JPS62144318A - Thin film manufacturing apparatus - Google Patents

Thin film manufacturing apparatus

Info

Publication number
JPS62144318A
JPS62144318A JP28621185A JP28621185A JPS62144318A JP S62144318 A JPS62144318 A JP S62144318A JP 28621185 A JP28621185 A JP 28621185A JP 28621185 A JP28621185 A JP 28621185A JP S62144318 A JPS62144318 A JP S62144318A
Authority
JP
Japan
Prior art keywords
thin film
thickness
substrate
susceptor
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28621185A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nagasawa
長沢 一利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP28621185A priority Critical patent/JPS62144318A/en
Publication of JPS62144318A publication Critical patent/JPS62144318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce dispersion in film thickness in the radius direction of a susceptor, by obtaining the distribution of the thickness of a thin film based on heat radiation ratio in two wavelength bands, which are obtained by measuring infrared radiation rays reflected by various points on a substrate by a dichroic radiation thermometer, and based on the displacement of a reflecting mirror, and equalizing the distribution of the thickness of the thin film, which is formed based on the film thickness distribution data. CONSTITUTION:Infrared radiation rays are emitted from a substrate 2 through a quartz window 7. The rays are reflected by a rotary reflecting mirror 8, which is provided over the quartz window 7, and sent to a dichroic radiation thermometer 9. The dichroic radiation thermometer 9 and the rotary reflecting mirror 8 are connected to a computer 10. By the processing in the computer 10, the distribution data of the thickness of a thin film on the substrate in the circumferential direction and the radial direction of a susceptor 1 is obtained. Based on the thickness distribution data of the thin film, a signal is sent to a flow rate regulating valve 11, which is provided in a raw- material-gas feeding line. The flow rate of the raw material gas 6 is regulated, and the thickness distribution of the thin film is adjusted.

Description

【発明の詳細な説明】 〔4既要〕 回転サセプター上の加熱基板上に薄膜を成長するとき反
射鏡を変位して基板各部の薄膜厚さを2色放射温度計で
測定し、サセプター半径方向の薄膜成長条件を制御する
ことにより均一な膜厚の薄膜を得る。
[Detailed Description of the Invention] [Required 4] When growing a thin film on a heated substrate on a rotating susceptor, the thickness of the thin film at each part of the substrate is measured with a two-color radiation thermometer by displacing a reflecting mirror, and the thickness of the thin film is measured in the radial direction of the susceptor. By controlling the thin film growth conditions, a thin film with uniform thickness can be obtained.

〔産業上の利用分野〕[Industrial application field]

本発明は基板上に均一な膜厚の薄膜を形成する回転サセ
プター型の薄膜製造装置に関する。
The present invention relates to a rotating susceptor type thin film manufacturing apparatus for forming a thin film of uniform thickness on a substrate.

基板上にCVD法等で薄膜を形成する際の膜厚のモニタ
リング法としては基板表面からの赤外輻射光の干渉波形
のパターンから膜厚を計算するものがある。この方法は
縦型成長炉においては、ヘルジャー内において回転する
加熱サセプター上に基板を載置して、薄膜を成長し、ペ
ルジャー上方に測定用窓を設け、ここを通して来る基板
からの赤外輻射光を固定の単色型放射温度計で受光し、
その基板表面と成長薄膜表面との間で起こる多重干渉に
よる干渉波形パターンにより膜厚を知るものである。し
かし、放射温度計が固定されているため薄膜の膜厚は回
転サセプターの一定半径上の測定値、即ちサセプター回
転方向の測定値しか得られず、サセプター半径方向にお
ける薄膜の膜厚分布を測定することは困難であった。
One method for monitoring film thickness when forming a thin film on a substrate by CVD or the like is to calculate the film thickness from the interference waveform pattern of infrared radiation from the substrate surface. In this method, in a vertical growth furnace, a thin film is grown by placing the substrate on a rotating heating susceptor inside a Herjar, and a measurement window is provided above the Herjar, and infrared radiation from the substrate passes through this. is received by a fixed monochromatic radiation thermometer,
The film thickness is determined by the interference waveform pattern due to multiple interference occurring between the substrate surface and the growing thin film surface. However, since the radiation thermometer is fixed, the thickness of the thin film can only be measured on a fixed radius of the rotating susceptor, that is, in the direction of rotation of the susceptor, and the thickness distribution of the thin film in the radial direction of the susceptor can only be obtained. That was difficult.

