JPS62118086A - Enclosed rotary compressor - Google Patents

Enclosed rotary compressor

Info

Publication number
JPS62118086A
JPS62118086A JP25697985A JP25697985A JPS62118086A JP S62118086 A JPS62118086 A JP S62118086A JP 25697985 A JP25697985 A JP 25697985A JP 25697985 A JP25697985 A JP 25697985A JP S62118086 A JPS62118086 A JP S62118086A
Authority
JP
Japan
Prior art keywords
port
pressure side
pressure
valve
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25697985A
Other languages
Japanese (ja)
Inventor
Takao Higashikura
東倉 孝夫
Masao Mangyo
万行 政男
Masaaki Okubo
大久保 雅明
Hidetoshi Nishihara
秀俊 西原
Kyushichi Hashizume
橋爪 久七
Etsuro Suzuki
悦郎 鈴木
Jiyunichirou Yahiki
純一郎 矢引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP25697985A priority Critical patent/JPS62118086A/en
Publication of JPS62118086A publication Critical patent/JPS62118086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize a valve opening operation by providing a high pressure valve which can simultaneously close high pressure side inlet and outlet ports on one side while closing a low pressure side port on the other side, and expediting pressure drop on said low pressure port which serves as a driving force for opening this valve. CONSTITUTION:A high pressure side inlet port 72 which is always connected into an enclosed container 51 and a high pressure side outlet port 74 which is always connected to a discharge pipe 73 are provided adjacent to each other. Also, a low pressure side port 76 which is connected to a low pressure part through an introducing passage 79, is provided opposite to the high pressure side inlet port 72 and the high pressure side outlet port 74, while providing a disk-like high pressure valve 77. This high pressure valve 77 simultaneously closes the high pressure side inlet port 72 and the high pressure side outlet port 74 on one side by means of a bias spring 78 while it can close the low pressure side port 76 on the other side. Thereby, it is not necessary to reduce a clearance between a ball valve and a valve cylinder in which the ball valve slides as in the conventional case, and pressure drop on the low pressure side port 76 which serves as a driving force for opening the high pressure valve 77, can be carried out securely and in a short time, stabilizing a valve opening operation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は冷蔵庫、ショーケース等の冷凍装置に使用され
る密閉型ロータリ圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a hermetic rotary compressor used in refrigeration equipment such as refrigerators and showcases.

従来の技術 密閉型ロータリ圧縮機(以下圧縮機と呼ぶ)をサイクリ
ング運転することにより庫内を冷却する装置においては
、停止時に、システム内の高圧側に存在する高温冷媒が
低圧の冷却器に流れ込み熱負荷となるため、装置の消費
電力量が増大する。
Conventional technologyIn a device that cools the interior of a refrigerator by cycling a hermetic rotary compressor (hereinafter referred to as a compressor), when the system is stopped, high-temperature refrigerant existing on the high-pressure side of the system flows into the low-pressure cooler. Since it becomes a heat load, the power consumption of the device increases.

この現象を防止するために、圧縮機内に停止時に低圧側
、高圧側の冷媒路を閉鎖する技術が提案されている。
In order to prevent this phenomenon, a technique has been proposed in which the refrigerant passages on the low-pressure side and high-pressure side are closed in the compressor when the compressor is stopped.

以下第6図を参照しながら上述した従来の圧縮機につい
て説明する。
The conventional compressor mentioned above will be explained below with reference to FIG.

第6図において、1は圧縮機、2は密閉容器で、3はシ
リンダプレート、3aはシリンダ、4はクランク軸で、
その偏心部4aには、ローラ5が摺動自在に配置しであ
る。6は、圧縮室7内を高・低圧室に仕切るベーンであ
る。8は逆止弁作用をなす吸入弁であり、薗示しない吸
入管と連通ずる吸入ポートを閉鎖する。また9は吐出弁
で、圧縮室7内で圧縮された冷媒ガスは吐出弁9を通過
して、密閉容器2内に吐出される。10は圧縮機1の運
転時に開路、停止時に閉路する高圧パルプである。この
高圧パルプ1oは、密閉容器2を貫通する吐出管11.
に連通した高圧側出口ポート12と、常時密閉容器2内
に連通ずる高圧側入口ポート13を備えている。また導
圧管14にて吸入路16と連通ずる低圧側ポート16を
備えている。
In Fig. 6, 1 is a compressor, 2 is a closed container, 3 is a cylinder plate, 3a is a cylinder, 4 is a crankshaft,
A roller 5 is slidably arranged on the eccentric portion 4a. 6 is a vane that partitions the inside of the compression chamber 7 into high and low pressure chambers. Reference numeral 8 designates a suction valve that functions as a check valve, and closes a suction port that communicates with a suction pipe (not shown). Further, 9 is a discharge valve, and the refrigerant gas compressed within the compression chamber 7 passes through the discharge valve 9 and is discharged into the closed container 2. 10 is a high-pressure pulp whose circuit is opened when the compressor 1 is in operation and closed when it is stopped. This high-pressure pulp 1o is delivered through a discharge pipe 11 passing through a closed container 2.
A high pressure side outlet port 12 that communicates with the inside of the closed container 2 and a high pressure side inlet port 13 that constantly communicates with the inside of the closed container 2 are provided. Further, a low pressure side port 16 is provided which communicates with the suction passage 16 through a pressure guiding pipe 14.

