JPS62144038A - Remote detection and measuring liquid leakage - Google Patents

Remote detection and measuring liquid leakage

Info

Publication number
JPS62144038A
JPS62144038A JP28460085A JP28460085A JPS62144038A JP S62144038 A JPS62144038 A JP S62144038A JP 28460085 A JP28460085 A JP 28460085A JP 28460085 A JP28460085 A JP 28460085A JP S62144038 A JPS62144038 A JP S62144038A
Authority
JP
Japan
Prior art keywords
leakage
pressure tube
dripping
droplets
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28460085A
Other languages
Japanese (ja)
Inventor
Makinori Ikeda
池田 真輝典
Takeshi Moriyama
健 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Fuji Electric Co Ltd
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Power Reactor and Nuclear Fuel Development Corp filed Critical Fuji Electric Co Ltd
Priority to JP28460085A priority Critical patent/JPS62144038A/en
Publication of JPS62144038A publication Critical patent/JPS62144038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To detect and measure leakage inexpensively and effectively, by detecting the leakage of a liquid remotely monitoring the dripping of liquid drops at a liquid seal section with a TV camera to measure the leakage level by counting leaking liquid drops. CONSTITUTION:At the bottom of a pressure tube group 1 of a pressure tube type nuclear reactor, the condition of a cooling water from a lower end of one pressure tube 1a dripping in liquid drops 2 is caught with a TV camera 3 set at the position away from the bottom of the reactor. At this point, a zooming function of a TV camera is operated with a camera controller 4 with attentions being paid only to that pressure tube 1a alone causing a leakage among hundreds of pressure tubes, the state of leakage is displayed as a clear image on a monitor TV 5. The video signal is processed to measure the dripping water drops. In this case, for example, one electronic signal is fetched from one scan line SL from a video image 5a of a monitor TV which display the condition that water drops are dripping from the lower end of the pressure tube to identify water drops from the peak potential of changes in the varying potential each time water drops are dripped. This allows the method of determining the size and the number of water drops.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、人が直接近づくことのできない場所、例え
ば放射線環境下、有害ガス環境下、有害化学薬品取扱場
所、高温雰囲気、高所や狭小の場所等において、液体シ
ール部からの液体の漏洩を遠隔から検出するとともに、
漏洩伍を定量する方法に関するものであ。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to places where humans cannot directly approach, such as radiation environments, harmful gas environments, places where harmful chemicals are handled, high temperature atmospheres, high places, and small spaces. In addition to remotely detecting liquid leakage from liquid seals in locations such as
This concerns a method for quantifying leakage.

以下に、圧力管型原子炉の圧力管下端に設けられている
シールプラグからの冷却水の漏洩を検出、定量する場合
を例に挙げてこの発明を説明する。
The present invention will be described below using an example in which leakage of cooling water from a seal plug provided at the lower end of a pressure tube of a pressure tube nuclear reactor is detected and quantified.

〈従来の技術〉 圧力管型原子炉においては、燃料集合体と一次冷却材を
適当な太さの圧力管に納めたものを多数配列することに
よって炉心が構成されている。この型式の原子炉は燃料
を圧力管下方から交換するため、第4図に示したように
圧力管10下端が開口となっており、燃わ1交換時以外
は圧力管下端開口にシールプラグ11と呼ばれる栓を装
着して、シール部12により一次冷却水を密封するよう
になっている。
<Prior Art> In a pressure tube nuclear reactor, a reactor core is constructed by arranging a large number of fuel assemblies and primary coolant housed in pressure tubes of appropriate thickness. In this type of reactor, fuel is exchanged from the bottom of the pressure tube, so as shown in Figure 4, the bottom end of the pressure tube 10 is open, and a seal plug 11 is installed at the bottom opening of the pressure tube except when replacing the fuel. The primary cooling water is sealed by a seal portion 12 by attaching a stopper called a plug.

このシールプラグからの一次冷却水の漏洩は、放射線防
護およびプラン1〜保守上の理由から一定量以下に制限
されている。従って、その漏洩を絶えず遠隔監視すると
ともに、その漏洩量も遠隔定量する必要がある。
Leakage of primary cooling water from this seal plug is limited to a certain amount or less for radiation protection and Plan 1 maintenance reasons. Therefore, it is necessary to constantly remotely monitor the leakage and remotely quantify the amount of leakage.