しかし、基板上の薄膜はサセプターの回転方向における
よりもサセプター半径方向において、より膜厚分布がば
らついているので成長条件の調整は寧ろサセプター半径
方向において必要である。
However, since the thickness distribution of the thin film on the substrate is more varied in the radial direction of the susceptor than in the rotational direction of the susceptor, the growth conditions need to be adjusted in the radial direction of the susceptor.

又、単色型放射温度計は1波長帯の光強度の絶対値測定
であるため、測定用窓への反応生成物の堆積による基準
値からのずれその他外乱の影響により膜厚推定確度は必
ずしも高いとは言えず、これらの改善が望まれていた。
Furthermore, since a monochromatic radiation thermometer measures the absolute value of light intensity in one wavelength band, the film thickness estimation accuracy is not necessarily high due to deviations from the reference value due to the accumulation of reaction products on the measurement window and other disturbances. However, these improvements were desired.

〔従来の技術〕[Conventional technology]

ヘルジャー内部の回転するサセプターに基板を載置して
外部よりコイルでサセプターを加熱しておいて上方より
原料ガスを導入し薄膜を基板上に成長させるが、薄膜の
膜厚のモニターは従来の方法では基板表面および薄膜面
からの赤外輻射光を上方に設けた石英窓を通して固定し
た1色式放射温度計で測定する。サセプターが回転して
いるのでサセプターの一定半径上の薄膜の膜厚は測定出
来る。放射温度計で直接測定出来るのは特定の1波長の
干渉光強度であるが、波形の操り返し数と干渉光の強度
を決めておけばこれより膜厚がわかるので、自動的に反
応停止を行うことが出来る。
The substrate is placed on a rotating susceptor inside the Herjar, the susceptor is heated from the outside with a coil, and a raw material gas is introduced from above to grow a thin film on the substrate, but the thickness of the thin film can be monitored using conventional methods. Infrared radiation from the substrate surface and thin film surface is measured using a fixed one-color radiation thermometer through a quartz window provided above. Since the susceptor is rotating, the thickness of the thin film on a certain radius of the susceptor can be measured. What a radiation thermometer can directly measure is the intensity of interference light at one specific wavelength, but if you decide on the number of waveform repetitions and the intensity of interference light, you can determine the film thickness from this and automatically stop the reaction. It can be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の固定した単色式放射温度計による膜厚測定を用い
た薄膜製造装置では、薄膜のばらつきの大きいサセプタ
ーの半径方向における膜厚分布を測定できないため、こ
の方向における膜厚のばらつきを減少させることが困難
であった。
Thin film production equipment that uses conventional fixed monochromatic radiation thermometers to measure film thickness cannot measure the film thickness distribution in the radial direction of the susceptor, which has large variations in thin film. Therefore, it is necessary to reduce the film thickness variation in this direction. was difficult.

又、単色式放射温度計によるため、測定膜厚値の確度が
充分高いとは言い難い。
Furthermore, since a monochromatic radiation thermometer is used, it cannot be said that the accuracy of the measured film thickness value is sufficiently high.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、回転するサセプター上に載置され
、加熱された基板上に薄膜を形成する薄膜製造装置にお
いて、前記の基板上の各点からの赤外輻射光を一定の光
路に反射する可動の反射鏡と、反射された赤外輻射光を
受けて2つの波長帯の熱輻射比率を計測し得る2色放射
温度計と、この2色放射温度計で測定した2つの波長帯
における熱輻射比率と反射鏡変位より薄膜の膜厚分布を
求め、この膜厚分布データにより、形成する薄膜の膜厚
分布を均一化する自動制御システムとを備えてなる本発
明による薄膜製造装置により達成される。
The solution to the above problem is that in a thin film manufacturing device that is placed on a rotating susceptor and forms a thin film on a heated substrate, infrared radiation from each point on the substrate is reflected in a fixed optical path. a movable reflecting mirror that receives reflected infrared radiation, and a two-color radiation thermometer that can measure the thermal radiation ratio of two wavelength bands; This is achieved by the thin film manufacturing apparatus according to the present invention, which is equipped with an automatic control system that determines the film thickness distribution of the thin film from the thermal radiation ratio and the displacement of the reflector, and uses this film thickness distribution data to uniformize the film thickness distribution of the thin film to be formed. be done.

