JPS6214623B2 - - Google Patents

Info

Publication number
JPS6214623B2
JPS6214623B2 JP1093782A JP1093782A JPS6214623B2 JP S6214623 B2 JPS6214623 B2 JP S6214623B2 JP 1093782 A JP1093782 A JP 1093782A JP 1093782 A JP1093782 A JP 1093782A JP S6214623 B2 JPS6214623 B2 JP S6214623B2
Authority
JP
Japan
Prior art keywords
amount
etching
aluminum
residual
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1093782A
Other languages
Japanese (ja)
Other versions
JPS58130242A (en
Inventor
Zenichi Tanabe
Yoshikatsu Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP1093782A priority Critical patent/JPS58130242A/en
Publication of JPS58130242A publication Critical patent/JPS58130242A/en
Publication of JPS6214623B2 publication Critical patent/JPS6214623B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、エツチング性のすぐれたアルミニ
ウム又はアルミニウム合金に関する。 アルミニウム(合金を含む)基板に塗料、接着
剤、感光性樹脂などの密着性を高めるために、表
面をエツチング処理して粗面化することが行なわ
れている。かかる目的のためには、エツチングに
よつて得られる粗さ形状が均一であること、すな
わち筋模様や光斑点等の未エツチング欠陥や過剰
エツチング欠陥のないことが必要である。 ここで、エツチングとは材料表面を化学的、電
気化学的に溶解することによつて、粗面化処理を
行なう通常の方法であつて、前者には例えば、塩
酸、硫酸、硝酸、リン酸、フツ酸などの酸単体ま
たは混合溶液、リン酸ナトリウム、炭酸ナトリウ
ム、水酸化ナトリウム、ケイ酸ナトリウムなどの
アルカリの単体又は混合溶液中での浸漬処理を含
み、後者には塩化ナトリウム、塩化アルミニウム
などの中性塩、塩酸、硫酸、硝酸、リン酸などの
酸の単体又は混合溶液、リン酸ナトリウム、炭酸
ナトリウム、水酸化ナトリウムなどのアルカリの
単体又は混合溶液中での直流、交流その他の波形
による電解処理を含むものである。 従来エツチング性を向上させるためには、自然
電極電位が卑になるような合金成分例えば、
Sn、In、Zrなどを添加した材料を用いること
(特公昭49−9930号公報参照)や、材料製造時の
熱処理条件を変えることなどが有効であるとされ
てきたが、これらの方法だけでは均一なエツチン
グ面を得ることができなかつた。 一方、通常アルミニウム鋳塊は結晶粒微細化の
ために、Ti又はTi−Bが微量添加されるが、Ti
量は金属材料としての特性、結晶粒の大きさ、マ
クロ、ミクロ組織の均一性の面からのみ検討さ
れ、エツチング性という面からの検討はなされな
かつた。又、Gaは原料アルミナ中には不純物と
して含まれ、これまで十分なコントロールはされ
なかつた。 しかしながら、本発明者らの研究の結果、Ti
およびGaがアルミニウム材料のエツチング性に
対し大きく影響することが見出された。すなわ
ち、結晶粒微細化剤として添加されるTi、地金
中に不純物として含まれるGaは、Ti2Ga組成の金
属間化合物を形成するが、アルミニウム材料のエ
ツチング性は、上記金属間化合物を形成しない残
存Ga量に依存することが見出された。 本発明の要旨は、結晶粒微細化剤としてTiを
含有するアルミニウム又はアルミニウム合金にお
いて、Gaを金属間化合物Ti2Gaを形成し、残存Ti
量を0とするのに必要な量を下限量とし、該下限
量より0.04%多い量を上限量として添加してなる
ことを特徴とするエツチング性のすぐれたアルミ
ニウム又はアルミニウム合金である。 本発明においては、残存Ga量が多いほどエツ
チング性が向上するが、残存Ga量が余り多過ぎ
ると、エツチング過剰となり黒筋欠陥となる。
又、残存Tiがあるとエツチング不良率が高くな
る。したがつて、残存Gaの効果的な範囲は0〜
0.04%であるが、さらに好ましくは0〜0.03%で
ある。 本発明によれば、Ga、Tiを含むスクラツプ材
であつても、そのGa、Tiの量を本発明の範囲内
にコントロールすることによつて、エツチング性
を向上させ、不良率を大巾に低下させることがで
きるので、スクラツプ材の有効利用が可能とな
り、省資源の見地からその技術的意義はきわめて
高い。 つぎに本発明の実施例並びに比較例をその試験
結果とともに説明する。なお、エツチング試験は
中性塩を用いる場合が金属の溶解が生じないた
め、未エツチング欠陥、エツチング過剰欠陥を生
じやすい。したがつて、塩化ナトリウムを用いる
例を挙げた。 実施例1〜3、比較例1〜2 不純物として、Fe、Si、Ga、Tiを含む下記表
1に示す5種類のAl板を3%NaCl水溶液中で直
流14A/dm2で電解エツチング処理したのち、そ
のエツチング性を色差計で測定した。残存Ga、
残存Tiの量とエツチング後の色差計によるL値
を同じく表1に示す。これによれば、比較例2の
如く残存TiがあるとL値が高く、又、実施例1
〜3の如く、残存Ga量が多いほどL値は小さ
く、エツチングが均一にされていることが判る。
ただし、残存Ga量が0.04%より多い比較例1の
場合にはエツチング過剰となり、黒筋欠陥とな
る。
The present invention relates to aluminum or an aluminum alloy with excellent etching properties. In order to improve the adhesion of paints, adhesives, photosensitive resins, etc. to aluminum (including alloys) substrates, the surface is roughened by etching. For this purpose, it is necessary that the roughness obtained by etching be uniform, that is, free from unetched defects such as streaks and light spots, and without overetched defects. Here, etching is a normal method of roughening the surface of a material by dissolving it chemically or electrochemically. This includes immersion treatment in single or mixed solutions of acids such as hydrofluoric acid, single or mixed solutions of alkalis such as sodium phosphate, sodium carbonate, sodium hydroxide, and sodium silicate; Electrolysis using direct current, alternating current, or other waveforms in neutral salts, single or mixed solutions of acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, and single or mixed solutions of alkalis such as sodium phosphate, sodium carbonate, and sodium hydroxide. This includes processing. Conventionally, in order to improve etching properties, alloy components that make the natural electrode potential less noble, such as
It has been said that using materials to which Sn, In, Zr, etc. are added (see Japanese Patent Publication No. 49-9930) and changing the heat treatment conditions during material production are effective, but these methods alone cannot It was not possible to obtain a uniform etched surface. On the other hand, aluminum ingots usually have a small amount of Ti or Ti-B added to refine the crystal grains, but Ti
The amount was investigated only from the viewpoint of the properties as a metal material, the size of crystal grains, and the uniformity of macro and microstructures, and no examination was made from the viewpoint of etching properties. In addition, Ga is contained as an impurity in raw material alumina, and so far it has not been adequately controlled. However, as a result of our research, we found that Ti
It was found that Ga and Ga have a large effect on the etching properties of aluminum materials. In other words, Ti added as a grain refiner and Ga contained as an impurity in the base metal form an intermetallic compound with a Ti 2 Ga composition, but the etching properties of the aluminum material prevent the formation of the above intermetallic compound. It was found that it depends on the amount of residual Ga. The gist of the present invention is that in aluminum or aluminum alloy containing Ti as a grain refiner, Ga is used to form an intermetallic compound Ti 2 Ga, and residual Ti is removed.
This is an aluminum or aluminum alloy with excellent etching properties, characterized in that the lower limit amount is the amount necessary to make the amount 0, and the upper limit amount is 0.04% more than the lower limit amount. In the present invention, the etching performance improves as the amount of remaining Ga increases, but if the amount of remaining Ga is too large, excessive etching results in black streak defects.
Furthermore, if there is residual Ti, the etching failure rate will increase. Therefore, the effective range of residual Ga is 0 to
The content is 0.04%, more preferably 0 to 0.03%. According to the present invention, even if the scrap material contains Ga and Ti, by controlling the amounts of Ga and Ti within the range of the present invention, the etching performance can be improved and the defective rate can be greatly reduced. This makes it possible to effectively utilize scrap wood, which has extremely high technical significance from the standpoint of resource conservation. Next, Examples and Comparative Examples of the present invention will be described together with test results. Note that when a neutral salt is used in the etching test, metal dissolution does not occur, so unetched defects and overetched defects are likely to occur. Therefore, an example using sodium chloride was given. Examples 1 to 3, Comparative Examples 1 to 2 Five types of Al plates shown in Table 1 below containing Fe, Si, Ga, and Ti as impurities were electrolytically etched in a 3% NaCl aqueous solution at 14 A/dm 2 of DC. Thereafter, the etching property was measured using a color difference meter. residual Ga,
Table 1 also shows the amount of residual Ti and the L value measured by a color difference meter after etching. According to this, when there is residual Ti as in Comparative Example 2, the L value is high, and in Example 1
3, it can be seen that the larger the amount of residual Ga, the smaller the L value, and the more uniform the etching.
However, in the case of Comparative Example 1 in which the amount of residual Ga is more than 0.04%, excessive etching occurs, resulting in black streak defects.