17は高圧側出口ポート12と低圧側ポート16を交互
に開閉するボール弁である。18は常にボール弁17を
高圧側出口ポート12側へ偏倚さすバイアスバネである
17 is a ball valve that alternately opens and closes the high pressure side outlet port 12 and the low pressure side port 16. 18 is a bias spring that always biases the ball valve 17 toward the high pressure side outlet port 12.

かかる構成において、圧縮機1が停止中においては、導
圧管14内の圧力と密閉容器2内の圧力は均衡しており
、バイアスバネ18のカおよび密閉容器2内の圧力と冷
却システム側圧力の差により生じる力によりボール弁1
7は高圧側出口ポート12を閉鎖している。従って密閉
容器2の空間内に充填している高圧高温ガスは、吐出管
11を介して冷却システムへ流出することはない。まだ
このとき逆止弁動作する吸入弁8も閉鎖しておシ、吸入
管(図示せず)を介して冷却システムへ流出することも
阻止される。
In this configuration, when the compressor 1 is stopped, the pressure inside the impulse pipe 14 and the pressure inside the closed container 2 are balanced, and the force of the bias spring 18, the pressure inside the closed container 2, and the cooling system side pressure are balanced. Ball valve 1 due to the force caused by the difference
7 closes the high pressure side outlet port 12. Therefore, the high-pressure and high-temperature gas filling the space of the closed container 2 does not flow out to the cooling system via the discharge pipe 11. The suction valve 8, which is still check-operated at this time, is also closed and any outflow to the cooling system via the suction pipe (not shown) is also prevented.

次に起動時について説明する。起動により圧縮室7内の
低圧室の圧力低下にょシ吸入路15、導圧管14内の圧
力が低下して高圧パルプ1Qの高圧側入口ポート13側
と低圧ポート16側に圧力差を生じて、高圧側出口ポー
ト12に吸着しているボール弁17をバイアスバネ18
の力に抗して引きはなし、高圧側出口ポート12を開略
し、ボール弁1了は低圧側ポート16に吸着シールし、
通常の運転に入るものである。
Next, the startup time will be explained. Due to the activation, the pressure in the low pressure chamber in the compression chamber 7 decreases, and the pressure in the suction passage 15 and the pressure guide pipe 14 decreases, creating a pressure difference between the high pressure side inlet port 13 side and the low pressure port 16 side of the high pressure pulp 1Q. The bias spring 18 holds the ball valve 17 adsorbed on the high pressure side outlet port 12.
It is not pulled against the force, the high pressure side outlet port 12 is opened, and the ball valve 1 is suction-sealed to the low pressure side port 16.
This is normal operation.