〔作用〕[Effect]

本発明は可動の反射鏡を用い、サセプターの内周部より
外周部にわたる多重干渉光を含む赤外輻射光を2色放射
温度計により、2つの波長帯について熱放射比率を測定
するので、膜厚測定値の確度を上げることが出来る。又
、サセプター半径方向の膜厚分布も測定出来るので、こ
れをコンピュータ処理してサセプター半径方向における
膜厚成長速度を均一にするよう自動制御することが出来
る。
The present invention uses a movable reflecting mirror to measure the heat radiation ratio in two wavelength bands using a two-color radiation thermometer for infrared radiation including multiple interference light extending from the inner circumference to the outer circumference of the susceptor. The accuracy of thickness measurement values can be increased. Furthermore, since the film thickness distribution in the radial direction of the susceptor can also be measured, this can be processed by a computer to automatically control the film thickness growth rate in the radial direction of the susceptor to be uniform.

C実施例) 第1図は本発明による回転反射鏡付き薄膜製造装置の図
である。
Embodiment C) FIG. 1 is a diagram of a thin film manufacturing apparatus with a rotating reflecting mirror according to the present invention.

図において、1は回転し得るサセプターで、このサセプ
ター1の上面に薄膜を成長させようとする基板2を載置
し、コイル3で成長炉たるペルジャー4の外より加熱す
る。ペルジャー4の、上方に設置したノズル5より薄膜
成長用の原料ガス6を供給し、加熱された基板2の上表
面に薄膜(図に表示しない)を成長堆積させる。7はペ
ルジャー4の上方に設置した膜厚測定用の石英窓である
In the figure, reference numeral 1 denotes a rotatable susceptor. A substrate 2 on which a thin film is to be grown is placed on the upper surface of the susceptor 1, and heated by a coil 3 from outside of a Pelger 4, which is a growth furnace. A raw material gas 6 for thin film growth is supplied from a nozzle 5 installed above the Pelger 4, and a thin film (not shown in the figure) is grown and deposited on the upper surface of the heated substrate 2. 7 is a quartz window installed above the Pelger 4 for measuring film thickness.

石英窓7を通して出て来る基板2の放射する赤外輻射光
は、石英窓7の上方に設置された回転反射鏡8で反射さ
れ2色放射温度計9に送られる。
Infrared radiation emitted by the substrate 2 that comes out through the quartz window 7 is reflected by a rotating reflector 8 installed above the quartz window 7 and sent to a two-color radiation thermometer 9.

2色放射温度計9では基板2の狭い面積のスポットとし
て受光し、特定の2波長帯についてその強度比率が測定
される。強度比率であるため、測定窓7への反応生成物
の堆積等は2波長帯への影舌が等しいためキャンスルさ
れる。
The two-color radiation thermometer 9 receives the light as a narrow spot on the substrate 2, and measures the intensity ratio of two specific wavelength bands. Since it is an intensity ratio, deposition of reaction products on the measurement window 7 is canceled because the influence on the two wavelength bands is equal.

回転反射鏡8はサセプター1の1つの半径上の各点の光
を2色放射温度計9に送る如き方向たるXY方向の回転
をする。
The rotating reflecting mirror 8 rotates in the X and Y directions, which are directions in which light from each point on one radius of the susceptor 1 is sent to the two-color radiation thermometer 9.

この回転反射鏡8の回転方向XYとサセプター1の上で
の測定位置の関係を第2図に示す。
The relationship between the rotational direction XY of the rotary reflecting mirror 8 and the measurement position on the susceptor 1 is shown in FIG.

第2図はサセプター1を上方から見た図であるが、この
図におけるサセプター1上のXa力方向Ya力方向第1
図の回転反射鏡8のX方向、Y方向にそれぞれ対応する
FIG. 2 is a view of the susceptor 1 seen from above, and in this figure, the Xa force direction and the Ya force direction on the susceptor 1 are
This corresponds to the X direction and Y direction of the rotating reflecting mirror 8 in the figure, respectively.

再び、第1図において、2色放射温度計9及び回転反射
鏡8はそれぞれコンピュータ10と接続されており、こ
のコンピュータ10による処理でサセプター1の円周方
向および半径方向の、基板2上の薄膜の膜厚分布データ
が得られる。この薄膜の膜厚分布データに基づき、コン
ピュータ10より原料ガス供給ラインに設置された流f
i調整弁11に信号が送られ、原料ガス6の流量を調整
することにより薄膜の膜厚分布を調整する。
Again, in FIG. 1, the two-color radiation thermometer 9 and the rotating reflector 8 are each connected to the computer 10, and the computer 10 processes the thin film on the substrate 2 in the circumferential direction and radial direction of the susceptor 1. The film thickness distribution data can be obtained. Based on the film thickness distribution data of this thin film, the flow f installed in the raw material gas supply line is determined by the computer 10.
A signal is sent to the i adjustment valve 11, and by adjusting the flow rate of the source gas 6, the film thickness distribution of the thin film is adjusted.

