JPS62147088A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS62147088A
JPS62147088A JP28861985A JP28861985A JPS62147088A JP S62147088 A JPS62147088 A JP S62147088A JP 28861985 A JP28861985 A JP 28861985A JP 28861985 A JP28861985 A JP 28861985A JP S62147088 A JPS62147088 A JP S62147088A
Authority
JP
Japan
Prior art keywords
pressure
pressure side
port
valve
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28861985A
Other languages
Japanese (ja)
Inventor
Kyushichi Hashizume
橋爪 久七
Takao Higashikura
東倉 孝夫
Hidetoshi Nishihara
秀俊 西原
Masaaki Okubo
大久保 雅明
Masao Mangyo
万行 政男
Jiyunichirou Yahiki
純一郎 矢引
Etsuro Suzuki
悦郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP28861985A priority Critical patent/JPS62147088A/en
Publication of JPS62147088A publication Critical patent/JPS62147088A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To secure a rapid pressure drop on a low pressure side port which becomes a driving force for opening a high pressure valve by providing a cylindric a high pressure valve which can close both of high pressure side outlet and inlet ports simultaneously on one end face while which can close a low pressure side port on the other end face. CONSTITUTION:A high pressure side inlet port 72 is always connected into an enclosed container 51, a high pressure side outlet port 74 is always connected to a discharge pipe 73, and a low pressure side port 76 is directly connected to the low pressure chamber 61 of a compression chamber 60 by means of a pressure introducing passage 79. And, a cylindrical high pressure valve 77 can simultaneously close the high pressure side inlet port 72 and the high pressure side outlet port 74 on one end face, while it can close the low pressure side port 76 on the other end face. Thereby, the pressure drop of the low pressure side port 76 which becomes the driving force for opening the high pressure valve 77, can be carried out securely and in a very short time. Accordingly, it is possible not only to obtain a stable valve opening operation but also to improve machining accuracy and assembling property, improving productivity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷蔵庫、ショーケース等の冷凍装置に使用され
るロータリ圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in refrigeration equipment such as refrigerators and showcases.

従来の技術 圧縮機をサイクリング運転することにより庫内を冷却す
る装置においては、停止時に、システム内の高圧側に存
在する高温冷媒が低圧の冷却器に流れ込み熱負荷となる
ため、装置の消費電力量が増大する。この現象を防止す
るために、圧縮機内に停止時に低圧側、高圧側の冷媒路
を閉鎖する技術が提案されている。
Conventional technology In systems that cool the inside of a refrigerator by cycling a compressor, when the system is stopped, the high-temperature refrigerant that exists on the high-pressure side of the system flows into the low-pressure cooler, creating a heat load, which reduces the power consumption of the system. The amount increases. In order to prevent this phenomenon, a technique has been proposed in which the refrigerant passages on the low-pressure side and high-pressure side are closed in the compressor when the compressor is stopped.

以下第6図を参照しながら上述した従来のロータリ圧縮
機について説明する。
The conventional rotary compressor mentioned above will be explained below with reference to FIG.

第6図において、1はロータリ圧縮機、2は密閉容器で
、3はシリンダプレート、3aはンリンダ、4はクラン
ク軸で、その偏心部4aには、口−26が摺動自在に配
置しである。6は、圧縮室7内を高・低圧室に仕切るベ
ーンである。8は逆止弁作用をなす吸入弁であり1図示
しない吸入管と連通ずる吸入ポートを閉鎖する。また9
は吐出弁で、圧縮室γ内で圧縮された冷媒ガスは吐出弁
9を通過して、密閉容器2内に吐出される。1゜はロー
タリ圧縮機1の運転時に開路、停止時に閉路する高圧パ
ルプである。この高圧バルブ10は、密閉容器2を貫通
する吐出管11に連通した高圧側出口ポート12と、常
時密閉容器2内に連通ずる高圧側入口ポート13を備え
ている。また導圧管14にて吸入路16と連通ずる低圧
側ポート16を備えている。17は高圧側出口ポート1
2と低圧側ポート16を交互に開閉するボール弁である
In Fig. 6, 1 is a rotary compressor, 2 is a closed container, 3 is a cylinder plate, 3a is a cylinder, 4 is a crankshaft, and a port 26 is slidably arranged on the eccentric part 4a. be. 6 is a vane that partitions the inside of the compression chamber 7 into high and low pressure chambers. 8 is a suction valve that functions as a check valve; 1 closes a suction port communicating with a suction pipe (not shown); Also 9
is a discharge valve, and the refrigerant gas compressed within the compression chamber γ passes through the discharge valve 9 and is discharged into the closed container 2. 1° is a high-pressure pulp that opens when the rotary compressor 1 is in operation and closes when it stops. This high-pressure valve 10 includes a high-pressure side outlet port 12 communicating with a discharge pipe 11 penetrating the closed container 2, and a high-pressure side inlet port 13 constantly communicating with the inside of the closed container 2. Further, a low pressure side port 16 is provided which communicates with the suction passage 16 through a pressure guiding pipe 14. 17 is high pressure side outlet port 1
This is a ball valve that alternately opens and closes the low pressure side port 16 and the low pressure side port 16.