発明が解決しようとする問題点 しかしながら上記のような構成では、ボール弁17とこ
のボール弁17が摺動するパルプシリンダ19との間の
クリアランスの存在によりボール弁17を高圧側出口ポ
ートより引きはなすための開弁力となる低圧側ポートの
圧力低下がえにくく、クリアラン2を最小限に押える必
要があるが、このことは加工精度、マツチング組立等の
加工コストの上昇をまぬがれぬばかりでなく、運転中の
回転摺動部から発生する摩耗粉等の異物が、クリアラン
ス内に入り込み最悪の場合は、ボール弁17においても
、一般スグール弁にみられるハイドロリックロック現象
に似た現象を生じ、ボール弁17の動作不能を生じかね
ない。またクリアランスの減少化を回避するために、ボ
ール弁17の有効受圧面積を増大することが考えられる
が、このことは高圧バルブ100組込みスペースが増大
するばかりか、重量の増加により動作時の衝撃音の発生
等の問題もある。更に図示した従来例においては、ボー
ル弁17のポートとして3次元曲面を成形しやすい黄銅
等の軟質金属が使用されるため部品点数、組立工数が増
加する。更にまた導圧管14についても同様でコスト上
昇を避けられず、かつ流路圧力損失により必要とする圧
力低下がえにくいものである。
Problems to be Solved by the Invention However, in the above configuration, due to the existence of a clearance between the ball valve 17 and the pulp cylinder 19 on which the ball valve 17 slides, the ball valve 17 is pulled out from the high pressure side outlet port. It is difficult to avoid pressure drop in the low-pressure side port, which is the opening force for the valve opening, and it is necessary to minimize clear run 2. However, this not only avoids increases in processing costs such as processing accuracy and matching assembly, but also In the worst case, foreign matter such as abrasion particles generated from rotating sliding parts during operation may enter the clearance, and in the worst case, a phenomenon similar to the hydraulic lock phenomenon seen in general Sgurle valves may occur in the ball valve 17, causing the ball to become damaged. This may cause the valve 17 to become inoperable. Furthermore, in order to avoid a reduction in clearance, it is conceivable to increase the effective pressure receiving area of the ball valve 17, but this not only increases the space for installing the high pressure valve 100, but also increases the weight and causes impact noise during operation. There are also problems such as the occurrence of Further, in the illustrated conventional example, a soft metal such as brass, which can be easily formed into a three-dimensional curved surface, is used as the port of the ball valve 17, which increases the number of parts and the number of assembly steps. Furthermore, the same applies to the pressure guiding pipe 14, which inevitably increases the cost and makes it difficult to reduce the required pressure due to pressure loss in the flow path.

本発明は上記した問題点に鑑み、起動時における必要圧
力差をクリアランスの減少あるいはパルプの有効受圧面
積の増加等をすることなしに得られるようにし、かつ取
付スペースを減少するとともに部品点数を減少し製造コ
ストを低減して密閉型ロータリ圧縮機の運転停止時に高
温冷媒が低圧の冷却器に流れ込み熱負荷となるのを防止
することを目的としている。
In view of the above-mentioned problems, the present invention makes it possible to obtain the required pressure difference at startup without reducing the clearance or increasing the effective pressure-receiving area of the pulp, and also reduces the installation space and the number of parts. The purpose is to reduce manufacturing costs and prevent high-temperature refrigerant from flowing into the low-pressure cooler and causing a heat load when the hermetic rotary compressor is stopped.

問題点を解決するだめの手段 上記問題点を解決するために本発明の圧縮機は、密閉容
器と、この密閉容器内に収納される圧縮要素とを備え、
前記圧縮要素は、クランク軸を軸支する軸受部を有する
サイドプレートと、ロータを回転自在に収納するシリン
ダプレートと、前記サイドプレー1・とシリンダプレー
トとを重合して圧縮室を構成し、前記圧縮室を低圧室と
高圧室に仕切るベーンと、前記低圧室と前記高圧室とに
各々連通し、前記ベーンと近接して配置される逆止弁作
用をなす吸入弁と吐出弁とを備え、前記密閉容器内に常
時連通する高圧側入口ポートと、吐出管に常時連通する
高圧側出口ポートとを隣接して備え、前記シリンダプレ
ートに一端がシリンダプレートに形成した導圧路にて前
記シリンダー内の前記吸入弁と前記低圧室との間の低圧
部に連通ずる低圧側ポートを備え、前記高圧側入口ポー
ト及び高圧側出口ポートを前記低圧側ポートの他端に相
対応して配置し、前記高圧側入口ポートと前記高圧側出
口ポートとを一側面にて同時に閉鎖し、他側面で前記低
圧側ポートの他端を閉鎖可能なディスク状の高圧パルプ
を備えたという構成のものである。
Means for Solving the Problems In order to solve the above problems, the compressor of the present invention includes a closed container and a compression element housed within the closed container.
The compression element includes a side plate having a bearing portion that pivotally supports the crankshaft, a cylinder plate that rotatably houses the rotor, and a compression chamber formed by superimposing the side plate 1 and the cylinder plate, and comprising a vane that partitions a compression chamber into a low pressure chamber and a high pressure chamber, and a suction valve and a discharge valve that communicate with the low pressure chamber and the high pressure chamber, respectively, and function as a check valve and are disposed in close proximity to the vane, A high-pressure side inlet port that is always in communication with the airtight container and a high-pressure side outlet port that is always in communication with the discharge pipe are provided adjacent to each other, and one end is connected to the cylinder plate through a pressure guide path formed in the cylinder plate. a low pressure side port that communicates with a low pressure section between the suction valve and the low pressure chamber, the high pressure side inlet port and the high pressure side outlet port are arranged correspondingly to the other end of the low pressure side port, and the The high-pressure pulp has a disc-shaped high-pressure pulp that can simultaneously close the high-pressure side inlet port and the high-pressure side outlet port on one side, and close the other end of the low-pressure side port on the other side.

