JPS6214625B2 - - Google Patents

Info

Publication number
JPS6214625B2
JPS6214625B2 JP57201418A JP20141882A JPS6214625B2 JP S6214625 B2 JPS6214625 B2 JP S6214625B2 JP 57201418 A JP57201418 A JP 57201418A JP 20141882 A JP20141882 A JP 20141882A JP S6214625 B2 JPS6214625 B2 JP S6214625B2
Authority
JP
Japan
Prior art keywords
temperature
stainless steel
erosion
content
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57201418A
Other languages
Japanese (ja)
Other versions
JPS5993853A (en
Inventor
Yoshiaki Shida
Hisao Fujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20141882A priority Critical patent/JPS5993853A/en
Publication of JPS5993853A publication Critical patent/JPS5993853A/en
Publication of JPS6214625B2 publication Critical patent/JPS6214625B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、石炭焚ボイラ、COM(微粉炭と
重油の混合物)焚ボイラ、流動床ボイラ、あるい
は石炭液化・ガス化装置等の構造部材として使用
されるステンレス鋼にかかり、特に高温での固体
粒子エロージヨンにさらされる環境下での使用に
際して、優れた耐エロージヨン性を示すAl含有
フエライト系ステンレス鋼に関するものである。 近年、エネルギー事情の変化により、石油に代
つて再び石炭をエネルギー源として利用する傾向
が高まつてきており、例えば石炭焚ボイラ、
COM焚ボイラ、石炭液化・ガス化装置等の急増
をもたらすに至つている。 そして、このような状況を背景に、上記のよう
に石炭微粉末や石炭燃焼灰分の高速流動を伴う高
温装置部材の重大な損傷形態として、高温での固
体粒子エロージヨンが強く認識されるようになつ
てきた。 もちろん、石炭焚ボイラに限つて言えば、これ
は格別新しいものではなく古くから使用されてき
ているものであるが、近年の石油火力応用装置に
匹敵する能力を有するものとしての要望から、そ
の形態は大型化し、かつ高性能化する状況にあ
り、エロージヨン損傷に対する対策の重要性は以
前のものに比べて格段に大きくなつているのであ
る。 従来、このような石炭燃焼装置等のエロージヨ
ンを防止する手立てとして、装置設計面から固体
粒子流速を低減することが行われていたが、偏流
部(局部的に流速の大きな部分)を消滅すること
はできていない。 そこで、例えばボイラーチユーブ等の特定部分
というように、特に激しい損傷を受ける部分が特
定できるような場合には、その部分にプロテクタ
ーを設置する等の対策も試みられたが、耐高温エ
ロージヨン性を示す材料に関する研究や知見が不
足している状況の下では、その高温耐食性に注目
して、オーステナイト系ステンレス鋼がプロテク
ター材料として適用されたにすぎず、未だ満足で
きる結果が得られていないのが現状である。 本発明者等は、上述のような観点から、高速固
体粒子と接触する高温装置のエロージヨン損傷を
防止するにはプロテクター又は2重管方式の外管
を設置するのがコスト的にも有利であるとの認識
の下に、この種装置の通常の使用温度である500
〜1100℃程度で従来のオーステナイト系ステンレ
ス鋼よりも格段に耐エロージヨン性の優れた材料
を見出し、プロテクター又は2重管外管の寿命の
延命化、さらにはこれに保護される部材のより延
命化を目ざすとともに、装置内流体の流速をさら
に上げて、装置の効率向上、小型化を達成すべく
研究を行つた結果、従来、石炭火力ボイラの管材
等に用いられていたけれども高温強度が低いとさ
れていたフエライト系ステンレス鋼に所定量の
Alを含有させると、鋼材表面にAl2O3被膜が形成
され、これがSiO2、Al2O3、あるいは微粉炭等の
固体粒子の衝突による高温でのエロージヨン損傷
を格段に軽減する旨の知見を得るに至つたのであ
る。 この発明は、上記知見に基づいてなされたもの
であつて、フエライト系ステンレス鋼を、 C:0.15%以下(以下、%は重量%とする)、 Si:0.15〜2.50%、 Al:0.80〜4.50%、 Mn:0.10〜0.80%、 Cr:12.0〜28.0%、 を含有するか、あるいはさらに、 Ti、Zr、Nb、Y、希土類金属、及びCaのうちの
1種以上:0.8%以下、 をも含み、 Fe及び不可避不純物:残り、 から成る成分組成とすることによつて、優れた高
温での固体粒子エロージヨン抵抗性を付与したこ
とに特徴を有するものである。 また、この成分組成のステンレス鋼は、高温耐
食性にも優れているため、腐食性の高い、相当の
高温域(1100℃程度)での使用にも十分に耐える
ものである。 つぎに、この発明のステンレス鋼において、各
化学成分量を上記のように限定した理由を説明す
る。 C Cは、耐エロージヨン性向上には何の役割も
果たさないものであり、鋼製造上の観点からも
低含有量の方が好ましい。特に、その含有量が
0.15%を越えると、鋼材表面にAl2O3被覆層が
形成されるのを妨げるようになることから、C
含有量を0.15%以下を定めた。 Si Si成分は、Al添加の効果、即ち鋼材表面に
Al2O3被覆層を形成するための助力剤として作
用するものであり、0.15%以上の添加が推奨さ
れるが、2.50%を越えて含有させてもそれ以上
の向上効果は得られず、鋼製造上の困難等の不
利を伴うようになることから、その含有量を
0.15〜2.50%と定めた。 Al Al成分には、鋼の表面にAl2O3被覆を形成し
て、該表面をエロージヨン損傷及び腐食侵食よ
り保護する作用があるが、その含有量が0.80%
未満では、例えSiやCr等の助力剤の助けを借
りたとしても前記作用に所望の効果が得られ
ず、一方4.50%を越えて含有させてもそれ以上
の向上効果が得られないことから、その含有量
を0.80〜4.50%と定めた。 Mn Mn成分には、鋼の脱酸、あるいは熱間加工
性改善効果があるので、0.10%以上含有させる
ことが推奨されるが、0.80%を越えて含有させ
ると高温耐食性を劣化させるようになるので、
その含有量を0.10〜0.80%と定めた。 Cr Cr成分には、鋼表面のAl2O3被覆形成を助け
る作用があるとともに、耐酸化性及び高温耐食
性を向上する作用もあるが、その含有量が12.0
%未満では前記作用に所望の効果が得られず、
一方28.0%を越えて含有させてもより以上の向
上効果が認められないばかりでなく、加工性や
製造性に困難を伴うようになることから、その
含有量を12.0〜28.0%と定めた。 Ti、Zr、Nb、Y、希土類金属、及びCa これらの成分には、生成するAl2O3皮膜の形
成を促進する効果、さらには生成したAl2O3
膜の金属地との密着性を向上させる効果が存在
するので、必要に応じて、Ti、Zr及びNbは好
ましくは0.2%以上、Y、希土類金属及びCaの
場合は0.005%以上含有されるが、これらの1
種以上を、その合計量で0.8%を越えて含有さ
せても、より一層の向上効果が認められないこ
とから、その含有量上限値を0.8%と定めた。
なお、この発明のステンレス鋼において、通常
程度の量(0.10%以下程度)でNiが含有されて
いても何ら差支えないものである。 ついで、この発明を実施例により比較例と対比
しながら説明する。 実施例 通常の溶解法及び圧延法により、それぞれ第1
表に示される化学成分組成をもつた本発明フエラ
イト鋼1〜13及び比較鋼14〜17を用意し、これら
の各種鋼より試験片を取出し、耐エロージヨン性
及び耐食性を測定した。なお、比較鋼21〜25は、
第1表中の※印を付した点で本発明鋼の成分組成
範囲から外れた組成を有するものであつた。 また、耐エロージヨン性の評価は、ブラスト式
エロージヨン装置を使用し、 衝突粒子:微粉石炭燃焼灰(平均粒径8μm)、 搬送ガス:Ar加速ガス、 流速:50m/sec及び100m/sec、 温度:650℃及び1000℃、 の条件で1時間試験した後の最大減肉量を測定し