18は常にボール弁17を高圧側出口ポート12側へ偏
倚さすバイアスバネである。
18 is a bias spring that always biases the ball valve 17 toward the high pressure side outlet port 12.

かかる構成において、ロータリ圧縮機1が停止中におい
ては、導圧管14内の圧力と密閉容器2内の圧力は均衡
しており、バイアスバネ18の力および密閉容器2内の
圧力と冷却システム側圧力の差により生じる力によりボ
ール弁17は高圧側出口ポート12を閉鎖している。従
って密閉容器2の空間内に充填している高圧高温ガスは
、吐出管11を介して冷却システムへ流出することはな
い。またこのとき逆止弁動作する吸入弁8も閉鎖してお
り、吸入管(図示せず)を介して冷却システムへ流出す
ることも阻止される。
In this configuration, when the rotary compressor 1 is stopped, the pressure inside the impulse pipe 14 and the pressure inside the closed container 2 are balanced, and the force of the bias spring 18, the pressure inside the closed container 2, and the cooling system side pressure are balanced. The force generated by the difference causes the ball valve 17 to close the high pressure side outlet port 12. Therefore, the high-pressure and high-temperature gas filling the space of the closed container 2 does not flow out to the cooling system via the discharge pipe 11. At this time, the suction valve 8, which operates as a check valve, is also closed, and leakage to the cooling system via the suction pipe (not shown) is also prevented.

次に起動時について説明する。起動により圧縮室T内の
低圧室の圧力低下にょシ吸入路15、導圧管14内の圧
力が低下して高圧バルブ1oの高圧側入口ポート13側
と低圧ポート16側に圧力差を生じて、高圧側出口ポー
ト12に吸着しているボール弁17をバイアスバネ18
の力に抗して引きはなし、高圧側出口ポート12を開路
し、ボール弁17は低圧側ポート16に吸着シールし、
通常の運転に入るものである。
Next, the startup time will be explained. Due to the activation, the pressure in the low pressure chamber in the compression chamber T decreases, and the pressure in the suction passage 15 and the pressure guiding pipe 14 decreases, creating a pressure difference between the high pressure side inlet port 13 side and the low pressure port 16 side of the high pressure valve 1o. The bias spring 18 holds the ball valve 17 adsorbed on the high pressure side outlet port 12.
is pulled against the force, the high-pressure side outlet port 12 is opened, and the ball valve 17 is suction-sealed to the low-pressure side port 16.
This is normal operation.

発明が解決しようとする問題点 しかしながら上記のような構成では、ボール弁17とこ
のボール弁17が摺動する高圧パルプ室19との間のク
リアランスの存在によりボール弁17を高圧側出口ポー
トより引きはなすための開升力となる低圧側ポートの圧
力低下がえにくく、クリアランスを最小限に押える必要
があるが、このことは加工精度、マツチング組立等の加
工コストの上昇をまぬがれぬばかりでなく、運転中の回
転摺動部から発生する摩耗粉等の異物が、クリアランス
内に入り込み最悪の場合は、ボール弁17においても、
一般スプール弁にみられるハイドロリソクロック現象に
似た現象を生じ、ボール弁17の動作不能を生じかねな
い。またクリアランスの減少化を回避するために、ボー
ル弁17の有効受圧面積を増大することが考えられるが
、このことは高圧バルブ10の組込みスペースが増大す
るばかりか、重量の増加により動作時の衝撃音の発生等
の問題もある。更に図示した従来例においては。
Problems to be Solved by the Invention However, in the above configuration, due to the existence of a clearance between the ball valve 17 and the high pressure pulp chamber 19 in which the ball valve 17 slides, the ball valve 17 cannot be pulled out from the high pressure side outlet port. It is difficult to avoid a pressure drop in the low-pressure side port, which is the opening force required for release, and it is necessary to minimize the clearance. However, this not only increases processing costs such as processing accuracy and matching assembly, but also reduces the In the worst case, foreign matter such as abrasion powder generated from the rotating sliding part inside the ball valve 17 may enter the clearance.
A phenomenon similar to the hydrolithoclock phenomenon seen in general spool valves may occur, and the ball valve 17 may become inoperable. Furthermore, in order to avoid a reduction in clearance, it is conceivable to increase the effective pressure receiving area of the ball valve 17, but this not only increases the installation space of the high pressure valve 10, but also increases the weight and causes shock during operation. There are also problems such as noise generation. Furthermore, in the illustrated conventional example.