作  用 本発明は上記した構成に°よって、起動時において、高
圧側入口ポートおよび出口ポートが同時に閉鎖されてい
るため、低圧側ポートの圧力低下は極めて急峻に実現で
き、従って、停止時に低減するシステム内圧力と、はぼ
高圧状態に維持される密閉容器内圧力との差により生ず
るカにて高圧側入口ポート及び高圧側出口ポートに強力
に吸着している高圧パルプを開路することが可能でこの
初期の引き離し後は、速やかに低圧側ポートを閉鎖する
ものである。また、停止直後において、シリンダ内の圧
力は密閉容器内の圧力と例えばベーンとシリンダ間のク
リアランス等を介して急速に均衡する。一方、低圧側ポ
ートなので容積を最小限に設定できる構成であるため低
圧側ポート内と密閉容器内の圧、力均衡を短時間ででき
、従って低圧側ポートからの引き離しも短時間で行なわ
れ、バイアスバネ力によって高圧側入口、出口ポートを
急速に閉鎖する。
According to the above-described structure, the high-pressure side inlet port and the outlet port are closed at the same time at the time of startup, so that the pressure drop in the low-pressure side port can be realized extremely steeply, and therefore, the pressure decreases when the system is stopped. It is possible to open the high-pressure pulp that is strongly adsorbed to the high-pressure side inlet port and high-pressure side outlet port by the force generated by the difference between the internal pressure of the system and the internal pressure of the closed container, which is maintained in a nearly high-pressure state. After this initial separation, the low pressure side port is immediately closed. Immediately after stopping, the pressure within the cylinder quickly balances with the pressure within the closed container via, for example, the clearance between the vane and the cylinder. On the other hand, since it is a low-pressure side port, the volume can be set to a minimum, so the pressure and force balance in the low-pressure side port and the closed container can be established in a short time, and therefore, the separation from the low-pressure side port can be done in a short time. The high pressure side inlet and outlet ports are rapidly closed by bias spring force.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。
EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図において、50は圧縮機で、61は密閉容器、6
2はロータ52a、ステータ52bよシなる電動要素、
53は圧縮要素である。54はロータ52aに圧入固定
したクランク軸でサイドプレート55.58に形成した
軸受部55a、66aに回転自在に軸支される。57は
シリンダプレートで、クランク軸64の偏心部64aに
装着したロータ58が回転自在に装着されている。59
はロータ58の外周とシリンダプレート67の内周およ
びサイドプレー)55,56で固定される圧縮室60を
低圧室61と高圧室62に仕切るベーンであり、59a
はベーン溝である。63はサイドプレート55.56、
シリンダプレート57を重合固定するボルトである。6
4は蒸発器64aから冷媒ガスを圧縮室6oに導ひく吸
入管で、サイドプレート65の圧入ボア65に圧入固定
されている。圧入ボア65のシリンダプレート57側の
鏡板端面はディスク状の吸入弁66のバルブシート面を
構成している。この圧入ボア66に連らなりベーン69
に近接し、シリンダプレート57に連通ずる吸入路67
には、前記吸入弁66が収納されるとともに、常に弱い
力でこの弁66を閉鎖状態を保つバイアスバネ68が収
納されている。
In FIG. 1, 50 is a compressor, 61 is a closed container, and 6
2 is an electric element such as a rotor 52a and a stator 52b;
53 is a compression element. A crankshaft 54 is press-fitted into the rotor 52a and rotatably supported by bearings 55a and 66a formed on side plates 55 and 58. Reference numeral 57 denotes a cylinder plate, on which a rotor 58 mounted on an eccentric portion 64a of a crankshaft 64 is rotatably mounted. 59
59a is a vane that partitions the compression chamber 60 fixed by the outer periphery of the rotor 58, the inner periphery of the cylinder plate 67, and the side plates 55 and 56 into a low pressure chamber 61 and a high pressure chamber 62;
is the vane groove. 63 is side plate 55.56,
These are bolts for overlapping and fixing the cylinder plate 57. 6
Reference numeral 4 denotes a suction pipe that guides refrigerant gas from the evaporator 64a to the compression chamber 6o, and is press-fitted and fixed into the press-fit bore 65 of the side plate 65. The end surface of the end plate of the press-fit bore 65 on the cylinder plate 57 side constitutes a valve seat surface of a disk-shaped suction valve 66. A vane 69 is connected to this press-fit bore 66.
A suction passage 67 adjacent to the cylinder plate 57 and communicating with the cylinder plate 57
The suction valve 66 is housed in the housing, and a bias spring 68 that always keeps the valve 66 closed with a weak force is housed therein.

