JPS62146024A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPS62146024A
JPS62146024A JP60288246A JP28824685A JPS62146024A JP S62146024 A JPS62146024 A JP S62146024A JP 60288246 A JP60288246 A JP 60288246A JP 28824685 A JP28824685 A JP 28824685A JP S62146024 A JPS62146024 A JP S62146024A
Authority
JP
Japan
Prior art keywords
light
optical
transmission line
light sources
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60288246A
Other languages
Japanese (ja)
Inventor
Taisuke Murakami
泰典 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60288246A priority Critical patent/JPS62146024A/en
Publication of JPS62146024A publication Critical patent/JPS62146024A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extent the transmission distance without increasing the intensity of the output of each light source. CONSTITUTION:An optical multiplexer 2 is attached to one end of an optical transmission line 1 consisting of optical fibers, and a light receiver 3 is attached to the other end, and output beams of light difference in wavelength from plural light sources 4a-4n are introduced to the optical multiplexer 2. The light receiver 3 has a sensitivity to any of output beams of light from light sources 4a-4n, and the same modulating signal 5 is supplied to all light sources. Consequently, an input power is equal to the sum of input powers Pa-Pn due to light sources; and though the modulated light is attenuated in a prescribed proportion while it is transmitted on the optical transmission line 1, the reception demodulating operation or the like is performed by the light receiver 3 to take out a required signal.

Description

【発明の詳細な説明】 く産業上の利用分野〉 この発明は光通信方式に関し、さらに詳細にいえば、光
をキャリア信号として使用し、伝送ザベき信号により光
を変調する光通、付方式に関する。
[Detailed description of the invention] Industrial application field> The present invention relates to an optical communication system, and more specifically, an optical communication system that uses light as a carrier signal and modulates the light with a transmitted signal. Regarding the method.

〈従来の技術、および発明が解決しようと覆る問題点〉 従来から、光をキャリア信号として使用覆る光通信にお
いては、光伝送路として光ファイバが一般的に使用され
ている。
<Prior Art and Problems to be Solved by the Invention> Conventionally, optical fibers have been commonly used as optical transmission lines in optical communications that use light as a carrier signal.

この光ファイバは広帯域であるから、伝送距離は、帯域
の広狭によっては殆ど影響されず、損失の影響を大きく
受け、この損失により光フ7・イバの伝送距離が制限さ
れることになる。例えば、光ファイバの入力パワーがQ
d3m、光ファイバの伝送損失が3dB/Km、受信器
側における最小受信可能パワーが一30dBmであれば
、10Kmの伝送距離しか得られないことになる。
Since this optical fiber has a wide band, the transmission distance is hardly affected by the width or narrowness of the band, but is greatly affected by loss, and this loss limits the transmission distance of the optical fiber. For example, if the input power of an optical fiber is Q
d3m, the transmission loss of the optical fiber is 3 dB/Km, and the minimum receivable power on the receiver side is 130 dBm, then a transmission distance of only 10 Km can be obtained.

上記の条件下において長距離にわたる信号の伝送を行な
わせようとすれば、光ファイバの入力パワーの増大、光
ファイバの伝送損失の低減、受信器の最小受信可能パワ
ーの向上の何れかを達成しなければならなくなる。
In order to transmit signals over long distances under the above conditions, it is necessary to increase the input power of the optical fiber, reduce the transmission loss of the optical fiber, or improve the minimum receivable power of the receiver. I will have to.

しかし、光源の出力光強度を増大させることは、−投に
レーザ光を使用する光通信の場合には、著しい困難を伴
なうので、実用上は殆ど不可能である。また、光ファイ
バの伝送10失の低減、および受信器の最小受信可能パ
ワーの向−ヒについても、光源の出力光強度の増大と同
様に非常に困難であり、実用上は殆ど不可能である。
However, in the case of optical communications that use laser light for projection, increasing the output light intensity of the light source is extremely difficult and is practically impossible. In addition, reducing transmission losses in optical fibers and increasing the minimum receivable power of the receiver are extremely difficult, as is increasing the output light intensity of the light source, and are almost impossible in practice. .

したがって、長距離にわたる信号の伝送を行なり氾よう
とすれば、所定距離間隔毎に中継局を設置し、この中継
局において信号の増幅を行なわせなければならなくなる
のである。
Therefore, in order to transmit signals over long distances, relay stations must be installed at predetermined distance intervals, and the signals must be amplified at these relay stations.

