JPS62145624A - Manufacture of electronic gun - Google Patents

Manufacture of electronic gun

Info

Publication number
JPS62145624A
JPS62145624A JP28671985A JP28671985A JPS62145624A JP S62145624 A JPS62145624 A JP S62145624A JP 28671985 A JP28671985 A JP 28671985A JP 28671985 A JP28671985 A JP 28671985A JP S62145624 A JPS62145624 A JP S62145624A
Authority
JP
Japan
Prior art keywords
electrode
limiting aperture
control electrode
transmission hole
beam transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28671985A
Other languages
Japanese (ja)
Inventor
Tsutomu Suehiro
末広 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP28671985A priority Critical patent/JPS62145624A/en
Publication of JPS62145624A publication Critical patent/JPS62145624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve assembling precision in three parts of electrodes, that is, a control electrode, an acceleration electrode, and a limiting aperture, by aligning respective beam-transmitting holes of the acceleration electrode and the limiting aperture by optical means on the basis of the beam-transmitting hole of the control electrode. CONSTITUTION:Because a beam-transmitting hole 4 of an acceleration electrode G2 and that 5 of a limiting aperture LA are aligned by optical means on the basis of the beam-transmitting hole 3 of a control electrode G1, axial property among respective beam transmitting holes 3-5 of these three electrodes G1, G2 and LA can be obtained with high precision. Since the control electrode G1, the acceleration electrode G2 and the limiting aperture LA are unified, with an insulating substrate 12 put among them, strength of supporting the acceleration electrode G2 and the limiting aperture LA becomes large.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極線管用の′電子銃の製法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an electron gun for a cathode ray tube.

〔発明の概要〕[Summary of the invention]

本発明は、リミッティングアパーチャを有した電子銃の
製法において、絶縁基板の金属被覆した両面に夫々制御
電極及び加速電極ホルダーをろう付けし、制御電極のビ
ーム透過孔を基準に、加速電極のビーム透過孔及びリミ
ティングアパーチャのビーム透過孔を夫々光学的手段に
より位置合わせして加速電極及びリミッティングアパー
チャを加速電極ホルダー−トに固定支持するごとによっ
て、制御電極、加速電極及びリミティングアパーチャの
3電極部の組立積度を良好にしたものである。
The present invention is a method for manufacturing an electron gun with a limiting aperture, in which a control electrode and an accelerating electrode holder are brazed to both metal-coated surfaces of an insulating substrate, respectively, and the beam of the accelerating electrode is aligned with the beam transmission hole of the control electrode as a reference. By positioning the transmission hole and the beam transmission hole of the limiting aperture respectively by optical means and fixing and supporting the acceleration electrode and the limiting aperture on the acceleration electrode holder, three of the control electrode, acceleration electrode and limiting aperture are fixedly supported. The assembly density of the electrode section is improved.

〔従来の技術〕[Conventional technology]

例えば高精細度カラー陰極線管、ビームインデックス型
カラー陰極線管においては、良好な画像を得るために螢
光面上におけるビームスポット径は微細である必要があ
る。一般に、陰極線管で微細なビームスポット径を得る
のに、投影すべき物点となるクロスオーバ一点そのもの
の径を小さくすること、あるいは投影レンズそのものの
収差を小さくすることに主眼がおかれている。
For example, in high-definition color cathode ray tubes and beam index type color cathode ray tubes, the diameter of the beam spot on the fluorescent surface must be minute in order to obtain good images. Generally, in order to obtain a fine beam spot diameter with a cathode ray tube, the main focus is on reducing the diameter of the crossover point itself, which is the object point to be projected, or on reducing the aberration of the projection lens itself. .