ボール弁17のポートとして3次元曲面を成形しやすい
黄銅等の軟質金属が使用されるため部品点数、組立工数
が増加する。更にまた導圧管14についても同様でコス
ト上昇を避けられず、がっ流路圧力損失による必要圧力
の低減・を悪化させるものである。
Since a soft metal such as brass, which can be easily formed into a three-dimensional curved surface, is used for the port of the ball valve 17, the number of parts and the number of assembly steps increase. Furthermore, the same applies to the pressure guiding pipe 14, which inevitably increases the cost and worsens the reduction in required pressure due to pressure loss in the flow path.

本発明は上記した問題点に鑑み、起動時における必要圧
力差をクリアランスの減少あるいはパルプの有効受圧面
積の増加等をすることなしに得られるようにし、かつ取
付スペースを減少するとともに部品点数を減少し製造コ
ストを低減することを目的としている。
In view of the above-mentioned problems, the present invention makes it possible to obtain the required pressure difference at startup without reducing the clearance or increasing the effective pressure-receiving area of the pulp, and also reduces the installation space and the number of parts. The aim is to reduce manufacturing costs.

問題点を解決するための手段 上記問題点を解決するために本発明のロータリ圧縮機は
、密閉容器と、この密閉容器内に収納される圧縮要素と
モータとを備え、前記圧縮要素は、クランク軸を軸支す
る軸受部を有するサイドプレートと、ロータを回転自在
に収納するシリンダグレートと、前記サイドプレートと
シリンダプレートとを重合して圧縮室を構成し、前記圧
縮室を低圧室と高圧室に仕切るベーンと、前記低圧室と
前記高圧室とに各々連通し、前記ベーンと近接して配置
される逆止弁作用をなす吸入弁と吐出弁と、前記密閉容
器内に常時連通する高圧側入口ポートと、吐出管に常時
連通する高圧側出口ポートと、前記圧縮室の低圧室に直
接連通する低圧側ポートと、前記高圧側入口ポートと前
記高圧側出口ポートを一側面として、前記低圧側ポート
を他側面とした高圧パルプ室を備え、前記高圧側入口ポ
ートと前記高圧側出口ポートとを一端面にて同時に閉鎖
し、他端面で前記低圧側ポートを閉鎖可能で前記高圧パ
ルプ室内を往復動可能な円筒状の高圧バルブを備えたと
いう構成のものである。
Means for Solving the Problems In order to solve the above problems, a rotary compressor of the present invention includes a closed container, a compression element and a motor housed in the closed container, and the compression element is connected to a crankshaft. A side plate having a bearing portion that supports the shaft, a cylinder grate that rotatably houses the rotor, and the side plate and cylinder plate are superimposed to form a compression chamber, and the compression chamber is divided into a low pressure chamber and a high pressure chamber. a suction valve and a discharge valve that function as check valves and are arranged in close proximity to the vanes and communicate with the low-pressure chamber and the high-pressure chamber, respectively, and a high-pressure side that constantly communicates with the airtight container. an inlet port, a high-pressure side outlet port that constantly communicates with the discharge pipe, a low-pressure side port that directly communicates with the low-pressure chamber of the compression chamber, and the low-pressure side with the high-pressure side inlet port and the high-pressure side outlet port as one side. A high-pressure pulp chamber with a port on the other side is provided, and the high-pressure side inlet port and the high-pressure side outlet port can be simultaneously closed on one end side, and the low-pressure side port can be closed on the other end side, and the high-pressure pulp chamber can be reciprocated within the high-pressure pulp chamber. It is equipped with a movable cylindrical high-pressure valve.

作  用 本発明は上記した構成によって、起動時において、高圧
側入口ポートおよび出口ポートが同時に閉鎖されている
ため、低圧側ポートの圧力低下は極めて急峻に実現でき
、従って、停止時に低減するシステム内圧力と、はぼ高
圧状態に維持される密閉容器内圧力との差により生ずる
力にて高圧側入口および高圧側出口ポートに強力に吸着
している高圧パルプを開路することが可能でこの初期の
引き離し後は、高圧パルプ室の内周壁に沿って並行移動
して速やかに低圧側ポートを閉鎖するものである。また
、停止直後において、シリンダ内の圧力は密閉容器内の
圧力と?lJえばベーンとシリンダ間のクリアランス等
を介して急速に均衡する。
According to the above-described configuration, the high pressure side inlet port and the outlet port are closed simultaneously at the time of startup, so that the pressure drop in the low pressure side port can be realized extremely steeply. It is possible to open the high-pressure pulp that is strongly adsorbed to the high-pressure side inlet and high-pressure side outlet ports using the force generated by the difference between the pressure and the pressure inside the closed container, which is maintained in a nearly high-pressure state. After being separated, it moves in parallel along the inner circumferential wall of the high-pressure pulp chamber to quickly close the low-pressure side port. Also, immediately after stopping, is the pressure inside the cylinder the same as the pressure inside the sealed container? If lJ, the balance will be rapidly achieved through the clearance between the vane and the cylinder.