また69は吸入弁66の開放時の動きを規制する段部で
ある。7oは圧縮室6Qの圧縮された冷媒ガスを直接あ
るいはプリクーラパイプ(図示せず)を経由して密閉容
器61内に導出する吐出弁である(第2図)o71は高
圧パルプ装置であシ、クランク軸54とほぼ同一高さに
配置されているLこの高圧パルプ71は、サイドプレー
ト65にクランク軸64の軸方向にのびる複数個の高圧
側入口ポート72と、密閉容器51を貫通する吐出管7
3に連通ずる高圧側出口ポート74を備えている。更に
シリ・ンダプレート67には、隣接した前記各ポート7
2.74に相対応して形成した共通のパルプシリンダ7
5が備えてあシ、このパルプシリンダ75の底部には低
圧側ポート76が形成しである。77はディスク状の高
圧パルプで、−側面にて前記高圧側入口、出口ポート7
2.74を閉鎖可能で、他側面にて低圧側ポート76を
閉鎖可能である。ア8は常に高圧側入口、出口ポート7
2.74を閉鎖するように付勢するバイアスバネである
。79は低圧側ポート76と一方のサイドプレート56
側の開口アロaよりシリンダプレート57内の前記吸入
弁66と前記低圧室61との間の低圧部に連通する導圧
路である。
Further, 69 is a stepped portion that restricts the movement of the suction valve 66 when it is opened. 7o is a discharge valve that discharges the compressed refrigerant gas from the compression chamber 6Q directly or via a precooler pipe (not shown) into the closed container 61 (Fig. 2). , the high-pressure pulp 71 is arranged at almost the same height as the crankshaft 54. The high-pressure pulp 71 has a plurality of high-pressure side inlet ports 72 extending in the axial direction of the crankshaft 64 on the side plate 65, and a discharge port penetrating the closed container 51. tube 7
3. Furthermore, the cylinder plate 67 has adjacent ports 7
2. Common pulp cylinder 7 formed correspondingly to 74
A low pressure side port 76 is formed at the bottom of the pulp cylinder 75. 77 is a disk-shaped high-pressure pulp, and the high-pressure side inlet and outlet ports 7 are connected to the - side.
2.74 can be closed, and the low pressure side port 76 can be closed on the other side. A8 is always the high pressure side inlet, outlet port 7
2.74 is a bias spring that biases it to close. 79 is the low pressure side port 76 and one side plate 56
This is a pressure guiding path that communicates with a low pressure portion between the suction valve 66 and the low pressure chamber 61 in the cylinder plate 57 from the side opening a.

以上のように構成された圧縮機について、以下その動作
について説明する。
The operation of the compressor configured as above will be explained below.

第1図は停止中の状態を示しており、逆止弁作用する低
圧弁66は閉鎖しており、また高圧バルブア7は高圧個
人ロポートア2および高圧側出口ポート74の双方を同
時に閉鎖している。このとき高圧パルプ77は高圧側出
口ポート74の上流・下流間の圧力差、即ち、蒸発器6
4aの配置されている冷却室温度におけ凝縮飽和圧力と
、密閉容器61の温度における飽和圧力との圧力差によ
る力およびわずかなバイアスバネ78力により閉鎖して
いる。
FIG. 1 shows the stopped state, in which the low pressure valve 66 that acts as a check valve is closed, and the high pressure valve 7 simultaneously closes both the high pressure personal port 2 and the high pressure side outlet port 74. . At this time, the high-pressure pulp 77 is affected by the pressure difference between the upstream and downstream of the high-pressure side outlet port 74, that is, the evaporator 6
It is closed by the force due to the pressure difference between the condensation saturation pressure at the temperature of the cooling chamber 4a and the saturation pressure at the temperature of the closed container 61, and by a slight force of the bias spring 78.

従って、密閉容器61内の高温高圧ガスは凝縮器80お
゛よび蒸発器64&への流れを阻止され、蒸発器64a
への侵入熱負荷を軽減する。
Therefore, the high-temperature, high-pressure gas in the closed container 61 is prevented from flowing to the condenser 80 and the evaporator 64&, and the evaporator 64a
reduce the intrusion heat load.

次に起動時について説明する。Next, the startup time will be explained.