シールプラグからの一次冷却水の漏洩を遠隔検出、定量
する方法は、例えば第4図に示したように、シールプラ
グ11にEPDMのごとき合成ゴム製二次シール13を
取付け、この二次シール上方からリーク検出配管14を
分岐させて漏洩冷却水をタンク15へ導き、タンク内の
水位[を測定する方法が採用されている。なお、第4図
に示したシールプラグの構造は、実公昭56−5567
5号公報によりよく知られている。
For example, as shown in FIG. 4, a method for remotely detecting and quantifying primary cooling water leakage from a seal plug is to attach a secondary seal 13 made of synthetic rubber such as EPDM to the seal plug 11, and to A method is adopted in which the leak detection piping 14 is branched from the leak detection pipe 14 to guide the leaked cooling water to the tank 15, and the water level in the tank is measured. The structure of the seal plug shown in Fig. 4 is based on Utility Model Publication No. 56-5567.
It is well known from Publication No. 5.

〈発明が解決しようとする問題点〉 しかしながら、熱出力の高い大型の圧力管型原子炉を建
設する場合には圧力管10の数も増力口するため、上記
のごとき従来の漏洩検出、定量方法を採用すると、リー
ク検出配管14も圧力管数に比例して増加し、配管設置
工数が増加するばかりでなく、二次シール13の熱によ
る変質を防ぐための冷却手段(図示せず)を圧力管下部
に設置することも必要となるため、建設コストの上界を
招く結果となる。
<Problems to be Solved by the Invention> However, when constructing a large-scale pressure tube type nuclear reactor with high thermal output, the number of pressure tubes 10 is increased, so the conventional leakage detection and quantitative methods as described above are not possible. If this method is adopted, the number of leak detection pipes 14 increases in proportion to the number of pressure pipes, which not only increases the number of man-hours for installing the pipes, but also requires a cooling means (not shown) to prevent the secondary seal 13 from deteriorating due to heat. Since it is also necessary to install it at the bottom of the pipe, this results in an upper limit on construction costs.

そこでこの発明は、シールプラグからの冷却水の漏洩検
出と漏洩量の定量を、装置的により安価に、かつ遠隔か
ら効果的に行なうことができる方法を提供することを目
的としてなされたもので必る。
Therefore, the present invention has been made for the purpose of providing a method that can effectively detect leakage of cooling water from a seal plug and quantify the leakage amount at a lower cost and remotely. Ru.

〈問題点を解決するための手段〉 この発明によれば、圧力管下端開口のシールプラグに二
次シールやり−ク検出配管を設置することなく、シール
プラグからの冷却水の漏洩が発生した場合には漏洩水が
圧力管下(・2iから水滴となって滴下するようにし、
水滴の滴下をテレビカメラにより遠隔から監視すること
によって冷却水の漏洩を検出し、モニターテレビ上に映
し出された画面の映1&iL3号を処理して漏洩する水
滴を計数することにより漏洩量の定量を行なう方法によ
って、上記の目的を達成できるのである。
<Means for Solving the Problems> According to the present invention, when cooling water leaks from the seal plug without installing a secondary seal or leak detection piping in the seal plug at the lower end opening of the pressure pipe, The leakage water should drip from the pressure pipe (・2i) as water droplets.
Leakage of cooling water is detected by remotely monitoring the dripping of water droplets with a TV camera, and the amount of leakage is quantified by processing the images shown on the monitor TV and counting the leaking water droplets. Depending on the method, the above objectives can be achieved.

この発明の方法を適用できる圧力管下端のシールプラグ
の代表例を第5図に示す。図示のシールプラグ構造は例
えば実開昭60−39994号公報により公知のもので
あって、図中、参照番号20は圧力管、21はシールプ
ラグ、22はシール部、26はシールリング押え、27
はボールラッチ機構をそれぞれ示している。
A typical example of a seal plug at the lower end of a pressure pipe to which the method of the present invention can be applied is shown in FIG. The illustrated seal plug structure is known, for example, from Japanese Utility Model Application Publication No. 60-39994.
1 and 2 respectively show the ball latch mechanism.

