JPH028566A - Four-way valve for refrigerating cycle - Google Patents

Four-way valve for refrigerating cycle

Info

Publication number
JPH028566A
JPH028566A JP16013088A JP16013088A JPH028566A JP H028566 A JPH028566 A JP H028566A JP 16013088 A JP16013088 A JP 16013088A JP 16013088 A JP16013088 A JP 16013088A JP H028566 A JPH028566 A JP H028566A
Authority
JP
Japan
Prior art keywords
sliders
valve
cylinder
holder
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16013088A
Other languages
Japanese (ja)
Inventor
Ryuzo Fujimoto
藤本 龍三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP16013088A priority Critical patent/JPH028566A/en
Publication of JPH028566A publication Critical patent/JPH028566A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To substantially reduce change over power and thermal loss by storing sliders in a holder to constitute a tunnel-shaped flow path and storing bushes, molded by a low heat conductive material, in internal walls of the sliders. CONSTITUTION:Sliding seat rings 24, 25 are mounted to hollow sliders 22, 23, and these sliders 22, 23 are stored in a holder 26, constituting a tunnel-shaped flow path 19a. Bushes 23h, 23i, molded by a low heat conductive material, are stored in an internal wall of these hollow sliders 22, 23. In this way, the hollow sliders 22, 23, enabling their pressure receiving surface to be fine decreased, can substantially decreases the change over power. While heat is prevented from being easily transmitted to the hollow sliders 22, 23 from the bushes 23h, 23i so that a thermal loss can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷凍サイクル、特に特にヒートポンプ型の空調
機の冷房・暖房の切換に用いる冷凍サイクル用四方弁に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle, and particularly to a four-way valve for a refrigeration cycle used for switching between cooling and heating in a heat pump type air conditioner.

従来の技術 近年、冷凍サイクル用四方弁は、空調機のヒートポンプ
化が進むにつれ、その需要は急増しており、低コスト化
、信頼性向上、小型化等の要求が強(なっている。
BACKGROUND OF THE INVENTION In recent years, the demand for four-way valves for refrigeration cycles has rapidly increased as air conditioners increasingly use heat pumps, and there is a strong demand for lower costs, improved reliability, and smaller size.

従来の技術としては、例えば特公昭35−12689号
公報補に示されている様な冷凍サイクル用四方弁がある
As a conventional technique, there is a four-way valve for a refrigeration cycle as shown in, for example, Japanese Patent Publication No. 35-12689.

以下図面を参照しながら、上述した従来の冷凍サイクル
用四方弁の一例について説明する。
An example of the conventional four-way valve for a refrigeration cycle described above will be described below with reference to the drawings.

第7図は従来の冷凍サイクル用四方弁の断面図を示すも
のである。1は密閉された円筒状弁本体、1aは前記円
筒状本体の内壁、2.3は前記弁本体の周面の両側に反
対方向に接続された圧縮機101の吐出管と吸入管であ
る。4,5は前記吸入管3を中央にして両側に設けられ
た第一、第二の導管である。この第一の導管4は室内側
熱交換器(以下室内器)102に接続され、第二の導管
5は室外側熱交換器(以下室外器)103に接続されて
いる。上記4本の接続管2.3,4.5はそれぞれ弁本
体1内に開口しており、並設した接続管3.4.5の開
口端は弁本体1の軸方向に面一にシート6で弁本体1に
固定されており、前記接続管4とシート6で貫通部4′
を形成している。7は前記弁本体1の内部にあって、前
記シート6面を軸方向に摺動する摺動弁であり前記吸入
管3と第一の導管4、又は吸入管3と第二の導管5を択
一的に連通せしめる凹面7aを有している。8.9は前
記摺動弁の両側に連結板10で連結されて配設され微小
孔8a、9aを有するピストン体である。11.12は
前記弁本体1の端面を密封する蓋である。13.14は
前記蓋11゜12の間の空間R1,R2に開口し、電磁
式パイロットバルブ15の通電操作により前記吸入管3
と択一的に切換連通して低圧ガス導入する抽気管である
FIG. 7 shows a sectional view of a conventional four-way valve for a refrigeration cycle. 1 is a sealed cylindrical valve body, 1a is an inner wall of the cylindrical body, and 2.3 is a discharge pipe and a suction pipe of a compressor 101 connected in opposite directions to both sides of the circumferential surface of the valve body. Reference numerals 4 and 5 denote first and second conduit pipes provided on both sides of the suction pipe 3. The first conduit 4 is connected to an indoor heat exchanger (hereinafter referred to as an indoor unit) 102, and the second conduit 5 is connected to an outdoor heat exchanger (hereinafter referred to as an outdoor unit) 103. Each of the four connecting pipes 2.3 and 4.5 opens into the valve body 1, and the open ends of the parallel connecting pipes 3.4.5 are flush with each other in the axial direction of the valve body 1. 6 is fixed to the valve body 1, and the connecting pipe 4 and the seat 6 form a through-hole 4'.
is formed. Reference numeral 7 denotes a sliding valve that is located inside the valve body 1 and slides in the axial direction on the seat 6 surface, and connects the suction pipe 3 and the first conduit 4, or the suction pipe 3 and the second conduit 5. It has a concave surface 7a that selectively allows communication. A piston body 8.9 is connected to both sides of the sliding valve by a connecting plate 10 and has minute holes 8a and 9a. Reference numerals 11 and 12 are lids that seal the end surfaces of the valve body 1. 13.14 opens into the spaces R1 and R2 between the lids 11 and 12, and the suction pipe 3 is opened by energizing the electromagnetic pilot valve 15.
This is a bleed pipe that selectively communicates with the bleed gas to introduce low-pressure gas.