電動要素52の通電によシフランク軸54が回転し、圧
縮室60の低圧室61の圧力低下が生じる。この圧力低
下は高圧パルプ77とバ/17ブシリンダ75間の比較
的ラフなりリアランス(例えば0.1mm程度)におい
ても、高圧側入口ポート72が閉鎖しているため確実に
極めて短時間に行なわれる。この圧力低下は、自然導圧
路79.低圧側ポート76、バルプシリンダア5内の圧
力低下となり、高圧側入口ポート72即ち密閉容器51
内圧力とパルプシリンダ75内の圧力差が高圧パルプ7
7に作用し、強力に高圧側出口ポート72側に吸着して
いる高圧パルプ7Tを引きはなす〇この高圧パルプ7ア
の初期引きはなし動作ののちは、ガス流の動圧も加味さ
れて高圧パルプ77はバイアスバネ78の力に抗して低
圧側ポート76を閉鎖し、開弁動作を完了する。一方吸
入弁66も開路し、通常の冷却運転が行なわれる。
When the electric element 52 is energized, the shift flank shaft 54 rotates, causing a pressure drop in the low pressure chamber 61 of the compression chamber 60. This pressure reduction is reliably carried out in a very short time even in a relatively rough clearance between the high pressure pulp 77 and the valve cylinder 75 (for example, about 0.1 mm) because the high pressure side inlet port 72 is closed. This pressure drop is caused by the natural pressure path 79. The pressure in the low pressure side port 76 and the valve cylinder 5 decreases, and the high pressure side inlet port 72, that is, the closed container 51
The difference between the internal pressure and the pressure inside the pulp cylinder 75 is the high pressure pulp 7
7, and strongly pulls out the high-pressure pulp 7T adsorbed on the high-pressure side outlet port 72 side. After this initial pulling operation of the high-pressure pulp 7A, the dynamic pressure of the gas flow is also taken into account, and the high-pressure pulp 7T is pulled out. 77 closes the low pressure side port 76 against the force of the bias spring 78 and completes the valve opening operation. On the other hand, the suction valve 66 is also opened, and normal cooling operation is performed.

次に停止時の動作に°ついて説明する。Next, the operation when stopped will be explained.

クランク軸64の回転停止すると、吸入管64内のガス
流の停止により吸入弁66が閉鎖する。
When the crankshaft 64 stops rotating, the gas flow in the suction pipe 64 is stopped, and the suction valve 66 is closed.

またシリンダ60内を高圧室62と低圧室61に区画し
ているオイルシールが破れ、密閉容器51内の高圧ガス
は例えばベーン59とベーン溝59aのクリアランス等
より低圧室61内を昇圧する。
Further, the oil seal that divides the inside of the cylinder 60 into a high pressure chamber 62 and a low pressure chamber 61 is broken, and the high pressure gas inside the closed container 51 increases the pressure inside the low pressure chamber 61 due to, for example, the clearance between the vane 59 and the vane groove 59a.

この昇圧作用は、導圧路79をへて低圧側ポート76に
およびかつ、導圧路ア9の容積が小さく形成できるため
昇圧時間を短縮できる。低圧側ポート76内の圧力と密
閉容器61内の圧力が均圧すると、バイアスバネ78の
力により高圧パルプ77は低圧側ポート76を離れ、高
圧側入口ポート72と高圧側出口ポート74を同時に閉
鎖する。
This pressure increasing effect extends to the low pressure side port 76 through the pressure guiding path 79, and since the volume of the pressure guiding path 9 can be formed small, the pressure increasing time can be shortened. When the pressure inside the low-pressure side port 76 and the pressure inside the closed container 61 are equalized, the high-pressure pulp 77 leaves the low-pressure side port 76 due to the force of the bias spring 78, closing the high-pressure side inlet port 72 and the high-pressure side outlet port 74 at the same time. do.

従って圧縮機停止中において、密閉容器51内の高圧高
温ガスを凝縮器80、蒸発器64aへ流出するのを阻止
する。
Therefore, when the compressor is stopped, the high pressure and high temperature gas in the closed container 51 is prevented from flowing out to the condenser 80 and the evaporator 64a.