一方、低圧側ポートなので容積を最小限に設定できる構
成であるため低圧側ポート内と密閉容器内の圧力均衡を
短時間ででき、従って低圧側ポートからの引き離しも短
時間で行われ、バイアスバネ力によって高圧側入口、出
口ポートを急速に閉鎖する。
On the other hand, since it is a low-pressure side port, the volume can be set to the minimum, so the pressure in the low-pressure side port and the closed container can be balanced in a short time. Therefore, the separation from the low-pressure side port can be done in a short time, and the bias spring Rapidly close the high pressure side inlet and outlet ports by force.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図において、6Qはロータリ圧縮機で、51は密閉
容器、62はロータ52a、ステータ52bよりなる電
動要素、53は圧縮要素である。54はロータ52aに
圧入固定したクランク軸でサイドプレー)55.56に
形成した軸受部55a。
In FIG. 1, 6Q is a rotary compressor, 51 is a closed container, 62 is an electric element consisting of a rotor 52a and a stator 52b, and 53 is a compression element. 54 is a crankshaft press-fitted and fixed to the rotor 52a, and a bearing portion 55a is formed at 55 and 56 (side plays).

S6aに回転自在に軸支される。67はシリンダプレー
トで、クランク軸54の偏心部54aに装着したロータ
58が回転自在に装着されている。
It is rotatably supported by S6a. Reference numeral 67 denotes a cylinder plate, on which the rotor 58 mounted on the eccentric portion 54a of the crankshaft 54 is rotatably mounted.

59はロータ58の外周とシリンダプレート6了の内周
およびサイドブレー)5ei、66で画定される圧縮室
6oを低圧室61と高圧室62に仕切るベーンであり、
52aはベーン溝である。63はサイドプレート55,
56、シリンダプレート57を重合固定するボルトであ
る。64は蒸発器64aから冷媒ガスを圧縮室6oに導
ひく吸入管で、サイドプレート65の圧入ボア66に圧
入固定されている。圧入ボア66のシリンダプレート5
7側の鏡板端面はディスク状の吸入弁66のバルブシー
ト面を構成している。この圧入ボア65に連らなりベー
ン59に近接し、シリンダプレート57に連通ずる吸入
路67には、@記吸入弁66が収納されるとともに、常
に弱い力でこの弁66を閉鎖状態を保つバイアスバネ6
8が収納されている。また69は吸入弁66の開放時の
動きを規制する段部である。Toは圧縮室60の圧縮さ
れた冷媒ガスを直接あるいはプリクーラパイプ(図示せ
ず)を経由して密閉容器51内に導出する吐出弁である
(第2図)。71は高圧パルプ装置であり、クランク軸
64とほぼ同一高さに配置されている。この高圧バルブ
71は、サイドプレート66にクランク軸54の軸方向
にのびる複数個の高圧側入口ポート72と、密閉容器5
1を貫通する吐出管73に連通ずる高圧側出口ポート7
4を備えている。更にシリンダプレート57には、隣接
した前記各ポート72.了4に相対応して形成した共通
の高圧パルプ室75が備えてあり、この高圧パルプ室7
6の底部には低圧側ポート76が形成しである。77は
樹脂でできた円筒状の高圧パイプで、一端面にて前記入
口、出口ポート72゜了4を閉鎖可能で、他端面にて低
圧側ポート了6を閉鎖可能である。78は常に高圧側入
口、出口ポート72.74を閉鎖するように付勢するバ
イアスバネである。79は低圧側ポート76と一方のサ
イドプレート56側の開口アロaよりシリンダプレート
57の低圧室61に直接連通ずる導圧路であり、開口ア
ロaはサイドプレート56により閉鎖される。
59 is a vane that partitions the compression chamber 6o defined by the outer periphery of the rotor 58, the inner periphery of the cylinder plate 6, and the side brakes 5ei and 66 into a low pressure chamber 61 and a high pressure chamber 62;
52a is a vane groove. 63 is the side plate 55,
56, a bolt for overlapping and fixing the cylinder plate 57; Reference numeral 64 denotes a suction pipe that guides refrigerant gas from the evaporator 64a to the compression chamber 6o, and is press-fitted and fixed into a press-fit bore 66 of the side plate 65. Cylinder plate 5 with press-fit bore 66
The end surface of the end plate on the 7 side constitutes a valve seat surface of a disk-shaped suction valve 66. A suction passage 67 connected to the press-fit bore 65, close to the vane 59, and communicating with the cylinder plate 57 houses a suction valve 66, and a bias bias that always keeps the valve 66 closed with a weak force. Spring 6
8 is stored. Further, 69 is a stepped portion that restricts the movement of the suction valve 66 when it is opened. To is a discharge valve that discharges the compressed refrigerant gas from the compression chamber 60 into the closed container 51 directly or via a precooler pipe (not shown) (FIG. 2). Reference numeral 71 denotes a high-pressure pulping device, which is arranged at approximately the same height as the crankshaft 64. The high pressure valve 71 includes a plurality of high pressure side inlet ports 72 extending in the axial direction of the crankshaft 54 on the side plate 66, and a closed container 5.
A high pressure side outlet port 7 communicating with a discharge pipe 73 passing through 1
It is equipped with 4. Furthermore, the cylinder plate 57 has adjacent ports 72 . A common high-pressure pulp chamber 75 is provided correspondingly to the high-pressure pulp chamber 7.
A low-pressure side port 76 is formed at the bottom of 6. Reference numeral 77 denotes a cylindrical high-pressure pipe made of resin, which can close the inlet and outlet ports 72°4 at one end, and close the low-pressure side port 6 at the other end. 78 is a bias spring that always biases the high pressure side inlet and outlet ports 72 and 74 to close. Reference numeral 79 denotes a pressure guide path that directly communicates with the low pressure chamber 61 of the cylinder plate 57 from the low pressure side port 76 and the opening a on one side plate 56 side, and the opening a is closed by the side plate 56.