これに対して本出願人は先に電子銃にリミッティングア
パーチャを設けることを考えた。第3図はその構成例を
ボしたもので、陰極K、制御′tji極G1、加速電極
G2、第1陽極G1及び第2陽極G4 (図ボせず)が
順次配され、さらに、加速電極G2の後段にリミッティ
ングアパーチャLA及び2次電子制御電極SGが配され
、これら各電極は1対の絶縁支持部材(所謂ビードガラ
ス)(1)にて支持ビン(2)を介して固定支持されC
成る。第1陽極G3及び第2陽極G4によって県東用の
[モレンズが構成される。そして、リミソティングアバ
ーナやLAによりクロスオーバ点の見かけ上の径が小さ
くされ、また電子ビーム発散角が小さくされ、ビームス
ポット径が微細化される。さらに、リミソティングアバ
ーナヤLAより低m1hが与えられる2次電子制御電極
SGにより、リミッティングアパーチャLAで発生°4
−る2次電子の螢光面−1の到達が阻止される。
In response to this, the present applicant first considered providing a limiting aperture in the electron gun. Figure 3 shows an example of its configuration, in which a cathode K, a control pole G1, an acceleration electrode G2, a first anode G1, and a second anode G4 (not shown) are arranged in order, and an acceleration electrode A limiting aperture LA and a secondary electronic control electrode SG are arranged after G2, and each of these electrodes is fixedly supported by a pair of insulating support members (so-called bead glasses) (1) via a support bottle (2). C
Become. The first anode G3 and the second anode G4 constitute the Morenz for the eastern part of the prefecture. Then, the apparent diameter of the crossover point is reduced by the limiting aberna or LA, the electron beam divergence angle is reduced, and the beam spot diameter is made finer. Furthermore, due to the secondary electronic control electrode SG which is given a lower m1h than the limiting aperture LA,
- is prevented from reaching the fluorescent surface -1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の電子銃において、特に制御電極G1、加速電極6
2及びリミッティングアパーチャL Aの3電極の組立
てに際しζは、電極Gt、G2及び1、Aの各ビーム透
過孔f3)、 (41及び(5)が小さいために、各ビ
ーム透過孔(31,f4]及び(5)の人々の両側にイ
)γ評決め用のガイド孔(3a) 、  (4a)及び
(5a)を設け、このガイド孔(3a) 、  (4;
1)及び(5a)に治具側の共通のガイドビンを貫11
71 シ’ζ各電(勇Gl、G2及びLAのビーム6過
孔(31,f4+及び(5)の位置合わせを行っ゛ζ絶
縁支F、?部材(1)に支持するようになしていた。
In the above-mentioned electron gun, especially the control electrode G1 and the acceleration electrode 6
When assembling the three electrodes of electrodes Gt, G2 and limiting aperture L A, ζ is smaller than each beam transmitting hole (31, a) Guide holes (3a), (4a), and (5a) for gamma evaluation are provided on both sides of the people in (3a) and (5), and these guide holes (3a), (4;
1) and (5a) through the common guide bin on the jig side.
71 The beam 6 holes (31, f4+ and (5) of each electric wire (Gl, G2 and LA) were aligned so that they were supported by the insulating support F, ? member (1). .

しかるに、このような組1′f、て法ごは、各電極G1
.G2及びL Aの夫々におけるビーム透過孔とガイド
孔間の位置精度と治工具の精度で3′市極相力間のビー
ム透過孔(3)、(4)及び(5)の位置合わせが決ま
るため、商才21度の位置合わせが得にくかった。又、
加速電極G2とリミッティングアパーチャI、Aは板状
電極に近いために、支持強度が弱いこと、さらにガイド
孔を設けるために各電極の製造コストが高くなること、
治工具が複雑で6価となること、等の問題があった。
However, in such a set 1'f, each electrode G1
.. The alignment of the beam transmission holes (3), (4), and (5) between the 3' poles is determined by the positional accuracy between the beam transmission hole and the guide hole in G2 and LA and the accuracy of the jig. Because of this, it was difficult to obtain a 21 degree alignment. or,
Since the accelerating electrode G2 and the limiting apertures I and A are close to plate-shaped electrodes, their support strength is weak, and the manufacturing cost of each electrode is high due to the provision of guide holes.
There were problems such as the jigs and tools being complicated and the hexavalent.