This invention relates to stainless steel used as structural members of coal-fired boilers, COM (mixture of pulverized coal and heavy oil)-fired boilers, fluidized bed boilers, coal liquefaction and gasification equipment, etc. This invention relates to Al-containing ferritic stainless steel that exhibits excellent erosion resistance when used in environments exposed to erosion. In recent years, due to changes in the energy situation, there has been a growing trend to use coal as an energy source instead of oil. For example, coal-fired boilers,
This has led to a rapid increase in the number of COM-fired boilers, coal liquefaction and gasification equipment, etc. Against this background, solid particle erosion at high temperatures has become strongly recognized as a serious form of damage to high-temperature equipment components that is accompanied by the high-speed flow of fine coal powder and coal combustion ash as described above. It's here. Of course, in terms of coal-fired boilers, they are not particularly new and have been used for a long time. As devices become larger and more sophisticated, countermeasures against erosion damage have become much more important than in the past. Conventionally, as a means to prevent such erosion in coal combustion equipment, etc., the solid particle flow velocity has been reduced from the equipment design perspective, but it is necessary to eliminate the uneven flow portion (portion where the flow velocity is locally high). has not been completed. Therefore, when it is possible to identify a specific part of a boiler tube that is particularly susceptible to severe damage, countermeasures such as installing a protector on that part have been attempted, but the Given the lack of research and knowledge regarding materials, austenitic stainless steel has only been applied as a protector material, focusing on its high-temperature corrosion resistance, and the current situation is that satisfactory results have not yet been obtained. It is. From the above-mentioned viewpoint, the present inventors believe that it is cost-effective to install a protector or a double-pipe type outer pipe in order to prevent erosion damage to high-temperature equipment that comes into contact with high-speed solid particles. 500°C, which is the normal operating temperature for this type of equipment.
We have discovered a material that has much better erosion resistance than conventional austenitic stainless steel at temperatures up to 1100℃, extending the life of the protector or double outer tube, and further extending the life of the parts protected by it. As a result of research aimed at further increasing the flow rate of the fluid in the equipment to improve efficiency and make the equipment smaller, we found that although it had been used for pipe materials for coal-fired boilers, it had low high-temperature strength. A predetermined amount of ferritic stainless steel
Knowledge that when Al is included, an Al 2 O 3 film is formed on the surface of the steel material, which significantly reduces erosion damage at high temperatures caused by collisions with solid particles such as SiO 2 , Al 2 O 3 , or pulverized coal. I was able to obtain this. This invention was made based on the above findings, and the ferritic stainless steel has the following characteristics: C: 0.15% or less (hereinafter, % is weight %), Si: 0.15 to 2.50%, Al: 0.80 to 4.50. %, Mn: 0.10 to 0.80%, Cr: 12.0 to 28.0%, or furthermore, one or more of Ti, Zr, Nb, Y, rare earth metals, and Ca: 0.8% or less. The composition is characterized in that excellent solid particle erosion resistance at high temperatures is imparted by having a component composition consisting of: Fe and unavoidable impurities: the remainder. Stainless steel with this composition also has excellent high-temperature corrosion resistance, so it can withstand use in highly corrosive high-temperature ranges (approximately 1100°C). Next, the reason why the amounts of each chemical component are limited as described above in the stainless steel of the present invention will be explained. CC plays no role in improving erosion resistance, and a low content is preferable from the viewpoint of steel manufacturing. In particular, its content
