeration cycle in an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line xx' in FIG.
3 is a perspective view of the main part showing the valve switching mechanism in FIG. 1, FIG. 4 is a sectional view showing the heating state in FIG. 1, and FIG. 5 is a conventional four-way valve for a refrigeration cycle. FIG. 16...Cylinder, 19,20...Valve seat, 19b...Outlet, 20b, 20c
······first. Second port, 24.25...Slider, 24a
. 25a...-Slide seat ring, 26...
...Holder, 31 ・---Solenoid. Name of agent: Patent attorney Toshio Nakao and 1 other person/6
---Y'Noah 7゛/de, 20--- Hj Rebento Mountain - Guide Erotic 204, 20. --- 41 shares of %-1 24.2j;-
-Alone Like No. 1 Figure 24c,
2ja --- -4 Erotic figure 2 24-Otsuki 7゛Z6---- NoT\Ruge 31-m-Solenoid sword/6--- Jinon 7゛/y, ZO---Pal 7-Sheet core---Guidance Muro 20g, ?Jc ---"4-2nd hJro 3rd figure
24.25-8,17・z4α2Moo--Slidon-LI Non-7゛26-- /7-Rule7゛/6--Ji)27゛Knob 20--Bar 47-il- nh --- -4f, mouth ZO42θ, -1 Kuzu-Oni's appropriate whistle 4 Figure 24
.. 26----- Slur fishing 24ai64-1 person 1 do>-1-'I', 7-Z6----T lure 3I-1-9 Lenoid 1! 44 shi5

Claims (1)

【特許請求の範囲】[Claims] 弁本体を形成し、導入口を有するシリンダと、前記シリ
ンダ内にそのシート面を平行に固定し前記シリンダの円
周方向に長い長円ポート形状をした導出口及び第一、第
二の通口を各々有する一対のバルブシートと、前記一対
のバルブシートに当接してその内外をシールする同一形
状の円形スライドシートリングを固着した円筒状の一対
のスライダと、前記一対のスライダを両端に収納して流
路を形成し前記シリンダの軸方向に移動して前記導出口
と第一あるいは第二通口を択一的に連通させる円筒形の
ホルダと、前記ホルダを直接駆動させるソレノイドとを
備えたことを特徴とする冷凍サイクル用四方弁。
A cylinder forming a valve body and having an inlet, an outlet having a seat surface fixed parallel to the cylinder and having an elongated port shape extending in the circumferential direction of the cylinder, and first and second ports. a pair of cylindrical sliders each having a pair of valve seats, a pair of cylindrical sliders to which a circular slide seat ring of the same shape is fixed to contact the pair of valve seats to seal the inside and outside of the valve seats, and the pair of sliders are housed at both ends. a cylindrical holder that forms a flow path and moves in the axial direction of the cylinder to selectively communicate the outlet with the first or second communication port, and a solenoid that directly drives the holder. A four-way valve for refrigeration cycles characterized by:
JP28864785A 1985-12-20 1985-12-20 Four port connection vavle for refrigerating cycle Pending JPS62147183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28864785A JPS62147183A (en) 1985-12-20 1985-12-20 Four port connection vavle for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28864785A JPS62147183A (en) 1985-12-20 1985-12-20 Four port connection vavle for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPS62147183A true JPS62147183A (en) 1987-07-01

Family

ID=17732868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28864785A Pending JPS62147183A (en) 1985-12-20 1985-12-20 Four port connection vavle for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPS62147183A (en)

Similar Documents

Publication Publication Date Title
JPS5914664B2 (en) Four-way reversing valve for refrigeration cycle
JPS63203977A (en) Four way type valve for refrigerating cycle
JP2007071359A (en) Three-way selector valve
JPS62147183A (en) Four port connection vavle for refrigerating cycle
JPH0132389B2 (en)
JPS63285380A (en) Four-way valve for refrigerating cycle
JPS62177374A (en) Four-way valve for regrigerating cycle
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JP3256270B2 (en) Reversible valve
JPS6367472A (en) Four-way valve for refrigerating cycle
JP4446628B2 (en) Bypass valve and air conditioner using the same
JPS63210478A (en) Four-way valve for refrigeration cycle
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS63219973A (en) Three-way solenoid valve
JPS62137478A (en) 4-way valve for refrigeration cycle
JPH03260481A (en) Selector valve
JPS62184288A (en) Four way valve for refrigerating cycle
JPS5914658B2 (en) Four-way reversing valve for refrigeration cycle
JPH01303381A (en) Refrigerating cycle four-way valve
JPS62113978A (en) Four-way valve for refrigeration cycle
JPH02133763A (en) Four-way valve for freezing cycle
JPH028566A (en) Four-way valve for refrigerating cycle
JPS63180779A (en) Four-way valve for refrigerating cycle
JPH02120581A (en) Four-way valve for refrigerating cycle
JPS6372974A (en) Four-way valve