本発明は、上述の問題点を改善した電子銃の製法を提供
するものである。
The present invention provides a method for manufacturing an electron gun that improves the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、両面に金属被覆(いわゆるメタライズ)した
絶縁基板(12)を設け、この絶縁基板(12)の両面
に夫々制御電極G1と加速電極ホルダー(15)をろう
付けし、次で制御電極G1のビーム透過孔(3)を基準
にして、加速電極G2のビーム透過孔(4)及びリミッ
ティングアパーチャLAのビーム透過孔(5)を夫々光
′?的手段により位置合わせしてこの加速電極62及び
リミッティングアパーチャLAを加速電極ホルダー(1
5)上に固定支持するようになす。
In the present invention, an insulating substrate (12) whose both sides are coated with metal (so-called metallization) is provided, a control electrode G1 and an accelerating electrode holder (15) are brazed to both sides of this insulating substrate (12), and then the control electrode With reference to the beam transmission hole (3) of G1, the beam transmission hole (4) of the accelerating electrode G2 and the beam transmission hole (5) of the limiting aperture LA are transmitted with light'? The accelerating electrode 62 and the limiting aperture LA are aligned by physical means and placed on the accelerating electrode holder (1).
5) Make sure that it is fixedly supported above.

〔作用〕[Effect]

制御電極G1のビーム透過孔(3)を基準に加速電極G
2のビーム透過孔(4)及びリミッティングアパーチャ
L、 Aのビーム透過孔(5)が光学的手段により位置
合わせされるので、これら3つの電極G1゜62及びL
Aの各ビーム透過孔(31(41及び(5)の同軸性は
面精度に得られる。又、絶縁基板(12)を挾んで制御
電極G1と、加速電極G2及びIJ ミソティングアパ
ーチャLAとが一体化されるために、加速電極62及び
リミッティングアパーチャL Aの支持強度が強くなる
Accelerating electrode G based on the beam transmission hole (3) of control electrode G1
Since the beam transmission hole (4) of No. 2 and the beam transmission hole (5) of limiting aperture L and A are aligned by optical means, these three electrodes G1゜62 and L
The coaxiality of each beam transmission hole (31 (41 and (5)) of A can be obtained with surface precision.Also, the control electrode G1, the acceleration electrode G2 and the IJ misoting aperture LA are sandwiched between the insulating substrate (12). Since they are integrated, the supporting strength of the accelerating electrode 62 and the limiting aperture LA is increased.

〔実施例〕〔Example〕

以ト、第1図及び第2図を参照し゛ζ本発明による電子
銃の製法の一例を説明する。
Hereinafter, an example of a method for manufacturing an electron gun according to the present invention will be explained with reference to FIGS. 1 and 2.

先ず、第1図Bにボずように中央部に十分に大きな開口
(11)を有する絶縁基板例えばセラミック基1(12
)を設け、その基板(12)の両面に夫々例えばMo 
 Mnを被着し、その上にNiメッキを施して成る金1
jル被”flit層(所謂メタライスIn)(13)を
形成し、その金属被覆層(13)上に夫々例えば八gろ
う又は篩ろう等のろう材(I4)を被覆形成する。この
セラミック基板(12)の両面に夫々第1図Cに示す制
御電極G1及び第1図へにボず電極材と同材料よりなる
加速電極ホルダー(15)を、ろう材(14)を介して
ろう付けし、一体化する(第1図り参照)、制御電極G
1は中央にビーム透過孔(3)を有したカップ状に形成
され°(いる。
First, as shown in FIG. 1B, an insulating substrate, such as a ceramic substrate 1 (12
) and coated with, for example, Mo on both sides of the substrate (12).
Gold 1 made by depositing Mn and plating Ni on it
A frit layer (so-called metal rice In) (13) is formed on the metal coating layer (13), and a brazing material (I4) such as 8g wax or sieve wax is coated on each of the metal coating layers (13).This ceramic substrate A control electrode G1 shown in FIG. 1C and an acceleration electrode holder (15) made of the same material as the bozz electrode material shown in FIG. , integrate (see first diagram), control electrode G
1 is formed into a cup shape with a beam transmission hole (3) in the center.