If it exceeds 0.15%, it will prevent the formation of an Al 2 O 3 coating layer on the steel surface.
The content has been set at 0.15% or less. Si The Si component is due to the effect of Al addition, that is, on the steel surface.
It acts as an auxiliary agent for forming the Al 2 O 3 coating layer, and it is recommended to add 0.15% or more, but no further improvement effect can be obtained even if it is added in excess of 2.50%. Since it comes with disadvantages such as difficulties in steel manufacturing, the content should be reduced.
It was set at 0.15-2.50%. Al The Al component has the effect of forming an Al 2 O 3 coating on the steel surface to protect the surface from erosion damage and corrosion attack, but the content is 0.80%.
If the content is less than 4.50%, the desired effect will not be obtained even with the help of auxiliary agents such as Si or Cr, and on the other hand, if the content exceeds 4.50%, no further improvement effect will be obtained. , its content was determined to be 0.80 to 4.50%. Mn Since the Mn component has the effect of deoxidizing steel or improving hot workability, it is recommended to contain it at 0.10% or more, but if it is contained in excess of 0.80%, it will deteriorate high-temperature corrosion resistance. So,
Its content was set at 0.10-0.80%. Cr The Cr component has the effect of helping to form an Al 2 O 3 coating on the steel surface, and also has the effect of improving oxidation resistance and high-temperature corrosion resistance, but the content is 12.0
If it is less than %, the desired effect cannot be obtained in the above action,
On the other hand, if the content exceeds 28.0%, not only no further improvement effect is observed, but also difficulties arise in processability and manufacturability, so the content was set at 12.0 to 28.0%. Ti, Zr, Nb, Y, rare earth metals, and Ca These components have the effect of promoting the formation of the Al 2 O 3 film that is formed, and also improve the adhesion of the formed Al 2 O 3 film to the metal base. If necessary, Ti, Zr and Nb are preferably contained in an amount of 0.2% or more, and Y, rare earth metals and Ca are contained in an amount of 0.005% or more.
The upper limit of the content was set at 0.8% because no further improvement effect was observed even if the total amount exceeded 0.8%.
Note that there is no problem even if the stainless steel of the present invention contains Ni in a normal amount (approximately 0.10% or less). Next, the present invention will be explained using examples and comparing with comparative examples. Example: By the usual melting method and rolling method, the first
Ferritic steels 1 to 13 of the present invention and comparative steels 14 to 17 having the chemical compositions shown in the table were prepared, test pieces were taken from these various steels, and their erosion resistance and corrosion resistance were measured. In addition, comparative steels 21 to 25 are
The points marked with * in Table 1 had compositions outside the composition range of the steel of the present invention. In addition, the erosion resistance was evaluated using a blast type erosion device. Collision particles: Pulverized coal combustion ash (average particle size 8 μm), Carrier gas: Ar acceleration gas, Flow velocity: 50 m/sec and 100 m/sec, Temperature: The maximum amount of thinning was measured after testing for 1 hour at 650℃ and 1000℃.