【表】 実施例4〜6、比較例3〜5 Mn1.0%、Mg0.7%の他にSi、Fe、Cuを微量含
むアルミニウム合金をベースにして、第2表に示
す如くTi、Ga量の量を変えた6種類のアルミニ
ウム合金板を実施例1〜3と同じ条件で電解エツ
チング処理したのち、表面観察を行なつた。エツ
チングが十分で光斑点の生じない材料を良とし、
又光斑点を生じた材料を不良として、各材料につ
いて100枚の試験結果を第2表に不良率として示
した。また、材料のエツチング後の表面アラサ曲
線について、第1図に実施例4のものを、第2図
に比較例4のものをそれぞれ示した。以上の試験
によつて、本発明の範囲内の材料のエツチング性
が良好であることが判る。
[Table] Examples 4 to 6, Comparative Examples 3 to 5 Based on an aluminum alloy containing trace amounts of Si, Fe, and Cu in addition to 1.0% Mn and 0.7% Mg, Ti, Ga Six types of aluminum alloy plates with different amounts were electrolytically etched under the same conditions as Examples 1 to 3, and then their surfaces were observed. Materials that are sufficiently etched and do not produce light spots are preferred.
Materials that produced light spots were considered defective, and the test results for 100 sheets of each material are shown in Table 2 as the defect rate. Further, regarding the surface roughness curves of the material after etching, FIG. 1 shows that of Example 4, and FIG. 2 shows that of Comparative Example 4. The above tests show that the materials within the scope of the present invention have good etching properties.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例4の材料の表面アラサ曲線、第
2図は比較例4の表面アラサ曲線をそれぞれ示
す。
FIG. 1 shows the surface roughness curve of the material of Example 4, and FIG. 2 shows the surface roughness curve of Comparative Example 4.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶粒微細化剤としてTiを含有するアルミ
ニウム又はアルミニウム合金において、Gaを金
属間化合物Ti2Gaを形成し、残存Ti量を0とする
のに必要な量を下限量とし、該下限量より0.04%
多い量を上限量として含有してなることを特徴と
するエツチング性のすぐれたアルミニウム又はア
ルミニウム合金。
1. In aluminum or aluminum alloys containing Ti as a grain refiner, the lower limit amount is the amount necessary to form an intermetallic compound Ti 2 Ga with Ga and the amount of residual Ti is 0, and the lower limit amount is less than the lower limit amount. 0.04%
1. Aluminum or aluminum alloy with excellent etching properties, characterized by containing a large amount as an upper limit amount.
JP1093782A 1982-01-28 1982-01-28 Aluminum or aluminum alloy with superior etchability Granted JPS58130242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093782A JPS58130242A (en) 1982-01-28 1982-01-28 Aluminum or aluminum alloy with superior etchability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093782A JPS58130242A (en) 1982-01-28 1982-01-28 Aluminum or aluminum alloy with superior etchability

