JPS621462B2 - - Google Patents

Info

Publication number
JPS621462B2
JPS621462B2 JP5963882A JP5963882A JPS621462B2 JP S621462 B2 JPS621462 B2 JP S621462B2 JP 5963882 A JP5963882 A JP 5963882A JP 5963882 A JP5963882 A JP 5963882A JP S621462 B2 JPS621462 B2 JP S621462B2
Authority
JP
Japan
Prior art keywords
less
present
alloy
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5963882A
Other languages
Japanese (ja)
Other versions
JPS58177431A (en
Inventor
Takao Minami
Hiroo Nagano
Kazuo Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5963882A priority Critical patent/JPS58177431A/en
Publication of JPS58177431A publication Critical patent/JPS58177431A/en
Publication of JPS621462B2 publication Critical patent/JPS621462B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Crを含有するNi基合金、特に耐応
力腐食割れ性を改善したNi―Cr合金に関する。 Crを含有するNi基合金は、元来、耐応力腐食
割れ性にすぐれた材料である。それ故、加圧水型
原子炉の蒸気発生器管のように、極度に応力腐食
割れを嫌う部品には、Alloy600(75%Ni、15%
Cr、8%Fe)等の高CrのNi基合金が使用されて
いる。ところが上記Alloy600であつても、蒸気発
生器管に使用する場合使用条件如何では応力腐食
割れを生じる場合がある。 この応力腐食割れは、およそ、引張応力の存
在、使用する環境条件に由来する要因、および材
料自体の要因の3要素が揃つたときに発生するの
であり、その1要素でも完全に除去すれば、この
割れは防止できるものである。 しかし、例えば上記の蒸気発生器に使用する場
合には、その表面研摩および曲げ加工による残留
応力、また原子炉運転時の熱応力等による引張応
力は不可避なものである。さらに使用環境に起因
する要因についても、使用する水について非常に
厳格な水質管理を行つているが、それにもかかわ
らずそのような要因を完全に排除できるとはいい
難い。 従つて応力腐食割れの防止は、材料の特性自体
を改善し応力腐食割れ感受性を下げることが最善
の方法である。 ところが、Crを含有する高Ni合金では、Cの
固溶量が小さいため、精錬過程でC含有量を可能
なかぎり低下させても、溶接施工などの工程で
Cr炭化物が主として結晶粒界に析出するため、
結晶粒界におけるCrの欠乏層が形成されて、そ
の部分の耐食性が劣化する。 ここに、本発明者らは30Cr―60Ni系合金の耐
応力腐食割れ性を改善することを目的に種々検討
を重ねたところ、この種のNi基合金に不純物と
して通常20ppm以上含有されているB(ボロ
ン)が、通常900〜1050℃で行なわれる最終焼鈍
時、あるいはその後の冷却時に粒界に析出および
偏析し、この粒界に析出および偏析したBによつ
て合金の鋭敏化が加速されて耐応力腐食割れ性が
低下するとの知見を得、さらに一連の実験を行な
つたところ、不純物としてのBを10ppm以下に
制限することによつてそのような鋭敏化が阻止で
きることを見い出し、本発明を完成した。 よつて、本発明の要旨とするところは、 C:0.15%以下、Si:1.0%以下、 Mn:1.0%以下、P:0.030%以下、 S:0.030%以下、Cr:25〜35%、 Ti:0.01〜1.0%、 Fe:6.0〜10.0%、Al:0.01〜1.0% Zr:0.01〜1.5%、残部Niから成り、合金不純
物としてのBを10ppm以下に制限したことを特
徴とする、耐応力腐食割れ性のすぐれたNi―Cr
合金である。 本発明において合金の組成範囲を上記のように
制限した理由は次の通りである。 C:Cは耐応力腐食割れ性に有害な元素であるた
め、本発明にあつてはC量を0.15%以下とす
る。 Si、Mn:これらはいずれも脱酸元素であり、そ
れぞれ1.0%以下の添加が必要である。1.0%を
越えると、合金の清浄度を低下させる。 Al:Alは脱酸元素であり、本発明において0.01%
以上の添加を必要とするが、1%をこえて添加
すると合金の清浄度が低下する。つまり、Al
を0.01%以上、好ましくは、0.05%以上添加す
ることにより鋼中の酸素を0.005%以下にする
ことができ加工性が向上する。又1%をこえて
添加してもそれ以上加工性の向上はみられな
い。 Cr:Crは耐食性向上に必須の元素であり、25%
未満では本発明において要求される程度の耐食
性が確保されない。一方、35%を越えると、熱
間加工性が著しく劣化する。よつて、本発明で
はCr含有量を25〜35%に制限する。 P、S:これらの元素は一般に熱間加工性を害す
るが、0.030%以下では熱間加工に何ら実質的
な作用を及ぼすことがないため、本発明ではそ
れぞれ0.030%以下に限定する。 Fe:Feは熱間加工性を確保するために6.0%以上
の添加を必要とするが、10%を越えると耐食性
の低下がみられる。本発明ではFe6.0〜10%に
限定する。 Ti:Tiは0.01%以上添加することによつて熱間加
工性を向上させるが、一方、1.0%を越えて添
加してもその効果が飽和するため、Tiは0.01〜
1.0%とする。 Zr:Zrは本発明において添加される場合、0.01%
以上添加されるとき熱間加工性が改善される
が、1.5%を越えて添加すると合金の清浄度が
低下する。 B:BはNiに不純物として随伴する元素であつ
て、本発明が対象とするようなNi基合金に
は、一般に0.002%以上、通常は0.004%程度含
有される。しかし、すでに述べたように本発明
にあつては、特にBが耐応力腐食割れ性に有害
な元素であることが明らかになつたので、
0.001%以下に制限する。 Ni:Niは耐食性向上に有効な元素であり、特に
NaOHを含む高温高圧水中アルカリ環境下にお
ける耐応力腐食割れ性を向上させるためにNi
≧50%が必要である。 次に実施例によつて本発明をさらに具体的に説
明する。なお、以下の実施例は単に本発明を説明
するために示すものであつて、本発明がそれにの
み制限されるものでないことは当業者にとつては
明らかであろう。 実施例 第1表に合金組成を示す各種供試材を17Kg真空
炉で溶製し、得られた鋳塊に従来法に従つて鍛
造、熱間圧延そして熱処理を施してから30%の冷
間加工を施し、最終焼鈍を950〜1150℃で行なつ
た。得られた各供試材から2mm(厚)×10mm
(幅)×75mm(長さ)の応力腐食割れ試験片を採取
した。 これらの応力腐食割れ試験片はエメリー紙320
番で研磨後、U字型に曲げてU―ベント試験片と
し、それらをオートクレーブ(高温高圧容器)を
用いて、330℃で、50%NaOH(苛性ソーダ)溶
液中で1000時間の浸漬試験に供した。試験後、応
力腐食割れの深さを顕微鏡で測定した。
The present invention relates to a Ni-based alloy containing Cr, particularly a Ni--Cr alloy with improved stress corrosion cracking resistance. Ni-based alloys containing Cr are originally materials with excellent stress corrosion cracking resistance. Therefore, Alloy600 (75% Ni, 15%
High Cr, Ni-based alloys such as Cr, 8% Fe) are used. However, even with Alloy 600, stress corrosion cracking may occur under certain usage conditions when used in steam generator tubes. Stress corrosion cracking occurs when three factors are present: the presence of tensile stress, factors originating from the environmental conditions in which it is used, and factors related to the material itself. If even one of these factors is completely removed, This cracking can be prevented. However, when used in the above-mentioned steam generator, for example, residual stress due to surface polishing and bending, and tensile stress due to thermal stress during nuclear reactor operation, etc., are unavoidable. Furthermore, regarding factors caused by the usage environment, although extremely strict water quality control is carried out on the water used, it is difficult to say that such factors can be completely eliminated. Therefore, the best way to prevent stress corrosion cracking is to improve the material properties themselves and reduce the susceptibility to stress corrosion cracking. However, in high-Ni alloys containing Cr, the amount of solid solution of C is small, so even if the C content is reduced as much as possible during the refining process, it will not be possible in processes such as welding.
Since Cr carbides mainly precipitate at grain boundaries,