以上のように構成された冷凍サイクル用四方弁について
その動作を説明する。
The operation of the four-way valve for the refrigeration cycle constructed as above will be explained.

電磁式パイロットバルブ15の通電操作により抽気管1
3.14を介して空間R1あるいは空間R2と吸入管3
を択一的に連通して空間内圧力を低下させると共にピス
トン体8,9の微小孔8a。
The bleed pipe 1 is opened by energizing the electromagnetic pilot valve 15.
3. Space R1 or space R2 and suction pipe 3 via 14
The micro holes 8a of the piston bodies 8 and 9 selectively communicate with each other to reduce the pressure in the space.

9aを介して弁本体1内の吐出側圧力を反対側の空間に
導入して高圧とすることにより、雨空間の高低圧力差で
ピストン体8.9に連結する摺動弁7を移動させ、吐出
管2より導入される高圧冷媒を第二の導管5と連通させ
しめて室内器102を凝縮器として用いて室内を暖房し
、又は高圧冷媒を第一の導管4と連通せしめて室外器1
03を凝縮器に室内器102を蒸発器として室内器を冷
房するものである。
By introducing the pressure on the discharge side in the valve body 1 into the space on the opposite side through the valve 9a and making it high pressure, the sliding valve 7 connected to the piston body 8.9 is moved by the difference in pressure between the high and low pressures in the rain space. The high-pressure refrigerant introduced from the discharge pipe 2 is communicated with the second conduit 5 to heat the room using the indoor unit 102 as a condenser, or the high-pressure refrigerant is communicated with the first conduit 4 to heat the indoor unit 102.
The indoor unit is cooled by using 03 as a condenser and the indoor unit 102 as an evaporator.

発明が解決しようとする課題 しかしながら、上記のような構成では電磁式パイロット
バルブ15し作動により高低圧の圧力変換を行い、その
圧力差によって弁を切換えているためパイロットバルブ
そのものの付帯が不可欠であり、コストが非常に高(な
り構造が複雑であった。また電磁式パイロットバルブ1
5と弁本体1が抽気管13.14で接続されているため
、接続箇所が多(、コスト高とガス洩れの恐れが招いて
いた。また弁の作動は圧力差二よって切換わるものであ
るため圧力差のない状態では作動不可となり、ある一定
の圧力差を必要とするため、空調機等が運転しなければ
切換えができず切換始めにおける運転ロスを生じるとい
う課題を生じていた。
Problems to be Solved by the Invention However, in the above configuration, pressure is converted between high and low pressure by operating the electromagnetic pilot valve 15, and the valve is switched based on the pressure difference, so the pilot valve itself is essential. , the cost was very high (and the structure was complicated. Also, the electromagnetic pilot valve 1
5 and the valve body 1 are connected by air bleed pipes 13 and 14, there are many connection points (resulting in high costs and the risk of gas leakage. Also, the operation of the valve is switched depending on the pressure difference 2). Therefore, it is impossible to operate in a state where there is no pressure difference, and since a certain pressure difference is required, switching cannot be performed unless the air conditioner etc. is in operation, resulting in an operation loss at the beginning of switching.