ス加速電擾・−ホルダー(15)はヒラミック基扱(1
2)の開口(11)内に嵌入される筒状部(15a)と
基1に面にろう付けされる鍔部(15b)を自した形状
に形成されCいる。
Accelerated electricity - holder (15) is treated as a heramic base (1
It is formed into a shape with a cylindrical part (15a) fitted into the opening (11) of 2) and a flange part (15b) which is brazed to the surface of the base 1.

次に、第1図Fにボず加速電極G2をホルダー(15)
上に配し、制御電極G1のビーム透過孔(3)を基準に
して加速電極G2のビーム透過孔(4)を、通り違いυ
」″1微鏡を見ながら位置合わせし、加速電極G2をホ
ルダー(15)に電気溶接する。次に、同様にして加速
電極02−1:に第1図EにボずIJ ミソティングア
パーチャLAを配し、制御電極G1のビーム透過孔(3
)を基t1−にしてリミッティングアパーチャLAのビ
ーム透過孔(5)を、通り違い顕微S党を見ながら位置
合わし、リミッティングアパーチャLAを加速電極G2
に電気溶接する。ごれによっ゛C1制御電極Gl、加速
電極62及びリミッティング7パーチヤLAは面精度の
同軸性をもって一体化される(第1図G参照)。
Next, place the Bozu acceleration electrode G2 in the holder (15) in Fig. 1F.
The beam transmission hole (4) of the acceleration electrode G2 is passed through the beam transmission hole (4) of the acceleration electrode G2 with the beam transmission hole (3) of the control electrode G1 as a reference.
``1'' Align the position while looking at the microscopic mirror, and electrically weld the accelerating electrode G2 to the holder (15).Next, in the same way, attach the accelerating electrode 02-1 to the position shown in Fig. 1E. and the beam transmission hole (3) of the control electrode G1.
) based on t1-, align the beam transmission hole (5) of the limiting aperture LA while looking at the passing microscope S, and align the limiting aperture LA with the accelerating electrode G2.
Electrically weld to. Due to the dust, the C1 control electrode Gl, the accelerating electrode 62, and the limiting 7 perch LA are integrated with coaxial surface accuracy (see FIG. 1G).

然る後、第2図にボずように、制御電極G1、加速電極
62及びリミッティングアパーチャLAが一体化された
ものと、2次′市子制御重トζSGと、第1陽極G3と
第2陽極G→とを同軸上に順次配列する。この場合、第
2陽極G4は径小支持端部(21)とこれに連なる径大
筒状部(22)を一体に有して成り、その径大筒状部(
22)に窓部(23)が設けられる。窓部(23)は径
大筒状部(22)のうら主レンズ形h(部から紬れた箇
所に軸心を挾んで一対設けられる。第[陽極G3は第2
陽極G4の径小支持端部(21)を非接触で貫通する径
小部(24)と、これに連なって第2陽極G4の径大筒
状部(22)内に位置する径大端部(25)を有して成
る。そして、各′di極C+ 、SG、03及びG4が
支持ビン(2)を介し゛ζ−ヌ1の共通の絶縁支持部材
(所謂ビードガラス)(1)によって固定支持する。
After that, as shown in FIG. 2, the control electrode G1, the acceleration electrode 62, and the limiting aperture LA are integrated, the secondary control electrode ζSG, the first anode G3, and the limiting aperture LA are integrated. Two anodes G→ are sequentially arranged on the same axis. In this case, the second anode G4 integrally includes a small-diameter support end (21) and a large-diameter cylindrical portion (22) connected thereto, and the large-diameter cylindrical portion (
22) is provided with a window (23). A pair of window portions (23) are provided at the back of the large-diameter cylindrical portion (22) at a location extending from the main lens-shaped portion (h) with the axis thereof in between.
A small-diameter portion (24) that passes through the small-diameter support end (21) of the anode G4 in a non-contact manner, and a large-diameter end portion ( 25). Each of the 'di poles C+, SG, 03 and G4 is fixedly supported by a common insulating support member (so-called bead glass) (1) of the 'ζ-1 through a support bottle (2).