A Cr-deficient layer is formed at the grain boundaries, and the corrosion resistance of that area deteriorates. The present inventors conducted various studies with the aim of improving the stress corrosion cracking resistance of 30Cr-60Ni alloys, and found that B, which is normally contained as an impurity of 20 ppm or more in this type of Ni-based alloy, (Boron) precipitates and segregates at grain boundaries during final annealing, which is usually performed at 900 to 1050°C, or during subsequent cooling, and the sensitization of the alloy is accelerated by B precipitated and segregated at these grain boundaries. After obtaining the knowledge that stress corrosion cracking resistance decreases, and conducting a series of experiments, it was discovered that such sensitization can be prevented by limiting B as an impurity to 10 ppm or less, and the present invention has been developed. completed. Therefore, the gist of the present invention is as follows: C: 0.15% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 25-35%, Ti : 0.01~1.0%, Fe: 6.0~10.0%, Al: 0.01~1.0%, Zr: 0.01~1.5%, the balance is Ni, and the stress resistance is characterized by limiting B as an alloy impurity to 10 ppm or less. Ni-Cr with excellent corrosion cracking resistance
It is an alloy. The reason why the composition range of the alloy is limited as described above in the present invention is as follows. C: Since C is an element harmful to stress corrosion cracking resistance, in the present invention, the amount of C is set to 0.15% or less. Si, Mn: These are both deoxidizing elements, and each needs to be added in an amount of 1.0% or less. If it exceeds 1.0%, it will reduce the cleanliness of the alloy. Al: Al is a deoxidizing element, and in the present invention 0.01%
It is necessary to add more than 1%, but if it is added in excess of 1%, the cleanliness of the alloy will decrease. In other words, Al
By adding 0.01% or more, preferably 0.05% or more, the oxygen content in the steel can be reduced to 0.005% or less, improving workability. Further, even if it is added in an amount exceeding 1%, no further improvement in processability is observed. Cr: Cr is an essential element for improving corrosion resistance and has a content of 25%
If it is less than that, the corrosion resistance required in the present invention cannot be ensured. On the other hand, when it exceeds 35%, hot workability deteriorates significantly. Therefore, in the present invention, the Cr content is limited to 25 to 35%. P, S: These elements generally impair hot workability, but if they are 0.030% or less, they will not have any substantial effect on hot working, so in the present invention they are each limited to 0.030% or less. Fe: Fe needs to be added in an amount of 6.0% or more to ensure hot workability, but if it exceeds 10%, corrosion resistance decreases. In the present invention, Fe is limited to 6.0 to 10%. Ti: Ti improves hot workability by adding 0.01% or more, but on the other hand, the effect is saturated even if it is added in excess of 1.0%.
It shall be 1.0%. Zr: Zr is 0.01% when added in the present invention
When more than 1.5% is added, hot workability is improved, but when more than 1.5% is added, the cleanliness of the alloy decreases. B: B is an element that accompanies Ni as an impurity, and is generally contained in a Ni-based alloy such as the one targeted by the present invention in an amount of 0.002% or more, usually about 0.004%. However, as already mentioned, in the present invention, it has become clear that B is an element harmful to stress corrosion cracking resistance.
Limit to 0.001% or less. Ni: Ni is an effective element for improving corrosion resistance, especially
Ni to improve stress corrosion cracking resistance in high-temperature, high-pressure underwater alkaline environments containing NaOH.
≧50% is required. Next, the present invention will be explained in more detail with reference to Examples. It should be noted that it will be clear to those skilled in the art that the following examples are shown merely to explain the present invention, and the present invention is not limited thereto. Examples Various test materials whose alloy compositions are shown in Table 1 were melted in a 17Kg vacuum furnace, and the resulting ingots were forged, hot rolled, and heat treated according to conventional methods, followed by 30% cold rolling. Processing was performed and final annealing was performed at 950-1150°C. 2mm (thickness) x 10mm from each sample material obtained
(width) x 75 mm (length) stress corrosion crack test specimens were taken. These stress corrosion cracking specimens are made of emery paper 320
After polishing, the specimens were bent into a U-shape to obtain U-bent test specimens, which were then subjected to a 1000-hour immersion test in a 50% NaOH (caustic soda) solution at 330°C using an autoclave (high-temperature, high-pressure container). did. After the test, the depth of stress corrosion cracking was measured using a microscope.