また、吐出管2より導入された高温高圧冷媒が第一の導
管4を通過する際にシート6部分における円筒状本体1
の肉厚が大きいため貫通部7の内壁面積が広(、貫通部
7を通して高温高圧冷媒から円筒状本体1内に伝゛達す
る熱量が大きく、また、高温高圧冷媒と接する円筒状本
体の内壁1aの面積も大きいために円筒状本体の内壁か
ら四方弁外部へ伝達する熱量も太き(、総じて熱損失が
大きいという欠点を有していた。
Further, when the high temperature and high pressure refrigerant introduced from the discharge pipe 2 passes through the first conduit 4, the cylindrical body 1 at the seat 6 portion
The inner wall area of the penetrating part 7 is large because the wall thickness of the penetrating part 7 is large (the amount of heat transferred from the high temperature and high pressure refrigerant into the cylindrical body 1 through the penetrating part 7 is large, and the inner wall 1a of the cylindrical body in contact with the high temperature and high pressure refrigerant is Since the area of the four-way valve is large, the amount of heat transferred from the inner wall of the cylindrical body to the outside of the four-way valve is also large.

本発明は上記問題点に鑑み、構造を簡素化し、組立作業
性を向上させ、低コスト化を行うとともに特に熱損失を
小さくしてシステム効率を高めて冷暖房能力を向上させ
るとともに切換作動の信頼性を向上させる冷凍サイクル
用四方弁を提供するものである。
In view of the above-mentioned problems, the present invention simplifies the structure, improves assembly workability, reduces costs, and particularly reduces heat loss to increase system efficiency and improve heating and cooling capacity, as well as improve reliability of switching operation. The present invention provides a four-way valve for a refrigeration cycle that improves performance.

課題を解決するための手段 上記課題を解決するために本発明の冷凍サイクル用四方
弁は、弁本体を形成するシリンダ内面に圧縮機吐出側に
接続される吸入口を有する第一のバルブシート・と、室
外側熱交換器、室内側熱交換器に各々接続される第一、
第二の導口を軸方向に並設した第二のバルブシートを互
いに平行して設けると共に、前記シリンダ外壁の前記第
一のバルブシートまたは前記第二のバルブシートの少な
くとも一方の平行部分に切り溝を設け、前記スライダの
内壁に低熱伝導性を有する材料で形成したブツシュを収
納し、前記両バルブシートに挟まれた側面の前記第一の
導口寄りに偏った位置に圧縮機吸入側に接続され、前記
シリンダの軸方向に長い長円形状をした吐出口を設け、
前記両バルブシートに当接シールするスライダを両端に
収納してトンネル状流路を構成するホルダをソレノイド
によりシリンダ軸方向に移動することにより、前記吸入
口あるいは吐出口と各々連通される導口を選択し、冷媒
通路を切替える様構成したものである。
Means for Solving the Problems In order to solve the above problems, the four-way valve for a refrigeration cycle of the present invention includes a first valve seat having an inlet connected to the compressor discharge side on the inner surface of the cylinder forming the valve body. and a first connected to the outdoor heat exchanger and the indoor heat exchanger, respectively.
second valve seats having second inlets arranged in parallel in the axial direction are provided parallel to each other, and a cut is made in a parallel portion of at least one of the first valve seat or the second valve seat of the cylinder outer wall. A bushing formed of a material having low thermal conductivity is provided on the inner wall of the slider, and the bushing is disposed on the compressor suction side at a position biased toward the first inlet on the side surface sandwiched between the two valve seats. connected to the cylinder, and provided with an oval-shaped discharge port extending in the axial direction of the cylinder,
By moving a holder, which forms a tunnel-like flow path by storing sliders at both ends that contact and seal the valve seats, in the axial direction of the cylinder using a solenoid, an inlet communicating with the suction port or the discharge port, respectively, is formed. The configuration is such that the refrigerant passages can be switched.

作   用 本発明は上記した構成によってシステムの高低圧力差が
一対のスライダ及びホルダより成るトンネル状流路の内
外に加わってもスライダの圧力受圧面を微小に構成可能
なためスライダの先端に設けられたスライドシートリン
グの作動抗力(摩擦係数×作用力)は小さく、シリンダ
軸方向に移動するために要する切換力が大幅に低減でき
る。
Effects The present invention has the above-described configuration, so that even if the pressure difference between the high and low levels of the system is applied to the inside and outside of the tunnel-like channel made up of a pair of sliders and a holder, the pressure receiving surface of the slider can be configured to be minute. The operating resistance (friction coefficient x acting force) of the slide seat ring is small, and the switching force required to move in the cylinder axial direction can be significantly reduced.

またスライダの内壁に低熱伝導性を有する材料で形成し
たブツシュを収納しであるので、ブツシュからスライダ
に熱が伝導しに<<、高温高圧冷媒が吐出バルブより入
りトンネル状流路を通過する際の熱損失は小さい。
In addition, since a bushing made of a material with low thermal conductivity is housed in the inner wall of the slider, heat is conducted from the bushing to the slider. heat loss is small.