以上のように構成されたロータリ圧縮機について、以下
その動作について説明する。
The operation of the rotary compressor configured as above will be described below.

第1図は停止中の状態を示しており、逆止弁作用する低
圧弁66は閉鎖しており、また高圧バルブ77は高圧側
入口ポート72および高圧側出口ポート74の双方を同
時に閉鎖している。このとき高圧バルブ77は高圧側出
口ポート74の上流・下流間の圧力差、即ち、蒸発器6
4aの配置されている冷却室温度における凝縮飽和圧力
と、密閉容器51の温度における飽和圧力との圧力差に
よる力およびわずかなバイアスバネ78力により閉鎖し
ている。
FIG. 1 shows the stopped state, in which the low pressure valve 66 that acts as a check valve is closed, and the high pressure valve 77 simultaneously closes both the high pressure side inlet port 72 and the high pressure side outlet port 74. There is. At this time, the high pressure valve 77 controls the pressure difference between the upstream and downstream of the high pressure side outlet port 74, that is, the evaporator 6
It is closed by the force due to the pressure difference between the condensation saturation pressure at the temperature of the cooling chamber 4a and the saturation pressure at the temperature of the closed container 51, and by a slight force of the bias spring 78.

従って、密閉容器51内の高温高圧ガスは凝縮器80お
よび蒸発器54aへの流れを阻止され、蒸発器64aへ
の侵入熱負荷を軽減する。
Therefore, the high-temperature, high-pressure gas in the closed container 51 is prevented from flowing to the condenser 80 and the evaporator 54a, reducing the heat load entering the evaporator 64a.

次に起動時について説明する。Next, the startup time will be explained.

電動要素52の通電によりクランク軸54が回転し、圧
縮室6oの低圧室61の圧力低下が生じる。この圧力低
下は高圧バルブ77と高圧パルプ室75間の比較的ラフ
なりリアランス(例えば0.1門程度)においても、高
圧側入口ポート72が閉鎖しているため確実に極めて短
時間に行われる。この圧力低下は、当然導圧路79.低
圧側ポート76、高圧バルブ室76内の圧力低下となり
、高圧側入口ポート72即ち密閉容器51内圧力と高圧
バルブ室75内の圧力差が高圧バルブ77に作用し、強
力に高圧側出口ポート72側に吸着している高圧バルブ
77を引きはなす。
The crankshaft 54 rotates by energization of the electric element 52, causing a pressure drop in the low pressure chamber 61 of the compression chamber 6o. This pressure reduction is reliably performed in a very short time even in a relatively rough clearance between the high pressure valve 77 and the high pressure pulp chamber 75 (for example, about 0.1 gate) because the high pressure side inlet port 72 is closed. This pressure drop naturally occurs in the pressure channel 79. The pressure in the low-pressure side port 76 and the high-pressure valve chamber 76 decreases, and the pressure difference between the high-pressure side inlet port 72, that is, the pressure inside the sealed container 51 and the high-pressure valve chamber 75 acts on the high-pressure valve 77, and the high-pressure side outlet port 72 is strongly Pull out the high pressure valve 77 adsorbed on the side.