【表】【table】

【表】【table】

【表】 このようにして得られた実験結果を第2表にま
とめて示す。本発明材の最大割れ深さが著しく小
さいことが分かる。これらの結果をさらにB含有
量についてまとめると添付図面に示すグラフが得
られる。B含有量を10ppm以下に制限すること
によつて応力腐食割れの最大割れ深さが著しく小
さくなつているのが分かる。図中、各番号は供試
材番号を示す。 このように、本発明によれば従来、原子炉の蒸
気発生器管用材料が使用されてきた実際の蒸気発
生器の環境よりも苛酷な条件下の応力腐食割れ試
験においても合金不純物としてのBの含有量を
10ppm以下に制限するだけで応力腐食割れを著
しく減少させることができるのであつて、本発明
の意義は大きい。
[Table] The experimental results thus obtained are summarized in Table 2. It can be seen that the maximum crack depth of the material of the present invention is extremely small. When these results are further summarized regarding the B content, the graph shown in the attached drawing is obtained. It can be seen that by limiting the B content to 10 ppm or less, the maximum crack depth of stress corrosion cracking is significantly reduced. In the figure, each number indicates the sample material number. As described above, according to the present invention, even in stress corrosion cracking tests under conditions more severe than the actual steam generator environment in which nuclear reactor steam generator tube materials have been conventionally used, B as an alloy impurity can be suppressed. content
The significance of the present invention is significant because stress corrosion cracking can be significantly reduced simply by limiting the content to 10 ppm or less.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、B含有量と応力腐食最大割れの深
さとの関係を示すグラフである。
The attached drawing is a graph showing the relationship between B content and maximum stress corrosion crack depth.