実施例 以下本発明の一実施例の冷凍サイクル用四方弁について
図面を参照しながら説明する。なお、冷却システムは従
来と同一構成であるため同一符号を付してその説明を省
略する。
EXAMPLE Hereinafter, a four-way valve for a refrigeration cycle according to an example of the present invention will be described with reference to the drawings. Note that since the cooling system has the same configuration as the conventional one, the same reference numerals are given and the explanation thereof will be omitted.

第1図から第4図は、本発明の一実施例における冷凍サ
イクル用四方弁の非通電時の断面図を示すものである。
FIG. 1 to FIG. 4 are cross-sectional views of a four-way valve for a refrigeration cycle in an embodiment of the present invention when power is not supplied.

16は弁本体を形成するシリンダで側面に圧縮機101
の吸入債に接続される吸入パイプ17へま吐出口16a
が開口している。この吐出口16aは前記シリンダ軸方
向に長い長円形状をしており、前記吸入バイブ17のシ
リンダ16への接続先端17aはテーパー形状に拡管さ
れている。また、その−開口端16bには、蓋18が嵌
合されている。
16 is a cylinder forming the valve body, and a compressor 101 is installed on the side.
Suction pipe 17 connected to the suction port 16a
is open. This discharge port 16a has an elongated oval shape in the cylinder axial direction, and a connecting end 17a of the suction vibrator 17 to the cylinder 16 is expanded into a tapered shape. Further, a lid 18 is fitted to the -open end 16b.

16c、16dは前記シリンダ16の内壁に互いに平行
に対向させて軸方向に形成した第一、第二のバルブシー
トであり、第一のバルブシート16cには圧縮機101
の吐出側に接続される吐出パイプ19からの吸入口16
eが開口している。又、第二のバルブシート16dには
、各々凝縮器又は蒸発器として可逆的に機能する室外側
熱交換器103(以下、室外器)、室内側熱交換器10
2(以下、室内器)に接続される第一、第二の接続パイ
プ20゜21が開口される第一、第二の導口16f、1
6gがシリンダ16の軸方向に直線上に開口されている
。そして、前記吐出口16aは、前記シリンダ16の軸
方向において、前記第一の導口16f寄りに偏った位置
に設けている。
16c and 16d are first and second valve seats formed in the axial direction parallel to each other on the inner wall of the cylinder 16, and the compressor 101 is attached to the first valve seat 16c.
Suction port 16 from discharge pipe 19 connected to the discharge side of
e is open. Further, on the second valve seat 16d, an outdoor heat exchanger 103 (hereinafter referred to as an outdoor unit) and an indoor heat exchanger 10 each function reversibly as a condenser or an evaporator.
2 (hereinafter referred to as the indoor unit), the first and second connection pipes 20° 21 are opened through the first and second inlets 16f, 1.
6g is opened in a straight line in the axial direction of the cylinder 16. The discharge port 16a is provided at a position biased towards the first guide port 16f in the axial direction of the cylinder 16.

22.23は前記バルブシート16c、16dに当接し
てシールする摺動性のすぐれた例えばPTFE (四フ
ッ化エチレン樹脂)等のフッ素樹脂よりなるスライドシ
ートリング24.25を一端の円形溝部22a、23a
に収納し、その溝部両壁22b、22c、23b、23
cを溝側へ変形させて前記スライドシートリング24.
25を加え締つけて固定した一対の中空状スライダであ
る。また前記スライダ22.23の各々内壁23jには
低熱伝導性の優れた、例えば樹脂で形成したブツシュ2
3h、23iを収納している。26は前記スライダ22
.23を両端に収納してトンネル状流路19aを構成す
るホルダである。27は前記ホルダ26内にあって前記
スライダ22.23功間に介在して前記一対のスライダ
22.23を前記シリンダ16のバルブシート16c、
16dに付勢し、前記スライドシートリング24.25
を前記バルブシート16c、16dに圧接して内外シー
ルするスプリングである。28.29は前記スライダ2
2.23の外周中央凹部に収納され前記ホルダ26間を
シールするV変形シールリングである。30は前記ホル
ダ26と連結され、前記シリンダ16の開口側より突出
する電磁ソレノイド31のプランジャである。このプラ
ンジャ30の中心部には、ガスオイル等の流体がプラン
ジャ30の移動に伴って流動体となるためバイパス孔3
0aが形成されている。32は前記シリンダ16はの外
方において前記プランジャ30の外周を覆う非磁性体よ
りなる筒であり、この筒32を備えた蓋33により前記
シリンダ16の開口を覆っている。
22.23 is a slide seat ring 24.25 made of a fluororesin, such as PTFE (tetrafluoroethylene resin), which has excellent sliding properties and seals by coming into contact with the valve seats 16c and 16d; a circular groove 22a at one end; 23a
and both groove walls 22b, 22c, 23b, 23
c to the groove side to remove the slide seat ring 24.
They are a pair of hollow sliders that are fixed by adding 25 screws and tightening them. Further, on the inner wall 23j of each of the sliders 22, 23, there is a bushing 2 made of a material having excellent low thermal conductivity, for example, made of resin.
It stores 3h and 23i. 26 is the slider 22
.. 23 at both ends to form a tunnel-like flow path 19a. 27 is inside the holder 26 and is interposed between the sliders 22 and 23 to move the pair of sliders 22 and 23 to the valve seat 16c of the cylinder 16,
16d and the slide seat ring 24.25
This is a spring that presses against the valve seats 16c and 16d to seal the inside and outside. 28.29 is the slider 2
This is a V-shaped seal ring that is housed in a recess at the center of the outer periphery of 2.23 and seals between the holders 26. 30 is a plunger of an electromagnetic solenoid 31 connected to the holder 26 and protruding from the opening side of the cylinder 16. A bypass hole 3 is provided in the center of the plunger 30 because fluid such as gas oil becomes a fluid as the plunger 30 moves.
0a is formed. Reference numeral 32 denotes a cylinder made of a non-magnetic material that covers the outer periphery of the plunger 30 on the outside of the cylinder 16, and the opening of the cylinder 16 is covered by a lid 33 provided with the cylinder 32.