なお、第2陽極G→ではその径小支持端部(21)で絶
縁支持し、また第1陽極G)ではその窓部(23)に臨
んだ径大端部(25)又は径小部(24)、本例では径
大端部(25)において窓部(23)にまで延在した絶
縁支持部材+11によって支持する。
The second anode G→ is insulated and supported by its small diameter support end (21), and the first anode G) is supported by its large diameter end (25) or small diameter part (25) facing the window (23). 24), in this example, the large diameter end (25) is supported by an insulating support member +11 extending to the window (23).

上述の製法によれば、通り違い顕微鏡によって、制御電
極G1のビーム透過孔(3)を)A【(町に加速′di
極G2のビーム透過孔(4)及びリミッティング7パー
チヤL Aのビーム透過孔(5)を位置合わせし°ζ加
速電44 G 2及びリミッティングアパーチャLAを
固定支持することにより、各′rki極にL、に2及び
LA間のビーム透過孔+31. +41及び(5)の同
軸性がIO+精度に得られる。同時に板状電極に近い加
速電極G2及びラミー/ティングアパーチャLAは、絶
縁基板(12)にろう付けされたホルダー(15)に溶
接され、この絶縁基板(12)を介して制御電極G1に
一体化されるので、熱或いは外力に対して充分耐え得る
大きな支持強度を有するものである。また、制御電極G
l、加速電極G2及びリミッティングアパーチャ■、八
においてはガイ1孔を設ける必要がないので、製造コス
トが安くなる。又、電子銃を組l′7.でる際に用いる
治工具も複雑にならない利点がある。
According to the above manufacturing method, the beam transmission hole (3) of the control electrode G1 is
By aligning the beam transmission hole (4) of the pole G2 and the beam transmission hole (5) of the limiting aperture LA, and fixedly supporting the accelerating electrode 44G2 and the limiting aperture LA, each 'rki pole Beam transmission hole between L, N2 and LA +31. A coaxiality of +41 and (5) is obtained with IO+ accuracy. At the same time, the acceleration electrode G2 and the ramie/ting aperture LA, which are close to the plate electrode, are welded to a holder (15) that is brazed to an insulating substrate (12), and integrated into the control electrode G1 via this insulating substrate (12). Therefore, it has a large supporting strength that can sufficiently withstand heat and external forces. In addition, the control electrode G
1, accelerating electrode G2 and limiting apertures (2) and (8), there is no need to provide a hole in the guide, so the manufacturing cost is reduced. Also, assemble the electron gun l'7. There is an advantage that the tools used for exiting are not complicated.

(発明の効果〕 本発明の製法によれば、特に制御電極G1、加速電極G
2及びリミッティングアパーチャLAの組み1°tて精
度即ち、その各電極のビーム透過孔の同軸性が良好とな
り、且つ根状に近い加速電極62及びリミッティングア
パーチャLAの支持強度が大きくなるものである。従っ
′ζ、例えば+G+精細度カラー陰極線管、ビーム透過
孔・ノクス型カラー陰極線管用のリミッティングアパー
チャを備えた電子銃の製造に適用して好適ならしめるも
のである。
(Effect of the invention) According to the manufacturing method of the present invention, in particular, the control electrode G1, the acceleration electrode G
2 and the limiting aperture LA, the precision, that is, the coaxiality of the beam transmission hole of each electrode becomes good, and the supporting strength of the nearly root-shaped accelerating electrode 62 and the limiting aperture LA becomes large. be. Therefore, it is suitable for application to the manufacture of, for example, +G+ definition color cathode ray tubes, electron guns equipped with beam transmission holes and limiting apertures for Knox type color cathode ray tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電子銃の製法の一例を小オーL程
図、第2図は最終的に得られた電子銃の1trt而図、
第3図は比較のための電子銃の間部の断面図である。 G1は制御電極、G2は加速電極、G3は第1陽極、G
4は第2陽極、L Aはりミソティングアパーチャ、S
Gは2次組子制御?1!極、f3) (41(5)はビ
ーム透過孔、(12)は絶縁2!坂、(13)は金属波
田層、(14)はろう材、(15)は加速m指ホルダー
である。
Fig. 1 shows a small O-L diagram of an example of the manufacturing method of an electron gun according to the present invention, and Fig. 2 shows a 1tr diagram of the electron gun finally obtained.
FIG. 3 is a sectional view of the space between the electron guns for comparison. G1 is a control electrode, G2 is an acceleration electrode, G3 is a first anode, G
4 is the second anode, LA beam misting aperture, S
Is G secondary muntin control? 1! Pole, f3) (41 (5) is the beam transmission hole, (12) is the insulation 2! slope, (13) is the metal waveta layer, (14) is the brazing material, (15) is the acceleration m finger holder.