〈発明の目的〉 この発明は上記の問題点に鑑みてなされたものであり、
光源単体としての出力光強度を増加させることなく伝送
距離を増加させることができる光通信方式を提供するこ
とを目的としている。
<Object of the invention> This invention was made in view of the above problems,
It is an object of the present invention to provide an optical communication system that can increase transmission distance without increasing the output light intensity of a single light source.

く問題点を解決するための手段〉 上記の目的を達成するための、この発明の光通借方ヱい
よ、複数個の光源からの、互に波長が貸なる出力光を、
同一の変調信号により変調して光伝送路の一端に導ぎ、
光伝送路の他端において、上記全ての出力光を受信可能
な受信器により伝送光を受信させるものである。
Means for Solving the Problems> In order to achieve the above object, the optical system of the present invention is to output light from a plurality of light sources whose wavelengths are equal to each other,
Modulated by the same modulation signal and guided to one end of the optical transmission line,
At the other end of the optical transmission line, the transmitted light is received by a receiver capable of receiving all of the above output lights.

但し、上記光伝送路としては、光ファイバであることが
好ましい。
However, the optical transmission line is preferably an optical fiber.

く作用〉 以上の光通信方式であれば、複数個の光源からの、互に
波長が異なる出力光を、同一の変調信号により変調して
光伝送路の一端に導くことにより、光源単体としての出
力光強度を増加させることなく光−伝送路の入力パワー
を増加させることかでき、光伝送路の他端において、上
記全ての出力光を受信可能な受信器により伝送光を受信
させることにより、上記光伝送路の入力パワーの増加に
対応させて、受信器による受信パワーを増加させること
ができる。
In the optical communication system described above, the output lights of different wavelengths from multiple light sources are modulated by the same modulation signal and guided to one end of the optical transmission path. The input power of the optical transmission line can be increased without increasing the output light intensity, and the transmitted light is received by a receiver capable of receiving all of the above output lights at the other end of the optical transmission line. In response to an increase in the input power of the optical transmission line, the power received by the receiver can be increased.

そして、上記光伝送路として光ファイバを使用した場合
には、伝送損失を大幅に抑制することができ、入力パワ
ーに対する受信パワーの比を増大させることができる。
When an optical fiber is used as the optical transmission line, transmission loss can be significantly suppressed and the ratio of received power to input power can be increased.

また、もう一つの作用として以下のことが考えられる。In addition, the following may be considered as another effect.

海底中継器等は信頼性向上の為、発光素子を2つ備えて
おり、使用中の第1の発光素子が劣化し始めると、ff
12の発光素子に自動釣に切替わるようになっている。
In order to improve reliability, submarine repeaters are equipped with two light-emitting elements, and if the first light-emitting element in use begins to deteriorate, the ff
12 light emitting elements are designed to switch to automatic fishing.

この切替えは、発光素子と光ファイバの結合効率を劣化
させないように、通常の光分岐結合器ではなく、光スィ
ッチ及び偏波合成器を用いていた。ところがこれらの光
素子は構成が複雑であり、なおかつ受信端において発光
素子の切替えが行なわれたことが、感知不可能である。
This switching uses an optical switch and a polarization combiner instead of a normal optical branching coupler so as not to degrade the coupling efficiency between the light emitting element and the optical fiber. However, these optical elements have complicated structures, and it is impossible to detect that the light emitting elements have been switched at the receiving end.

そこで本北門のように、例えば、第1の発光素子として
、1.3μmの発振波長を持つ半導体レーザー、第2の
発光素子として、1.2μmの光振波長を持つ半導体レ
ーザーを用いれば、ごく−投に使用されている光合分波
器が発光素子、光ファイバの結合器として用いられ、か
つ受信端において発光素子が切替えられたことが感知可
能となる。
Therefore, if, for example, a semiconductor laser with an oscillation wavelength of 1.3 μm is used as the first light emitting element and a semiconductor laser with an optical wavelength of 1.2 μm is used as the second light emitting element, as in Honkitamon, - The optical multiplexer/demultiplexer used for transmission is used as a coupler for the light emitting element and the optical fiber, and it becomes possible to detect that the light emitting element has been switched at the receiving end.

〈実施例〉 以下、実施例を承り添付図面によって詳細に説明づる。<Example> Hereinafter, embodiments will be explained in detail with reference to the accompanying drawings.