【表】 て行つた。 そして、耐食性の評価は、CO2:15%、SO2
0.2%、N2:残り、の混合ガス中で、650℃及び
900℃の温度に200時間保持し、脱スケールした後
の重量減を測定して行つた。 これらの結果も第1表に併せて示した。 第1表に示される結果からも明らかなように、
本発明のAl含有フエライト系ステンレス鋼1〜
13は、いずれも極めて優れた耐高温エロージヨン
性並びに高温耐食性を示したのに対して、化学成
分組成が本発明鋼の範囲から外れている比較鋼14
〜17は、耐高温エロージヨン性及び高温耐食性と
も本発明鋼に比して著しく劣つた値のものとなつ
ている。 上述のように、この発明によれば、高温エロー
ジヨン環境、特に石炭微粉末や石炭燃焼灰分など
の固体粒子を含有する雰囲気中において使用され
る高温装置部材保護用プロテクターに使用して、
さらには高温装置部材そのものに使用してその寿
命を格段に向上し得る上、高温装置自体の性能向
上をも図れる材料をコスト安く提供することがで
きるなど、工業上有用な効果がもたらされるので
ある。
[Table] I went. And, the corrosion resistance evaluation is CO 2 : 15%, SO 2 :
In a mixed gas of 0.2%, N 2 :Remaining, at 650℃ and
This was carried out by holding the sample at a temperature of 900°C for 200 hours and measuring the weight loss after descaling. These results are also shown in Table 1. As is clear from the results shown in Table 1,
Al-containing ferritic stainless steel of the present invention 1~
Comparative steel No. 14, whose chemical composition is outside the range of the invention steel, all exhibited extremely excellent high-temperature erosion resistance and high-temperature corrosion resistance.
Steels No. 1 to 17 have values significantly inferior to the steels of the present invention in both high temperature erosion resistance and high temperature corrosion resistance. As described above, according to the present invention, the protector can be used in a high-temperature equipment member protector used in a high-temperature erosion environment, particularly in an atmosphere containing solid particles such as fine coal powder and coal combustion ash.
Furthermore, it can be used in high-temperature equipment components themselves to significantly extend their lifespans, and it also provides a material that can improve the performance of the high-temperature equipment itself at a low cost, resulting in industrially useful effects. .