この高圧バルブ77の初期引きはなし動作ののちは、ガ
ス流の動圧も加味されて高圧バルブ77はバイアスバネ
78の力に抗して低圧側ポート76を閉鎖し、開弁動作
を完了する。一方吸入弁66も開路し、通常の冷却運転
が行われる。
After this initial pull-off operation of the high-pressure valve 77, the high-pressure valve 77 closes the low-pressure side port 76 against the force of the bias spring 78, taking into consideration the dynamic pressure of the gas flow, and completes the valve-opening operation. On the other hand, the suction valve 66 is also opened, and normal cooling operation is performed.

次に停止時の動作について説明する。Next, the operation when stopped will be explained.

クランク軸64の回転停止すると、吸入管64内のガス
流の停止により吸入弁66が閉鎖する。
When the crankshaft 64 stops rotating, the gas flow in the suction pipe 64 is stopped, and the suction valve 66 is closed.

またシリンダ60内を高圧室62と低圧室61に区画し
ているオイルシールが破れ、密閉容器61内の高圧ガス
は例えばベーン59とベーン溝59aのクリアランス等
よシ低圧室61内を昇圧する。
Further, the oil seal that divides the inside of the cylinder 60 into a high pressure chamber 62 and a low pressure chamber 61 is broken, and the high pressure gas inside the closed container 61 increases the pressure inside the low pressure chamber 61 due to, for example, the clearance between the vane 59 and the vane groove 59a.

この昇圧作用は、導圧路79をへて低圧側ポート76に
およびかつ、導圧路79の容積が小さく形成できるため
昇圧時間を短縮できる。低圧側ポート76内の圧力と密
閉容器51内の圧力が均圧すると、バイアスバネ78の
力により高圧バルブ77は低圧側ポート76を離れ、高
圧側入口ポート72と高圧側出ロポート了4を同時に閉
鎖する。
This pressure increasing effect extends to the low pressure side port 76 through the pressure guiding path 79, and since the volume of the pressure guiding path 79 can be formed small, the pressure increasing time can be shortened. When the pressure inside the low-pressure side port 76 and the pressure inside the closed container 51 are equalized, the high-pressure valve 77 leaves the low-pressure side port 76 due to the force of the bias spring 78, and simultaneously opens the high-pressure side inlet port 72 and the high-pressure side outlet port 4. Close.

従ってロータリ圧縮機停止中において、密閉容器51内
の高圧高温ガスを凝縮器80.蒸発器64aへ流出する
のを阻止する。
Therefore, while the rotary compressor is stopped, the high pressure and high temperature gas in the closed container 51 is transferred to the condenser 80. This prevents it from flowing into the evaporator 64a.

発明の効果 以上のように本発明は、密閉容器内に常時連通する高圧
側入口ポートと、吐出管に常時連通する高圧側出口ポー
トと、導圧路により圧縮室の低圧室に直接連通する低圧
側ポートと、前記高圧側入口ポートと高圧側出口ポート
とを一端面にて同時に閉鎖し、他端面で前記低圧側ポー
トを閉鎖可能な円筒状の高圧バルブを備えたので、従来
例のごとく、ボール弁とこの弁の摺動する高圧バルブ室
間のクリアランスを減少する必要がなく、高圧バルブの
開弁駆動力となる低圧側ポートの圧力低下を確実に、か
つ極めて短時間で行える。従って安定した開弁動作を得
られるばかりでなく、加工精度、組立精度を緩和でき、
生産性を向上できる。更に異物による弁のロック現象等
を起こすことがない。
Effects of the Invention As described above, the present invention has a high-pressure side inlet port that is always in communication with the inside of the closed container, a high-pressure side outlet port that is always in communication with the discharge pipe, and a low-pressure side port that is in direct communication with the low-pressure chamber of the compression chamber through a pressure channel. Since it is equipped with a side port, a cylindrical high-pressure valve that can simultaneously close the high-pressure side inlet port and the high-pressure side outlet port on one end face, and close the low-pressure side port on the other end face, as in the conventional example, There is no need to reduce the clearance between the ball valve and the high-pressure valve chamber in which the valve slides, and the pressure at the low-pressure side port, which is the driving force for opening the high-pressure valve, can be reduced reliably and in an extremely short time. Therefore, not only can stable valve opening operation be obtained, but processing accuracy and assembly accuracy can be reduced.
Productivity can be improved. Furthermore, there is no possibility of valve locking due to foreign matter.