図面はこの北門による光通信方式の一実施例を示す概略
図であり、光ファイバからなる光伝送路(1)の一端に
光合波器(2)を取付けているとともに、他端に光受信
器(3)を取付けている。そして、複数個の光源(4a
)(4b)・・・(4n)からの、互に波長が異なる出
力光を上記光合波器(2)に導入するようにしている。
The drawing is a schematic diagram showing an embodiment of the optical communication system by Kitamon, in which an optical multiplexer (2) is attached to one end of an optical transmission line (1) consisting of an optical fiber, and an optical receiver is attached to the other end. (3) is installed. Then, a plurality of light sources (4a
)(4b)...(4n), output lights having mutually different wavelengths are introduced into the optical multiplexer (2).

また、上記光受信器(3)は、少なくとも上記各光源(
4a)(4b)・・・(4n)からの出力光の何れにも
感度を有するものである。さらに、上記全ての光源(4
a) (4b)・・・(4n)には、それぞれ同一の変
調信号(5)が供給されている。
Further, the optical receiver (3) includes at least each of the light sources (
It is sensitive to any of the output lights from 4a), (4b), . . . (4n). Furthermore, all of the above light sources (4
a) The same modulation signal (5) is supplied to each of (4b)...(4n).

以上の光通イ8方式であれば、複数個の光源(4a)(
4b)・・・(4n)からの、互に波長が異なる出力光
か、同一の変調信号により変調された状態で光合波器(
2)を通して光伝送路(1)に導入されるので、入力パ
ワーPは、各光源(4a)(41))・・・(4n)に
よる入力バワ−Pa、Pb、・・・pnの和に等しくな
る。そして、上記変調光は、光伝送路(1)を伝送する
間に、所定の割合で減衰し、最終的に、上記全ての変調
光に対して感度を有する光受信器(3)により受信され
、復調動作等を行なうことにより、必要な信号を取出す
ことができる。
If the above optical transmission method is 8, multiple light sources (4a) (
4b) ...(4n), output lights with different wavelengths or modulated by the same modulation signal are sent to the optical multiplexer (
2) into the optical transmission line (1), the input power P is the sum of the input power - Pa, Pb, ... pn from each light source (4a) (41))...(4n). be equal. The modulated light is attenuated at a predetermined rate while being transmitted through the optical transmission line (1), and is finally received by the optical receiver (3) that is sensitive to all of the modulated light. , demodulation, etc., it is possible to extract the necessary signals.

具体的には、1.2μm、1.3μmの発振波長を有す
る2つの光送信器からの出力光を、ポート間損失が1d
[3の光合波器により合波し、1本の光ファイバに結合
させ、しかも上記各光送信器を、合波的においてQd3
mの結合パワーで光ファイバに結合するように調整した
場合には、合波後の光フアイバ結合パワーが2dBmと
なり、上記した従来の方式と比較して2dBだけ改善さ
れた。
Specifically, the output light from two optical transmitters with oscillation wavelengths of 1.2 μm and 1.3 μm is transmitted with an inter-port loss of 1 d.
[3 optical multiplexers combine the signals and couple them into one optical fiber, and each of the above optical transmitters is combined with Qd3
When adjusted to couple to an optical fiber with a coupling power of m, the optical fiber coupling power after multiplexing becomes 2 dBm, which is an improvement of 2 dB compared to the conventional method described above.

また、光源を1011!lとし、各光源による光ファイ
バ入力パワーがQc13m、光ファイバの伝送損失が3
dB/Km、最小受信可能パワーが一30cjBmに設
定されている場合には、光ファイバの入力パワーが10
倍となり、伝送距離が13.3K mとなる。これは、
光源が1個の場合におCプる伝送距離が10Kmであっ
たのと比較して3.3Kmの伝送距離の増加をもたらし
たことになる。
Also, the light source is 1011! l, the optical fiber input power from each light source is Qc13m, and the optical fiber transmission loss is 3.
dB/Km, and the minimum receivable power is set to 130 cjBm, the input power of the optical fiber is 10
This will increase the transmission distance to 13.3km. this is,
This results in an increase in transmission distance of 3.3 km compared to 10 km when there is only one light source.

以上の説明から明らかなように、光源と光受信器との間
にお【ブる伝送距離を、光源単体としての出力光強度を
増加させることなく増大させることができ、長距離にわ
たる信号の伝送を行なう場合における中継局の数を減少
させることが可能となる。
As is clear from the above explanation, the transmission distance between the light source and the optical receiver can be increased without increasing the output light intensity of the light source alone, allowing signal transmission over long distances. It becomes possible to reduce the number of relay stations when performing the following.