34a、34bは前記筒32の先端開口端32aに固着
された固定鉄心であり34cはアルニコ磁石である。前
記プランジャ30と固定鉄心34aの間には復帰バネ3
5を介在している。36は前記筒32の外債に固定的に
取り付けられた電磁コイルであり、この電磁コイル36
への通電制御により前記ホルダ26が前記シリンダ16
内を軸方向に摺動する。
34a and 34b are fixed iron cores fixed to the open end 32a of the cylinder 32, and 34c is an alnico magnet. A return spring 3 is provided between the plunger 30 and the fixed iron core 34a.
5 is interposed. 36 is an electromagnetic coil fixedly attached to the outer shell of the cylinder 32, and this electromagnetic coil 36
The holder 26 is connected to the cylinder 16 by controlling the energization to the cylinder 16.
Slide inside in the axial direction.

そしてホルダ26の両端に収納されたスライダ22.2
3の端部に固定されたスライドシートリング24.25
の位置は、第1図、第3図図示のホルダ26第一の位置
(電磁コイル36無通電)において前記吸入口16eと
第一の導口16fを連通させ、電磁コイル36の通電に
よりプランジャ30及びホルダ26を吸引した第2の位
置(第5図、第6図)において前記吸入口16eと第二
の導口16gを連通させる如く設計されている。
Sliders 22.2 are housed at both ends of the holder 26.
Slide seat ring fixed at the end of 3 24.25
1 and 3, the suction port 16e and the first inlet 16f are communicated with each other in the first position of the holder 26 (the electromagnetic coil 36 is not energized), and when the electromagnetic coil 36 is energized, the plunger 30 The suction port 16e and the second inlet port 16g are designed to communicate with each other at the second position (FIGS. 5 and 6) where the holder 26 is sucked.

以上の様に構成された冷凍サイクル用の四方弁について
以下第1図〜第6図を用いてその動作を説明する。第1
図、第3図は電磁コイル36に非通電時の態様を示した
ものでプランジャ30は復帰バネ35の作用により図の
下方に付勢されてホルダ26が蓋18に当接して止まる
。この結果、ホルダ26及びその両端に収納されたスラ
イダ22゜23により形成されるトンネル状流路19a
により吸入口16eと第一の導口16fが連通されると
ともに、吐出口16aと第二の導口16gもシリンダ1
6の内部を通して連通される。従って冷媒ガスは、圧縮
機101→吐出バイブ19→第一の接続バイブ20→室
外器103→膨脹弁→室内器102→第二の接続バイブ
21→吸入バイブ17→圧縮機101の冷房サイクル回
路となる。
The operation of the four-way valve for the refrigeration cycle constructed as described above will be explained below with reference to FIGS. 1 to 6. 1st
3 shows the condition when the electromagnetic coil 36 is not energized, and the plunger 30 is urged downward in the figure by the action of the return spring 35, and the holder 26 comes into contact with the lid 18 and stops. As a result, a tunnel-like flow path 19a formed by the holder 26 and the sliders 22 and 23 housed at both ends thereof.
The suction port 16e and the first guide port 16f are communicated with each other, and the discharge port 16a and the second guide port 16g are also connected to the cylinder 1.
It communicates through the inside of 6. Therefore, the refrigerant gas flows through the cooling cycle circuit of the compressor 101 → discharge vibrator 19 → first connecting vibrator 20 → outdoor unit 103 → expansion valve → indoor unit 102 → second connecting vibe 21 → suction vibrator 17 → compressor 101. Become.