Claims (1)

【特許請求の範囲】 1 C:0.15%以下、 Si:0.15〜2.50%、 Al:0.80〜4.50%、 Mn:0.10〜0.80%、 Cr:12.0〜28.0%、 を含有し、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)を有することを
特徴とする、高温での固体粒子エロージヨン抵抗
性に優れたAl含有フエライト系ステンレス鋼。 2 C:0.15%以下、 Si:0.15〜2.50%、 Al:0.80〜4.50%、 Mn:0.10〜0.80%、 Cr:12.0〜28.0%、 を含有し、さらに、 Ti、Zr、Nb、Y、希土類金属、及びCaのうちの
1種以上:0.8%以下、 をも含み、 Fe及び不可避不純物:残り、 から成る成分組成(以上重量%)を有することを
特徴とする、高温での固体粒子エロージヨン抵抗
性に優れたAl含有フエライト系ステンレス鋼。
[Claims] 1 Contains: 1 C: 0.15% or less, Si: 0.15 to 2.50%, Al: 0.80 to 4.50%, Mn: 0.10 to 0.80%, Cr: 12.0 to 28.0%, Fe and inevitable impurities: An Al-containing ferritic stainless steel with excellent solid particle erosion resistance at high temperatures, characterized by having a composition (at least % by weight) consisting of the following. 2 Contains C: 0.15% or less, Si: 0.15 to 2.50%, Al: 0.80 to 4.50%, Mn: 0.10 to 0.80%, Cr: 12.0 to 28.0%, and further contains Ti, Zr, Nb, Y, and rare earth elements. Solid particle erosion resistance at high temperatures, characterized by having a component composition (the above weight %) consisting of at least 0.8% of one or more of metals and Ca, and the remainder of Fe and unavoidable impurities. Al-containing ferritic stainless steel with excellent properties.
JP20141882A 1982-11-17 1982-11-17 Stainless steel containing al and having erosion resistance at high temperature Granted JPS5993853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20141882A JPS5993853A (en) 1982-11-17 1982-11-17 Stainless steel containing al and having erosion resistance at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20141882A JPS5993853A (en) 1982-11-17 1982-11-17 Stainless steel containing al and having erosion resistance at high temperature

Publications (2)

Publication Number Publication Date
JPS5993853A JPS5993853A (en) 1984-05-30
JPS6214625B2 true JPS6214625B2 (en) 1987-04-03

Family

ID=16440748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20141882A Granted JPS5993853A (en) 1982-11-17 1982-11-17 Stainless steel containing al and having erosion resistance at high temperature

Country Status (1)

Country Link
JP (1) JPS5993853A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970043231A (en) * 1995-12-18 1997-07-26 윤종용 Iron base alloy for mesh belt of blackening furnace with improved high temperature corrosion resistance and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102022A (en) * 1972-04-06 1973-12-21
JPS5531824A (en) * 1978-08-25 1980-03-06 Taiyo Oil & Fat Mfg Oil and fat purifying method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102022A (en) * 1972-04-06 1973-12-21
JPS5531824A (en) * 1978-08-25 1980-03-06 Taiyo Oil & Fat Mfg Oil and fat purifying method

Also Published As

Publication number Publication date
JPS5993853A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
JP5052724B2 (en) Ni-Co-Cr high temperature strength and corrosion resistant alloy
JP4291573B2 (en) Steel and air preheater with excellent resistance to sulfuric acid dew point corrosion
JPS58197248A (en) Heat resistant alloy
EP0438560B1 (en) A ferrochromium alloy
JPS58217662A (en) High strength and high corrosion resistant boiler tube having resistance against brittlement during use
JP2011162803A (en) Powder alloy for build-up thermal spraying having excellent wear resistance and high temperature corrosion resistance
US20110165334A1 (en) Coating material for metallic base material surface
KR100482706B1 (en) Austenitic Stainless Steel and Use of the Steel
JPS6214625B2 (en)
JPS59211546A (en) Cobalt alloy for thermal spraying
KR20100114844A (en) Acid-resistant steel material and low temperature member associated with exhaust gas of combustion·incineration facility
JP3747729B2 (en) Ni-base alloy coated arc welding rod
JPH03173732A (en) Nickel based alloy
US3681058A (en) Low-nickel valve steel
JP3351837B2 (en) Al-containing ferritic stainless steel with excellent manufacturability and high-temperature oxidation resistance
JPH04358054A (en) Powdery material for thermal spraying and surface-coated parts having excellent erosion resistance
JPS61551A (en) Heat resistant alloy having superior corrosion resistance in highly oxidizing and sulfurizing corrosive atmosphere
JPS6033179B2 (en) How to select ferrite steel with excellent erosion resistance at high temperatures
JPS61170554A (en) Member for highly corrosion resistant boiler
JPS5915974B2 (en) Ferrite steel for petroleum and coal chemical plants
JPH02156049A (en) Heat resisting steel for ethylene decomposition furnace tube
JP3760534B2 (en) Usage of austenitic stainless steel components in sulfuric acid dew point environment
JPH02163336A (en) Intergranular corrosion-resistant ni-base alloy and method for corrosion testing
JPS626629B2 (en)
JPS6029459A (en) Steel product with resistance to erosion by particle at high temperature