発明の効果 以上のように本発明は、密閉容器内に常時連通する高圧
側入口ポートと、吐出管に常時連通する高圧側出口ポー
トとを隣接して配置し、又導圧路により低圧部に連通ず
る低圧側ポートを、前記高圧側入口ポート及び高圧側出
口ポートに相対応して備え、前記高圧側入口ポートと高
圧側出口ポートとを一側面にて同時に閉鎖し、他側面で
前記低圧側ポートを閉鎖可能なディスク状の高圧パルプ
を備えたので、従来例のごとく、ボール弁とこの弁の摺
動するパルプシリンダ間のクリアランスを減少する必要
がなく、高圧パルプの開弁駆動力となる低圧側ポートの
圧力低下を確実に、かつ極めて短時間で行なえる。従っ
て安定した開弁動作を得られるばかりでなく、加工精度
1組立精度を緩和でき、生産性を向上できる。更に異物
による弁のロック現象等を起こすことがない。またパル
プの有効面積を増大することがなく、コンパクトに構成
できるとともに動作音の増大もない。一方間弁動作にお
いては低圧部に連通ずる導圧路を形成しであるため、導
圧管等の部品が不用であるばかりでなく導圧路容積を減
少し、停止後の低圧側ポート内圧力の昇圧時間を短縮し
、高圧側出口ポートの閉鎖所用時間を短かくでき、導圧
路に存在する冷媒ガスの再膨張による圧縮効率の低下を
きたさない等の多くの実用効果を有する。
Effects of the Invention As described above, the present invention arranges a high-pressure side inlet port that constantly communicates with the closed container and a high-pressure side outlet port that constantly communicates with the discharge pipe adjacent to each other, and also connects the low-pressure section with a pressure path. A low-pressure side port that communicates with the high-pressure side inlet port and high-pressure side outlet port is provided, and the high-pressure side inlet port and the high-pressure side outlet port are simultaneously closed on one side, and the low-pressure side port is closed on the other side. Since it is equipped with a disc-shaped high-pressure pulp that can close the port, there is no need to reduce the clearance between the ball valve and the pulp cylinder on which this valve slides, as in the conventional case, and the high-pressure pulp becomes the driving force for opening the valve. The pressure of the low pressure side port can be reduced reliably and in an extremely short time. Therefore, not only a stable valve opening operation can be obtained, but also processing accuracy and assembly accuracy can be relaxed, and productivity can be improved. Furthermore, there is no possibility of valve locking due to foreign matter. Furthermore, the effective area of the pulp does not increase, the structure can be made compact, and there is no increase in operating noise. On the other hand, during valve operation, a pressure path communicating with the low pressure section is formed, so parts such as a pressure pipe are not only unnecessary, but the volume of the pressure path is reduced, and the internal pressure of the low pressure side port after stopping is reduced. This method has many practical effects, such as shortening the pressure increase time, shortening the time required to close the high-pressure side outlet port, and preventing reduction in compression efficiency due to re-expansion of the refrigerant gas present in the pressure guide path.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す密閉型ロータリ圧縮機
の断面図、第2図、第3図は第1図の■n/線、m −
m’線における断面図、第4図は高圧パルプ装置の開弁
状態を示す要部断面図、第5図はシリンダプレートの要
部斜視図、第6図は従来の密閉型ロータリ圧縮機の断面
図である。 61・・・・・・密閉容器、52・・・・・・電動要素
、63・・・・・・圧縮要素、54・・・・・・クラン
ク軸、65.56・・・・・・サイドプレート、57・
・・・・・シリンダプレート、58・・・・・・ロータ
、59・・・・・・ベーン、6o・・・・・・圧縮室、
61・・・・・・低圧室、62・・・・・・高圧室、6
6・・・・・・吸入弁、70・・・・・・吐出弁、72
・・・・・・高圧側入口ポート、73・・・・・・吐出
管、74・・・・・・高圧側出口ポート、76・・・・
・・低圧側ポート、77・・・・・・高圧パルプ、76
a・・・・・・低圧側ポート一端(開口)、79・・・
・・・導圧路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名菓 
5rXJ
FIG. 1 is a sectional view of a hermetic rotary compressor showing an embodiment of the present invention, and FIGS. 2 and 3 are the n/line and m −
4 is a cross-sectional view of the main parts of the high-pressure pulp equipment showing the valve open state, Fig. 5 is a perspective view of the main parts of the cylinder plate, and Fig. 6 is a cross-section of a conventional hermetic rotary compressor. It is a diagram. 61... Airtight container, 52... Electric element, 63... Compression element, 54... Crankshaft, 65.56... Side Plate, 57.
... Cylinder plate, 58 ... Rotor, 59 ... Vane, 6o ... Compression chamber,
61...Low pressure chamber, 62...High pressure chamber, 6
6...Suction valve, 70...Discharge valve, 72
...High pressure side inlet port, 73...Discharge pipe, 74...High pressure side outlet port, 76...
...Low pressure side port, 77...High pressure pulp, 76
a... One end of the low pressure side port (opening), 79...
...Pressure path. Name of agent: Patent attorney Toshio Nakao and one other name
5rXJ