次に電磁コイル36を通電状態にするとプランジャ30
は固定鉄心34に吸着され。当接して止まる。この結果
、ホルダ26及びその両端に収納されたスライダ22.
23により形成されるトンネル状流路により吸入口16
eと第二の導口16gが連通されると共に、吐出口16
aと第一の導口16fもシリンダ16の内部を通して連
通される。従って冷媒ガスは、圧縮機101→吐出バイ
ブ19→第二の接続バイブ21→室内器102→膨脹弁
→室外器103→第一の接続バイブ20→吸入パイプ1
7→圧縮機101の暖房サイクル回路となる。
Next, when the electromagnetic coil 36 is energized, the plunger 30
is attracted to the fixed iron core 34. It touches and stops. As a result, the holder 26 and the sliders 22 .
The tunnel-like flow path formed by the inlet 16
e and the second inlet 16g are communicated with each other, and the discharge port 16
a and the first inlet 16f are also communicated through the inside of the cylinder 16. Therefore, the refrigerant gas is transmitted from the compressor 101→discharge vibrator 19→second connecting vibe 21→indoor unit 102→expansion valve→outdoor unit 103→first connecting vibe 20→suction pipe 1
7→This becomes the heating cycle circuit of the compressor 101.

以上の様に本実施例によれば、弁本体を形成するシリン
ダ16内面に圧縮機101の吐出側に接続される吸入口
16eを有する第一のバルブシート16cと、室外器1
03.室内器102に各々接続される第一、第二の導口
16f、16gを軸方向に並設した第二のバルブシート
16dを互いに軽うこうして設けるとともに前記両バル
ブシート16c、16dに挟まれた側面の前記第一の導
口16f寄りに偏った位置に、前記シリンダ16の軸方
向に長い長円形状をした圧縮機101の吸入側に接続さ
れる吐出口16aを設は前記両バルブシート16c、1
6dに当接シールするスライダ22.23を両端に収納
してトンネル状流路19aを構成するホルダ26をソレ
ノイド31によりシリンダ16軸方向に移動することに
より、前記・吸入口16e、あるいは吐出口16aと各
々連通される導口15f、16gを選択し、冷媒通路を
切換える様構成したことにより、システムの高低圧力差
が一対のスライダ22.23及びホルダ26より成るト
ンネル状流路の内外に加わってもスライダ22.23の
先端に設けたスライドシートリング24.25の作動抗
力(摩擦係数×作用力)は小さ(、シリンダ16軸方向
に移動するために要する切換力は大幅に低減できる。
As described above, according to this embodiment, the first valve seat 16c has the suction port 16e connected to the discharge side of the compressor 101 on the inner surface of the cylinder 16 forming the valve body, and the outdoor unit 1
03. A second valve seat 16d, in which first and second inlets 16f and 16g connected to the indoor unit 102, respectively, are arranged in parallel in the axial direction, is provided in such a way that they are supported by each other, and are sandwiched between the two valve seats 16c and 16d. A discharge port 16a connected to the suction side of the compressor 101, which has an elliptical shape elongated in the axial direction of the cylinder 16, is provided at a position biased toward the first inlet port 16f on the side surface of the cylinder 16. ,1
By moving the holder 26 in the axial direction of the cylinder 16 by the solenoid 31, which accommodates sliders 22 and 23 at both ends to form a tunnel-like flow path 19a, the sliders 22 and 23 that abut and seal against the suction port 16e or the discharge port 16a are moved. By selecting the inlets 15f and 16g that communicate with the refrigerant passages and switching the refrigerant passages, the difference in high and low pressures in the system is applied to the inside and outside of the tunnel-shaped flow path made up of the pair of sliders 22 and 23 and the holder 26. The operating resistance (friction coefficient x acting force) of the slide seat rings 24, 25 provided at the tips of the sliders 22, 23 is small (and the switching force required to move the cylinder 16 in the axial direction can be significantly reduced).

またスライダ22.23の内壁に低熱伝導性材料で成型
したブツシュ23h、23 iを収納しであるので、ブ
ツシュ23h、23iの内壁から各々スライダ22.2
3に熱が伝導しに<(、高温高圧冷媒が吐出バイブ19
から入ってトンネル状流路19aを通過する祭に、スラ
イダ22.23へ伝導する熱量は小さくそれゆえに熱損
失は小さい。
Also, since bushings 23h and 23i molded from a low thermal conductivity material are housed on the inner wall of the slider 22.23, the slider 22.2 is connected to the inner wall of the bushings 23h and 23i, respectively.
As heat is conducted to 3, the high temperature and high pressure refrigerant is discharged from
The amount of heat transferred to the slider 22, 23 during the passage through the tunnel-like channel 19a is small, and therefore the heat loss is small.