この方式では、測定される赤外輻射光の光路と基板2の
なす角度が常に一定ではないが、通常基板2の直径に対
し基板2と回転反射a8までの距離は充分大きいので、
干渉光強度に対する角度変化に基づく位相差補正は省略
して可である。
In this method, although the angle between the optical path of the infrared radiation to be measured and the substrate 2 is not always constant, the distance between the substrate 2 and the rotating reflection a8 is normally large enough for the diameter of the substrate 2, so
The phase difference correction based on the angular change with respect to the interference light intensity can be omitted.

第1図、第2図の実施例としては可動反射鏡として回転
反射鏡としたが、この可動反射鏡として45°傾斜の反
射鏡を水平移動させることでも反射後の光を固定2色放
射温度計に容易に送ることが出来る。この方式によると
基板面に対し常に一定角度の方向の輻射光を測定するの
で角度変化による誤差は全(ない。
In the embodiments shown in Figures 1 and 2, a rotating reflector was used as the movable reflector, but by horizontally moving a 45° inclined reflector, the reflected light can be fixed at a two-color radiation temperature. It can be easily sent to the computer. According to this method, the radiation light is always measured in a direction at a constant angle with respect to the substrate surface, so there is no error due to angle changes.

基板および薄膜の構成としては、次のものに適用できる
The following configurations of the substrate and thin film can be applied.

Si on 5apphire 、、Po1y Si 
on Sin、、5iOz on Si 、  5iO
z on Al〔発明の効果〕 以上詳細に説明したように本発明による薄膜製造装置に
よれば、均一な膜厚の薄膜成長が得られる。
Si on 5apphire,,Poly Si
on Sin,, 5iOz on Si, 5iO
z on Al [Effects of the Invention] As described in detail above, according to the thin film manufacturing apparatus according to the present invention, a thin film with a uniform thickness can be grown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による回転反射鏡付き薄膜製造装置の図
、 第2図は本発明による回転反射鏡の回転方向とサセプタ
ー上での測定位置との関係図である。 図において、 1はサセプター、 2は基板、 3はコイル、 4はへルジャー、 5はノズル、 6は原料ガス、 7は石英窓、 8は回転反射鏡、 9は2色放射温度計、 10はコンピュータ、 11は流量調整弁 10 フ〉し03−タ 図面のt1゛;]貝内容に変更、’= t、)茎2g 手続補正書(旅 1.1呵牛の4じ賀 昭和60年特許願第286211号 2、発明の名称 薄膜製造装置 3、  M正をする者 羽生との関係  特許出願人 住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称富 士 通 株 式 会 社4、代理人 住所 神奈川県用崎市中原区上小田中1015番地昭和
61年 2月25日 (発送日) 6、補正の対象 図面ω4圓 ア1(み。
FIG. 1 is a diagram of a thin film manufacturing apparatus with a rotary reflector according to the present invention, and FIG. 2 is a diagram showing the relationship between the rotation direction of the rotary reflector and the measurement position on a susceptor according to the present invention. In the figure, 1 is a susceptor, 2 is a substrate, 3 is a coil, 4 is a herger, 5 is a nozzle, 6 is a source gas, 7 is a quartz window, 8 is a rotating reflector, 9 is a two-color radiation thermometer, 10 is a Computer, 11 is the flow rate regulating valve 10. Application No. 286211 2, Name of invention Thin film manufacturing device 3, Person who performs M correction Relationship with Hanyu Patent applicant address 1015 Kamiodanaka, Nakahara-ku, Yozaki-shi, Kanagawa (5)
22) Name: Fujitsu Co., Ltd. Company 4, Agent address: 1015 Kamiodanaka, Nakahara-ku, Yozaki-shi, Kanagawa Prefecture February 25, 1986 (Delivery date) 6. Drawing subject to amendment ω4 round A1 (mi.