またバルブの有効面積を増大することがなく、コンパク
トに構成できるとともに動作音の増大もない。一方間弁
動作においては圧縮室の低圧室に直接連通ずる導圧路を
形成しであるため、導圧管等の部品が不用であるばかり
でなく導圧路容積を減少し、停止後の低圧側ポート内圧
力の昇圧時間を短縮し、高圧側出口ポートの閉鎖所用時
間を短かくできる更に高圧バルブを高圧バルブ室の内周
壁に沿わせて挿入できるため、組立性が向上する等の多
くの実用効果を有する。
Further, the effective area of the valve is not increased, the valve can be constructed compactly, and there is no increase in operating noise. On the other hand, in the case of valve operation, a pressure path is formed that directly communicates with the low pressure chamber of the compression chamber, so parts such as a pressure pipe are not only unnecessary, but also the volume of the pressure path is reduced, and the low pressure side after stopping. It can shorten the time required to increase the pressure inside the port and shorten the time required to close the high-pressure side outlet port.Furthermore, the high-pressure valve can be inserted along the inner circumferential wall of the high-pressure valve chamber, which improves ease of assembly. have an effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すロータリ圧縮機の断面
図、第2図、第3図は第1図のu−n’線。 111− III’線における断面図、第4図は高圧バ
ルブ装置の開弁状態を示す要部断面図、第6図はシリン
ダプレートの要部斜視図、第6図は従来のロータリ圧縮
機の断面図である。 51・・・・・密閉容器、53・・・・・・圧縮要素、
52・・・・・電動要素、54・・・・・・クランク軸
、55.56・・・・・・サイドプレート、57・・・
・・・シリンダプレート、58・・・・・・ロータ、6
0・・・・・・圧縮室、61・・・・・・低圧室、62
・・・・・・高圧室、59・・・・・・ベーン、66・
・・・・吸入弁、70・・・・・・吐出弁、72・・・
・・・高圧側入口ポート、74・・・・・・高圧側出口
ポート、73・・・・・・吐出管、79・・・・・・導
圧路、76・・・・・・高圧バルブ室、76・・・・・
低圧側ポート、77・・・・・・高圧パルプ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名σ1
−@閏各各   66−  口友人升、、−@勤I!−
72−1+圧狽・J入ロポート、f”、3−−一土扁簀
禾    23−  吐呂噂fす・−クランクh   
    74−4&(tl巴ロポート、f6.I6−−
− ブイドア°レート        7よ一−一 尚
んハ゛ルアー16フーーー’lノンタ゛デレー1−  
     71−   低斥」鮒爪−ト42−1反i 
         77−−・ &う/1)()げ嘉 
 1  図                    
        7デーー4jL刈トJ4−−− クラ
ンク車肉 37−−− ジノンダブレート の一一一 ロータ 8−−− ベーン 60−L麟1t 61−(配圧.! 62−m− 市り寛 6ローーー 吸入弁 77 −−一 向エノぐルフ j7ーーー ン°lン7°7゛レート ク2ーーー 島i4j’l入口ご中 73ーーー吐社嘴 76−ーーブ氏L11)「ζ−ド ア7 −−−  IfLノ(ルゲ 第 411 区 区 qコ
FIG. 1 is a sectional view of a rotary compressor showing an embodiment of the present invention, and FIGS. 2 and 3 are taken along line u-n' in FIG. 1. 111-III' line, FIG. 4 is a sectional view of the main part showing the open state of the high-pressure valve device, FIG. 6 is a perspective view of the main part of the cylinder plate, and FIG. 6 is a sectional view of a conventional rotary compressor. It is a diagram. 51... Airtight container, 53... Compression element,
52...Electric element, 54...Crankshaft, 55.56...Side plate, 57...
... Cylinder plate, 58 ... Rotor, 6
0...Compression chamber, 61...Low pressure chamber, 62
...High pressure chamber, 59... Vane, 66.
...Suction valve, 70...Discharge valve, 72...
...High pressure side inlet port, 74...High pressure side outlet port, 73...Discharge pipe, 79...Pressure channel, 76...High pressure valve Room, 76...
Low pressure side port, 77...High pressure pulp. Name of agent: Patent attorney Toshio Nakao and 1 other person σ1
-@Each 66- Kuchifriend Masu,, -@Kin I! −
72-1 + pressure/J entry port, f", 3--Ichitobian 23- Toro rumor fsu/-crank h
74-4&(tl Tomoe Roport, f6.I6--
- Void rate 7 yo 1-1 Naon high lure 16 hoo-'l non-tie delay 1-
71- ``Low Repulsion'' Funazume-to 42-1 Anti-i
77--・&u/1)()geka
1 figure
7day-4jL cut J4--- Crank car meat 37--- Jinon double plate 111 Rotor 8--- Vane 60-L 1t 61-(Pressure distribution.! 62-m- Ichirikan 6low-- Suction valve 77 --- One way enoguruf j7 --- N°ln7°7゛ rate 2 --- Island i4j'l entrance 73 --- Discharge mouth 76 --- Mr. L11) "ζ-Door 7 --- IfL No (Ruge 411th ward qco