発明の効果 以上の様に本発明は、弁本体を形成するシリンダ内面に
圧縮機吐出側に接続される吸入口を有する第一のバルブ
シートと、室内器、室外器に各々接続される第一、第二
の導口を軸方向に並設した第二のバルブシートを互いに
平行して設けるとともに、前記両バルブシートに挟まれ
た倒置の前記第一の導口寄りに偏った位置に、前記シリ
ンダ軸方向に長い長円形状をした圧縮機吸入倒に接続さ
れる吐出口を設け、前記両バルブシートに当接シールす
るスライダを両端に収納してトンネル状流路を構成する
ホルダをソレノイドによりシリンダ軸方向に移動するこ
とにより、前記吸入口あるいは吐出口と各々連通される
導口を選択し、冷媒通路を切換える構成とすることによ
り、システムの高低圧力差が一対のスライダ及びホルダ
より成るトンネル状流路内外に加わってもスライダの圧
力受圧面を微小に構成可能なためスライダ先端に設けた
スライドシートリングの作動抗力(摩擦係数×作用力)
は小さく、シリンダ軸方向に移動するために要する切換
力が大幅に低減でき、弁交換を従来の如くパイロットバ
ルブを用いなくても可能となり、大幅な低コスト化、小
型化2作動信頼性向上が図れる。
Effects of the Invention As described above, the present invention has a first valve seat having an inlet connected to the compressor discharge side on the inner surface of the cylinder forming the valve body, and a first valve seat connected to the indoor unit and the outdoor unit, respectively. , second valve seats having second inlets arranged in parallel in the axial direction are provided parallel to each other, and the second valve seat is provided in a position biased towards the inverted first inlet between the two valve seats. A solenoid is used to install a holder that has a discharge port that is connected to the compressor suction port and has an oval shape that is long in the axial direction of the cylinder, and that a slider that abuts and seals against both valve seats is housed at both ends to form a tunnel-like flow path. By moving in the axial direction of the cylinder, the refrigerant passage is switched by selecting the inlet that communicates with the suction port or the discharge port, so that the difference between the high and low pressures of the system can be reduced through a tunnel consisting of a pair of sliders and a holder. The operating resistance of the slide seat ring provided at the tip of the slider (friction coefficient x acting force) allows the pressure-receiving surface of the slider to be configured to be minute even when applied inside and outside the flow path.
is small, the switching force required to move the cylinder in the axial direction can be significantly reduced, and valve replacement can be done without using a pilot valve as in the past, resulting in significant cost reduction, miniaturization, and improved operational reliability. I can figure it out.

更に、スライダの内壁に、低熱伝導性材料で彫型したブ
ツシュを収納しであるので、ブツシュ内壁からシリンダ
へ熱が伝導しに(<、高温高圧冷媒が吐出パイプから入
ってトンネル状流路を通過する際の熱損失は小さくてす
み、システム効率を高めて冷暖房能力の向上を図り、快
適性、省エネルギー性を高めるものである。
Furthermore, since the inner wall of the slider houses a bushing carved from a material with low thermal conductivity, heat is conducted from the inner wall of the bushing to the cylinder. The heat loss during passage is small, increasing system efficiency and heating and cooling capacity, improving comfort and energy savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における冷凍サイクル用西方
弁の冷房状態を示す断面図、第2図は第1図の要部拡大
断面図、第3図は第1図の弁切換機構を示す要部斜視図
、第4図は第1図のx−x’方向の部分断面図、第5図
は第1図の暖房状態を示す断面図、第6図は第5図のY
−Y’方向の部分断面図、第7図は従来の冷凍サイクル
用四方弁の断面図である。 16・・・・・・シリンダ、16a・・・・・・吐出口
、16C216d・・・・・・第一、第二のバルブシー
ト、16e・・・・・・吸入口、15f、16g・・・
・・・第一、第二の導口、22.23・・・・・・スラ
イダ、23h、23i・・・・・・ブツシュ、26・・
・・・・ホルダ、31・・・・・・ソレノイド、101
・・・・・・圧縮機、102・・・・・・室内側熱交換
器、103・・・・・・室外側熱交換器。 代理人の氏名 弁理士 中尾敏男 ほか1名16−  
シリンダ /6a−171出口 16cm−一第一のバルブシート /6e・・−吸入四 ?3ん゛゛7ソシュ
FIG. 1 is a sectional view showing the cooling state of the west valve for a refrigeration cycle in an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the main part of FIG. 1, and FIG. FIG. 4 is a partial cross-sectional view in the x-x' direction of FIG. 1, FIG. 5 is a cross-sectional view showing the heating state in FIG. 1, and FIG.
-Y' direction partial sectional view, FIG. 7 is a sectional view of a conventional four-way valve for a refrigeration cycle. 16...Cylinder, 16a...Discharge port, 16C216d...First and second valve seats, 16e...Intake port, 15f, 16g...・
...First and second inlets, 22.23...Slider, 23h, 23i...Buttons, 26...
...Holder, 31...Solenoid, 101
. . . Compressor, 102 . . . Indoor heat exchanger, 103 . . . Outdoor heat exchanger. Name of agent: Patent attorney Toshio Nakao and 1 other person 16-
Cylinder/6a-171 outlet 16cm-1st valve seat/6e...-intake 4? 3゛゛7 Sosh