Publications (2)

Publication Number Publication Date
JPS58130242A JPS58130242A (en) 1983-08-03
JPS6214623B2 true JPS6214623B2 (en) 1987-04-03

Family

ID=11764130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093782A Granted JPS58130242A (en) 1982-01-28 1982-01-28 Aluminum or aluminum alloy with superior etchability

Country Status (1)

Country Link
JP (1) JPS58130242A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2665382B2 (en) * 1989-10-06 1997-10-22 富士写真フイルム株式会社 Aluminum alloy materials for lithographic printing plates
JPH03177528A (en) * 1989-12-06 1991-08-01 Sky Alum Co Ltd Aluminum alloy sheet stock for supporting body of printing form plate
CN108118198B (en) * 2017-12-22 2020-03-27 江苏鼎胜新能源材料股份有限公司 Aluminum foil blank of medicinal aluminum foil

Also Published As

Publication number Publication date
JPS58130242A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
JPH0565360B2 (en)
WO2015192448A1 (en) Aluminum alloy product and manufacturing method therefor
JPS63195287A (en) Production of manfanese dioxide by electrochemical method
JPS62146694A (en) Aluminum alloy support for planographic printing
CN104831094B (en) A kind of method for improving electrolytic zinc cathode aluminum plate corrosion resistance
JP2907718B2 (en) Etching method of aluminum foil for electrolytic capacitor electrode
JPS6214623B2 (en)
US4198278A (en) Method for producing anode aluminum foils for electrolytic condensers
GB2117406A (en) Electrolytic stripping
JPS6280255A (en) Manufacture of aluminum alloy support for offset printing
CN1484260A (en) Method for mfg negative electrode foil of aluminium electrolytic capacitor
DE60210836T2 (en) Presensitized pressure plate
CN104789995B (en) A kind of electrolytic zinc cathode aluminum plate
JPS6360824B2 (en)
JPH06508888A (en) Al sheet processing
JPH02240292A (en) Anodic oxidation of aluminum material with superior corrosion resistance
JP2002118035A (en) Electrolytic capacitor electrode aluminum foil
JPH07132689A (en) Aluminum alloy substrate for lithographic plate
JPH07169657A (en) Aluminum alloy foil for electrolytic capacitor anode
JP4582627B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP4623477B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JP4757247B2 (en) Aluminum foil for electrolytic capacitor electrode
JP4758827B2 (en) Method for producing electrode foil for electrolytic capacitor
JPS6035815B2 (en) Aluminum alloy foil for electrolytic capacitor cathode
JPS63106A (en) Aluminum alloy foil for cathode of electrolytic capacitor