Claims (1)

【特許請求の範囲】 絶縁基板の金属被覆した両面に夫々制御電極及び加速電
極ホルダーをろう付けし、 前記制御電極のビーム透過孔を基準に、加速電極のビー
ム透過孔及びリミッティングアパーチャのビーム透過孔
を夫々光学的手段により位置合わせして該加速電極及び
リミティングアパーチャを前記加速電極ホルダー上に固
定支持することを特徴とする電子銃の製法。
[Claims] A control electrode and an accelerating electrode holder are brazed to both metal-coated surfaces of an insulating substrate, respectively, and the beam transmitting hole of the accelerating electrode and the limiting aperture are adjusted based on the beam transmitting hole of the control electrode. A method for manufacturing an electron gun, characterized in that the accelerating electrode and the limiting aperture are fixedly supported on the accelerating electrode holder by positioning the respective holes by optical means.
JP28671985A 1985-12-19 1985-12-19 Manufacture of electronic gun Pending JPS62145624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28671985A JPS62145624A (en) 1985-12-19 1985-12-19 Manufacture of electronic gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28671985A JPS62145624A (en) 1985-12-19 1985-12-19 Manufacture of electronic gun

Publications (1)

Publication Number Publication Date
JPS62145624A true JPS62145624A (en) 1987-06-29

Family

ID=17708119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28671985A Pending JPS62145624A (en) 1985-12-19 1985-12-19 Manufacture of electronic gun

Country Status (1)

Country Link
JP (1) JPS62145624A (en)

Similar Documents

Publication Publication Date Title
US4607187A (en) Structure for and method of aligning beam-defining apertures by means of alignment apertures
EP0119276B1 (en) In-line type electron gun
JPS62145624A (en) Manufacture of electronic gun
NL8800194A (en) CATHED BEAM TUBE.
JP4724851B2 (en) Microcolumn lens assembly manufacturing method and lens assembly manufactured by the method
US4605880A (en) Multibeam electron gun having a cathode-grid subassembly and method of assembling same
WO1995030997A2 (en) Colour cathode ray tube comprising an in-line electron gun
JPS6351028A (en) Assembling method for electron gun
CA1219304A (en) Cathode ray tube
JPH05251014A (en) Electron gun for color picture tube
US4631443A (en) Multibeam electron gun having a formed transition member
JPH06295684A (en) Color cathode-ray tube
US6013976A (en) In-line SB electron gun with large and deep main lens apertures
EP0103923B1 (en) Coulour display tube
US4629934A (en) Multibeam electron gun having means for positioning a screen grid electrode
JP2798644B2 (en) Electron gun for cathode ray tube
JPS584420B2 (en) Inline Gatadenshiyuunoseizouhouhou
JPH04106844A (en) Electron gun for cathode-ray tube
JPH0158620B2 (en)
JPS6353661B2 (en)
JPS58123640A (en) Inline type electron gun body structure
KR930008122Y1 (en) In-line type electron gun for cathode-ray tube
JPS60185340A (en) Inline electron gun structure for color picture tube
JPH09223471A (en) Electron gun for cathode ray tube
JP2001216911A (en) Electron gun for cathode-ray tube and its manufacturing method