Claims (1)

【特許請求の範囲】[Claims] 圧縮機の吐出側に接続される吸入口を有する第一のバル
ブシートと、室外側熱交換器に接続される第一の導口及
び室内側熱交換器に接続される第二の導口を軸方向に並
設する第二のバルブシートとを内面に平行して形成する
と共に、前記両バルブシートに挟まれた側面に圧縮機の
吸入側等へ接続される吐出口を有し弁本体を形成するシ
リンダと、前記シリンダ内を摺動し前記吐出口と前記第
一の導口、前記吸入口と第二の導口または前記吐出口と
前記第二の導口、前記吸入口と第一の導口を切替えて連
通させるスライダを両端に収納しトンネル状流路を構成
するホルダと、前記ホルダを往復動させるソレノイドと
を備え、前記スライダの内壁に低熱伝導性材料で成型し
たブッシュを収納したことを特徴とする冷凍サイクル用
四方弁。
A first valve seat having an inlet connected to the discharge side of the compressor, a first inlet connected to an outdoor heat exchanger, and a second inlet connected to an indoor heat exchanger. The valve body has second valve seats arranged in parallel in the axial direction and is formed parallel to the inner surface, and has a discharge port connected to the suction side of the compressor, etc. on the side surface sandwiched between the two valve seats. a cylinder to be formed, and a cylinder that slides inside the cylinder to connect the discharge port and the first guide port, the suction port and the second guide port, or the discharge port and the second guide port, and the suction port and the first guide port. A holder that configures a tunnel-like flow path by housing sliders at both ends to switch and communicate the inlets of the holder, and a solenoid that reciprocates the holder, and a bush molded from a low thermal conductive material is housed on the inner wall of the slider. A four-way valve for refrigeration cycles.
JP16013088A 1988-06-28 1988-06-28 Four-way valve for refrigerating cycle Pending JPH028566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16013088A JPH028566A (en) 1988-06-28 1988-06-28 Four-way valve for refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16013088A JPH028566A (en) 1988-06-28 1988-06-28 Four-way valve for refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH028566A true JPH028566A (en) 1990-01-12

Family

ID=15708519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16013088A Pending JPH028566A (en) 1988-06-28 1988-06-28 Four-way valve for refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH028566A (en)

Similar Documents

Publication Publication Date Title
WO2006118052A1 (en) Selector valve
KR920008025B1 (en) Slide valve
JPH028566A (en) Four-way valve for refrigerating cycle
JPH01155163A (en) Four-way valve for refrigeration cycle
CN114704670B (en) Electromagnetic reversing valve and main valve thereof
JPH02120581A (en) Four-way valve for refrigerating cycle
JPH0132389B2 (en)
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JPH02133763A (en) Four-way valve for freezing cycle
JPS63285380A (en) Four-way valve for refrigerating cycle
JPH0297783A (en) Four-way valve for refrigerating cycle
JPS61192974A (en) Four way type valve for refrigerating cycle
JPS61241571A (en) Four-way valve for refrigeration cycle
JPH01126479A (en) Four-way valve for refrigerating cycle
JPS63210478A (en) Four-way valve for refrigeration cycle
JPH01303381A (en) Refrigerating cycle four-way valve
JPS6372974A (en) Four-way valve
JPS63203978A (en) Four way type valve for refrigerating cycle
JPS63180779A (en) Four-way valve for refrigerating cycle
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS63180780A (en) Four-way valve for refrigerating cycle
JPS62196477A (en) Four-way valve for refrigerating cycle
JPS63145879A (en) Four-way valve for refrigeration cycle
JPS62177374A (en) Four-way valve for regrigerating cycle
JPS62180184A (en) Four-way valve for refrigerating cycle