Claims (1)

【特許請求の範囲】[Claims] 密閉容器と、この密閉容器内に収納される圧縮要素と電
動要素とを備え、前記圧縮要素は、クランク軸を軸支す
る軸受部を有するサイドプレートと、ロータを回転自在
に収納するシリンダプレートと、前記サイドプレートと
シリンダプレートとを重合して圧縮室を構成し、前記圧
縮室を低圧室と高圧室に仕切るベーンと、前記低圧室と
前記高圧室とに各々連通し、前記ベーンと近接して配置
される逆止弁作用をなす吸入弁と吐出弁とを備え、前記
密閉容器内に常時連通する高圧側入口ポートと、吐出管
に常時連通する高圧側出口ポートとを隣接して備え、前
記シリンダプレートに一端がシリンダプレートに形成し
た導圧路にて前記シリンダー内の前記吸入弁と前記低圧
室との間の低圧部に連通する低圧側ポートを備え、前記
高圧側入口ポート及び高圧側出口ポートを前記低圧側ポ
ートの他端に相対応して配置し、前記高圧側入口ポート
と前記高圧側出口ポートとを一側面にて同時に閉鎖し、
他側面で前記低圧側ポートの他端を閉鎖可能なディスク
状の高圧バルブを備えた密閉型ロータリ圧縮機。
The compressor includes a closed container, a compression element and an electric element housed in the closed container, and the compression element includes a side plate having a bearing portion that pivotally supports a crankshaft, and a cylinder plate that rotatably houses a rotor. , a compression chamber is formed by superimposing the side plate and the cylinder plate, a vane that partitions the compression chamber into a low pressure chamber and a high pressure chamber, and a vane that communicates with the low pressure chamber and the high pressure chamber, and is adjacent to the vane. a suction valve and a discharge valve disposed as check valves, and adjacently provided with a high-pressure side inlet port that constantly communicates with the closed container and a high-pressure side outlet port that constantly communicates with the discharge pipe, The cylinder plate includes a low pressure side port, one end of which communicates with a low pressure section between the suction valve and the low pressure chamber in the cylinder through a pressure guide path formed in the cylinder plate, and the high pressure side inlet port and the high pressure side an outlet port is disposed in correspondence with the other end of the low pressure side port, and the high pressure side inlet port and the high pressure side outlet port are simultaneously closed on one side;
A closed rotary compressor comprising a disc-shaped high-pressure valve that can close the other end of the low-pressure side port on the other side.
JP25697985A 1985-11-15 1985-11-15 Enclosed rotary compressor Pending JPS62118086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25697985A JPS62118086A (en) 1985-11-15 1985-11-15 Enclosed rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25697985A JPS62118086A (en) 1985-11-15 1985-11-15 Enclosed rotary compressor

Publications (1)

Publication Number Publication Date
JPS62118086A true JPS62118086A (en) 1987-05-29

Family

ID=17300032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25697985A Pending JPS62118086A (en) 1985-11-15 1985-11-15 Enclosed rotary compressor

Country Status (1)

Country Link
JP (1) JPS62118086A (en)

Similar Documents

Publication Publication Date Title
CN113464429A (en) Scroll compressor
JPH09170574A (en) Scroll gas compressor
JP3028054B2 (en) Scroll gas compressor
EP3783225A1 (en) Hermetic compressor and refrigeration cycle apparatus
US5201648A (en) Screw compressor mechanical oil shutoff arrangement
EP0250665B1 (en) A rotary compressor
JP3344843B2 (en) Scroll compressor
JPS62118086A (en) Enclosed rotary compressor
JPS6238890A (en) Rotary compressor
JPS62147090A (en) Enclosed rotary compressor
JPS62147089A (en) Rotary compressor
JPH066954B2 (en) Rotary compressor
CN113472133A (en) Electric compressor
JPS61212685A (en) Rotary compressor
JPS62147091A (en) Rotary compressor
JPH09158856A (en) Scroll gas compressor
JPH0713518B2 (en) Rotary compressor
JPH0713517B2 (en) Rotary compressor
JPH07158570A (en) Scroll compressor
JPH09217690A (en) Scroll gas compressor
JPS6293494A (en) Rotary compressor
JPS62199995A (en) Rotary compressor
JPS62147088A (en) Rotary compressor
JPS62147092A (en) Rotary compressor
JPS62118087A (en) Rotary compressor