Claims (1)

【特許請求の範囲】[Claims] 密閉容器と、この密閉容器内に収納される圧縮要素と電
動要素とを備え、前記圧縮要素は、クランク軸を軸支す
る軸受部を有するサイドプレートと、ロータを回転自在
に収納するシリンダプレートと、前記サイドプレートと
シリンダプレートとを重合して圧縮室を構成し、前記圧
縮室を低圧室と高圧室に仕切るベーンと、前記低圧室と
前記高圧室とに各々連通し、前記ベーンと近接して配置
される逆止弁作用をなす吸入弁と吐出弁と、前記密閉容
器内に常時連通する高圧側入口ポートと、吐出管に常時
連通する高圧側出口ポートと、導圧路にて前記圧縮室の
低圧室に直接連通する低圧側ポートと、前記高圧側入口
ポートと前記高圧側出口ポートを一側面として、前記低
圧側ポートを他側面とした高圧バルブ室を備え、前記高
圧側入口ポートと前記高圧側出口ポートとを一端面にて
同時に閉鎖し、他端面で前記低圧側ポートを閉鎖可能で
前記高圧バルブ室内を往復動可能な円筒状の高圧バルブ
を備えたロータリ圧縮機。
The compressor includes a closed container, a compression element and an electric element housed in the closed container, and the compression element includes a side plate having a bearing portion that pivotally supports a crankshaft, and a cylinder plate that rotatably houses a rotor. , a compression chamber is formed by superimposing the side plate and the cylinder plate, a vane that partitions the compression chamber into a low pressure chamber and a high pressure chamber, and a vane that communicates with the low pressure chamber and the high pressure chamber, and is adjacent to the vane. A suction valve and a discharge valve that function as check valves are arranged in the airtight container, a high-pressure side inlet port that constantly communicates with the airtight container, a high-pressure side outlet port that constantly communicates with the discharge pipe, and a low pressure side port that directly communicates with the low pressure chamber of the chamber; a high pressure valve chamber that has the high pressure side inlet port and the high pressure side outlet port as one side and the low pressure side port as the other side; A rotary compressor comprising a cylindrical high-pressure valve capable of simultaneously closing the high-pressure side outlet port at one end face, closing the low-pressure side port at the other end face, and capable of reciprocating within the high-pressure valve chamber.
JP28861985A 1985-12-20 1985-12-20 Rotary compressor Pending JPS62147088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28861985A JPS62147088A (en) 1985-12-20 1985-12-20 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28861985A JPS62147088A (en) 1985-12-20 1985-12-20 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS62147088A true JPS62147088A (en) 1987-07-01

Family

ID=17732538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28861985A Pending JPS62147088A (en) 1985-12-20 1985-12-20 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS62147088A (en)

Similar Documents

Publication Publication Date Title
JP3051405B2 (en) A scroll compressor with an unloading valve between the economizer and the suction section
EP3783225B1 (en) Hermetic compressor and refrigeration cycle apparatus
US6793464B2 (en) Motor-driven compressor cooled by refrigerant gas
JPS62147088A (en) Rotary compressor
EP0250665B1 (en) A rotary compressor
CN211343341U (en) Scroll compressor having a plurality of scroll members
GB2579937A (en) Hermetic compressor and refrigeration cycle device
JPS61212685A (en) Rotary compressor
JPS6238890A (en) Rotary compressor
JPS62118086A (en) Enclosed rotary compressor
JPS62147092A (en) Rotary compressor
US7563081B2 (en) Gas compressor
JPS62199995A (en) Rotary compressor
JP2008240691A (en) Coolant suction structure of fixed displacement piston type compressor and operation control method of fixed displacement piston type compressor
JPS62147089A (en) Rotary compressor
JPS62147090A (en) Enclosed rotary compressor
JPS6293494A (en) Rotary compressor
JPS62199994A (en) Rotary compressor
JPS62182495A (en) Rotary compressor
JPH066954B2 (en) Rotary compressor
JPS62147091A (en) Rotary compressor
JPS62118087A (en) Rotary compressor
US20180245595A1 (en) Intermediate discharge port for a compressor
JPH07117054B2 (en) Rotary compressor
KR100539826B1 (en) Bypass valve assembly for capacity variable type rotary compressor