〈発明の効果〉 以上のようにこの弁明は、光源単体としての出力光強度
を増加させることなく、光伝送路の入力パワーを増加さ
せることができ、ひいては伝送距離を増加させることが
できるという特有の効果を奏する。
<Effects of the Invention> As described above, this defense is based on the unique feature that the input power of the optical transmission line can be increased and the transmission distance can be increased without increasing the output light intensity of the light source alone. It has the effect of

また、発光素子の低損失切替えが可能となり伝送路の信
頼性も向上する。
Furthermore, low-loss switching of the light emitting elements becomes possible, and the reliability of the transmission path also improves.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明による光通信方式の一実施例を示す概略
図。
The drawing is a schematic diagram showing an embodiment of an optical communication system according to the present invention.

Claims (1)

【特許請求の範囲】 1、複数個の光源からの、互に波長が異な る出力光を、同一の変調信号により変調 して光伝送路の一端に導き、光伝送路の 他端において、上記全ての出力光を受信 可能な受信器により伝送光を受信させる ことを特徴とする光通信方式。 2、光伝送路が光ファイバである上記特許 請求の範囲第1項記載の光通信方式。[Claims] 1. Light from multiple light sources with different wavelengths The output light is modulated by the same modulation signal. and guide it to one end of the optical transmission line. At the other end, receive all the above output lights The transmitted light is received by a capable receiver. An optical communication method characterized by: 2. The above patent in which the optical transmission line is an optical fiber An optical communication system according to claim 1.
JP60288246A 1985-12-20 1985-12-20 Optical communication system Pending JPS62146024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60288246A JPS62146024A (en) 1985-12-20 1985-12-20 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60288246A JPS62146024A (en) 1985-12-20 1985-12-20 Optical communication system

Publications (1)

Publication Number Publication Date
JPS62146024A true JPS62146024A (en) 1987-06-30

Family

ID=17727724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60288246A Pending JPS62146024A (en) 1985-12-20 1985-12-20 Optical communication system

Country Status (1)

Country Link
JP (1) JPS62146024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000881A1 (en) * 1997-06-25 1999-01-07 The Secretary Of State For Defence A light emitting device and transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000881A1 (en) * 1997-06-25 1999-01-07 The Secretary Of State For Defence A light emitting device and transistor
GB2341976A (en) * 1997-06-25 2000-03-29 Secr Defence A light emitting device and transistor
GB2341976B (en) * 1997-06-25 2002-04-17 Secr Defence A light emitting device and transistor
US6829278B1 (en) 1997-06-25 2004-12-07 Qinetiq Limited Light emitting device and transistor

Similar Documents

Publication Publication Date Title
KR100217803B1 (en) Telemetry for optical fiber amplifier repeater
US5296957A (en) Optical repeater having loop-back function used in transmission system
US5058101A (en) Coherent detection loop distribution system
US5550666A (en) Wavelength division multiplexed multi-frequency optical source and broadband incoherent optical source
US4899043A (en) Fault monitoring system for optical fiber communication systems
US20040136727A1 (en) Optical transmission system comprising a supervisory system
GB2181921A (en) Optical communications system
JP3293565B2 (en) Optical amplification repeater
KR100324797B1 (en) Wavelength-division-multiplexed free-space optical communication systems
EP0506753B1 (en) Lossless optical component
US5285306A (en) Optical communication system with a fiber optic amplifier
GB2123236A (en) Arrangement for locating faults in an optical transmission system
JPH10229385A (en) Two-way transmission system
FI103236B (en) Light Communication System
JPS62146024A (en) Optical communication system
US6472655B1 (en) Remote amplifier for an optical transmission system and method of evaluating a faulty point
KR100404518B1 (en) Optical Communication System using 4 Wavelength Add/Drop Type Wavelength Division Multiplexing
US20040257640A1 (en) Raman amplification repeater
KR100404517B1 (en) Optical Communication System using 4 Wavelength Circulator Add/Drop Type Wavelength Division Multiplexing
JPH01130638A (en) Frequency multiplex optical two-way transmitter
JPH03274928A (en) Communication system
JPH11266205A (en) Light amplification repeater and monitoring method therefor
KR100431239B1 (en) Optical Communication System using 2 Wavelength Circulator Add/Drop Type Wavelength Division Multiplexing
KR100431238B1 (en) Optical Communication System using Add/Drop Type Optic Module
JPH0311322A (en) Two-way optical amplifying transmission circuit