Claims (1)

【特許請求の範囲】[Claims] 回転するサセプター上に載置され、加熱された基板上に
薄膜を形成する薄膜製造装置において、前記基板上の各
点からの赤外輻射光を一定の光路に反射する可動の反射
鏡と、反射された赤外輻射光を受けて2つの波長帯の熱
輻射比率を計測し得る2色放射温度計と、この2色放射
温度計で測定した2つの波長帯における熱輻射比率と反
射鏡変位より薄膜の膜厚分布を求め、この膜厚分布デー
タにより、形成する薄膜の膜厚分布を均一化する自動制
御システムとを備えてなることを特徴とする薄膜製造装
置。
A thin film manufacturing apparatus that is placed on a rotating susceptor and forms a thin film on a heated substrate includes a movable reflecting mirror that reflects infrared radiation from each point on the substrate into a fixed optical path; A two-color radiation thermometer that can measure the thermal radiation ratio in two wavelength bands by receiving infrared radiation, and the thermal radiation ratio in the two wavelength bands measured by this two-color radiation thermometer and the displacement of the reflector 1. A thin film manufacturing apparatus comprising: an automatic control system that determines the film thickness distribution of the thin film and uses the film thickness distribution data to uniformize the film thickness distribution of the thin film to be formed.
JP28621185A 1985-12-19 1985-12-19 Thin film manufacturing apparatus Pending JPS62144318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28621185A JPS62144318A (en) 1985-12-19 1985-12-19 Thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28621185A JPS62144318A (en) 1985-12-19 1985-12-19 Thin film manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPS62144318A true JPS62144318A (en) 1987-06-27

Family

ID=17701406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28621185A Pending JPS62144318A (en) 1985-12-19 1985-12-19 Thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPS62144318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346582A (en) * 1990-10-12 1994-09-13 Seiko Epson Corporation Dry etching apparatus
JP2012248876A (en) * 2008-02-15 2012-12-13 Veeco Instruments Inc Apparatus and method for batch non-contact material characterization
US8958061B2 (en) 2011-05-31 2015-02-17 Veeco Instruments Inc. Heated wafer carrier profiling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346582A (en) * 1990-10-12 1994-09-13 Seiko Epson Corporation Dry etching apparatus
JP2012248876A (en) * 2008-02-15 2012-12-13 Veeco Instruments Inc Apparatus and method for batch non-contact material characterization
US8958061B2 (en) 2011-05-31 2015-02-17 Veeco Instruments Inc. Heated wafer carrier profiling
US9653340B2 (en) 2011-05-31 2017-05-16 Veeco Instruments Inc. Heated wafer carrier profiling

Similar Documents

Publication Publication Date Title
JP5004401B2 (en) Method and apparatus for controlling temperature uniformity of a substrate
US8047706B2 (en) Calibration of temperature control system for semiconductor processing chamber
US6878395B2 (en) Method and device for the temperature control of surface temperatures of substrates in a CVD reactor
US9617636B2 (en) System and method for controlling wafer and thin film surface temperature
TWI661085B (en) Apparatus and method for controlling temperature in a processing chamber of a CVD reactor by using two temperature sensing devices
JPS62144318A (en) Thin film manufacturing apparatus
US20070012241A1 (en) Methods of assessing the temperature of semiconductor wafer substrates within deposition apparatuses
TW201823508A (en) Device and method to control the uniformity of a gas flow in a cvd or an ald reactor or of a layer grown therein
EP1143036A2 (en) Apparatus and method for controlling the temperature of a wall of a reaction chamber
JP2021031693A (en) Optical film thickness control device, thin film formation device, optical film thickness control method, and thin film formation method
JP3631921B2 (en) Calibration method for non-contact thermometer
JPH05259082A (en) Epitaxial growth device and method
US5685905A (en) Method of manufacturing a single crystal thin film
CN219137005U (en) Vertical film forming device capable of stably controlling temperature and improving wafer growth uniformity
CN219670630U (en) Evaporation device and evaporation system
US11261538B1 (en) In-situ temperature mapping for epi chamber
JPH0637022A (en) Method for measuing temperature in vapor phase growth system
JPH02149451A (en) Production of inorganic coated optical fiber and device therefor
JP2001085339A (en) Temperature control method
JP2006344758A (en) Vapor phase epitaxial growth system and manufacturing method of semiconductor device using it
CN116180223A (en) Vertical film forming device capable of stably controlling temperature and improving wafer growth uniformity
JPH1179887A (en) Temperature measurement of substrate
CN115101441A (en) Substrate processing equipment and method for improving signal-to-noise ratio of lower temperature detector
JPH0740523Y2 (en) Vacuum deposition equipment
JP2019106462A (en) Vapor phase growth apparatus and temperature measurement method