Claims (1)

【特許請求の範囲】 1 C:0.15%以下、 Si:1.0%以下、 Mn:1.0%以下、 P:0.030%以下、 S:0.030%以下、 Cr:25〜35%、 Ti:0.01〜1.0%、 Fe:6.0〜10.0%、 Al:0.01〜1.0%、 残部Niから成り、合金不純物としてのBを
10ppm以下に制限したことを特徴とする、耐応
力腐食割れ性のすぐれたNi―Cr合金。 2 C:0.15%以下、 Si:1.0%以下、 Mn:1.0%以下、 P:0.030%以下、 S:0.030%以下、 Cr:25〜35%、 Ti:0.01〜1.0%、 Zr:0.01〜1.5%、 Fe:6.0〜10.0%、 Al:0.01〜1.0%、 残部Niから成り、合金不純物としてのBを
10ppm以下に制限したことを特徴とする、耐応
力腐食割れ性のすぐれたNi―Cr合金。
[Claims] 1 C: 0.15% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 25 to 35%, Ti: 0.01 to 1.0%. , Fe: 6.0~10.0%, Al: 0.01~1.0%, the balance is Ni, with B as an alloy impurity.
A Ni-Cr alloy with excellent stress corrosion cracking resistance, limited to 10ppm or less. 2 C: 0.15% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.030% or less, S: 0.030% or less, Cr: 25-35%, Ti: 0.01-1.0%, Zr: 0.01-1.5 %, Fe: 6.0 to 10.0%, Al: 0.01 to 1.0%, balance Ni, with B as an alloy impurity.
A Ni-Cr alloy with excellent stress corrosion cracking resistance, limited to 10ppm or less.
JP5963882A 1982-04-12 1982-04-12 Ni-cr alloy with stress corrosion cracking resistance Granted JPS58177431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5963882A JPS58177431A (en) 1982-04-12 1982-04-12 Ni-cr alloy with stress corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5963882A JPS58177431A (en) 1982-04-12 1982-04-12 Ni-cr alloy with stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS58177431A JPS58177431A (en) 1983-10-18
JPS621462B2 true JPS621462B2 (en) 1987-01-13

Family

ID=13118960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5963882A Granted JPS58177431A (en) 1982-04-12 1982-04-12 Ni-cr alloy with stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS58177431A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462077A (en) * 1987-09-01 1989-03-08 Nec Corp Automatic call control system for facsimile equipment
JPH0226472A (en) * 1988-07-15 1990-01-29 Nec Corp Facsimile receiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462077A (en) * 1987-09-01 1989-03-08 Nec Corp Automatic call control system for facsimile equipment
JPH0226472A (en) * 1988-07-15 1990-01-29 Nec Corp Facsimile receiver

Also Published As

Publication number Publication date
JPS58177431A (en) 1983-10-18

Similar Documents

Publication Publication Date Title
EP0109350B1 (en) Nickel-chromium alloy
Loginow et al. Influence of Alloying Elements on the stress corrosion behavior of austenitic Stainless Steel
US3813239A (en) Corrosion-resistant nickel-iron alloy
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
JPS582265B2 (en) Ferrite Goukin
JPH0524985B2 (en)
JP5675958B2 (en) Heat generator tube for steam generator, steam generator and nuclear power plant
JPS6184348A (en) Ni alloy having superior resistance to intergranular corrosion and stress corrosion cracking and superior hot workability
JPS621462B2 (en)
US4408709A (en) Method of making titanium-stabilized ferritic stainless steel for preheater and reheater equipment applications
JPH0711366A (en) Alloy excellent in hot workability and corrosion resistance in high temperature water
JPH0372705B2 (en)
KR900001561B1 (en) High-strenth alloy and the article for industrial vessels
JP7226019B2 (en) Austenitic heat resistant steel
US4374666A (en) Stabilized ferritic stainless steel for preheater and reheater equipment applications
JPH0114991B2 (en)
JPS629665B2 (en)
TWI667357B (en) Ferritic stainless steel and automotive exhaust path components
JPH0153340B2 (en)
JPS5817823B2 (en) Heat treatment method for Ni-based alloy containing Cr
JPH06128671A (en) Alloy excellent in resistance to stress corrosion cracking
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JPH03100148A (en) Heat treatment for high cr-ni-base alloy
JPS59211545A (en) Nickel alloy with superior stress corrosion cracking resistance
JPS629186B2 (en)