シール部からの漏洩検出は、漏洩水の滴下をテレビカメ
ラによって捕えることによって遠隔的に可能であること
は十分に予測しつるところである。しかしながら、テレ
ビカメラを用いるモニタ一方式により漏洩量の定量が行
なえなければ、この方式を圧力管型原子炉における圧力
管シールプラグからの漏洩検出方法として採用すること
はできない。
It is fully foreseeable that leakage from the seal can be detected remotely by capturing dripping of leaking water with a television camera. However, unless the amount of leakage can be quantitatively determined using a single monitor system using a television camera, this method cannot be adopted as a method for detecting leakage from a pressure tube seal plug in a pressure tube nuclear reactor.

そこで本発明者等は、テレビカメラによるモニタ一方式
を用いて漏)曳足を定量できるか否かを検討し、モニタ
ーテレビ上に映し出された画面の映像信号を処理して滴
下する水滴を計数することによって漏洩量の定量が可能
となることを児出し、この発明を完成させたものである
Therefore, the present inventors investigated whether it was possible to quantify the amount of water leakage using a single monitor system using a TV camera, and counted the number of water droplets that dripped by processing the video signal of the screen displayed on the monitor TV. This invention was completed by discovering that the amount of leakage can be quantified by doing so.

すなわち、水滴は球状となって滴下してくるため、水滴
の半径をRとすれば一滴の体fffiVはとなる。一定
時間内に圧力管下端から滴下してくる漏洩量Wは、その
h間内に滴下してきた水滴の総和であから、 となる。よって、漏洩量は滴下してくる水滴の大きざと
数がわかれば、原理的には定量が可能ということになる
That is, since the water droplet falls in a spherical shape, if the radius of the water droplet is R, the body of one droplet fffiV becomes. The amount of leakage W that drips from the lower end of the pressure pipe within a certain period of time is the sum of the water droplets that have dripped within that period of h, and thus becomes: Therefore, in principle, the amount of leakage can be determined by knowing the size and number of water droplets that are falling.

また、定量精度を下げれば、滴下する水滴の数を計数す
るだけでも漏洩量Wの定量が可能である。すなわら、水
滴の半径を(Ra十r)〔ただしRaは水滴の平均半径
を表わす〕とすれば、 +(Ra十r  )3) +3Ra (rl 2+r2 ” +−−ro2)とな
る。実験により水滴の半径の分布を求めて十r23+・
・・・・・十r。3)、の推定ができるから、r1〜r
、がRaに比べて小さい場合、漏洩ff1Wはおる誤差
範囲内で定量できることになる。
Furthermore, if the quantitative accuracy is lowered, the leakage amount W can be determined simply by counting the number of water droplets dripping. In other words, if the radius of the water droplet is (Ra + r) [where Ra represents the average radius of the water droplet], then + (Ra + r ) 3) +3Ra (rl 2 + r2 '' +--ro2).Experiment Find the distribution of the radius of the water droplet by 1r23+・
...10r. 3), it is possible to estimate r1~r
, is smaller than Ra, the leakage ff1W can be quantified within the error range.

〈実施例〉 以下に実施例を挙げてこの発明を説明する。<Example> This invention will be explained below with reference to Examples.

第1図はこの発明の方法の概念を示すものであって、圧
力管型原子炉の圧力管群]下部において1本の圧力管1
a下喘から冷却水か水滴2どなって滴下している状況を
、炉下部より離れた位置に設置したテレビカメラ3によ
って捕える。
FIG. 1 shows the concept of the method of the present invention, in which one pressure tube 1 is installed in the lower part of the pressure tube group of a pressure tube reactor.
A TV camera 3 installed at a distance from the lower part of the furnace captures the situation where cooling water or water droplets 2 are dripping from the lower part of the furnace.

このとき、カメラコントローラー4を用いてテレビカメ
ラのズーム機能を作動させ、数百本ある圧力管のうち漏
洩の発生している圧力管1aのみに着目して漏洩状況を
モニターテレビ5上に鮮明な映像として映し出す。
At this time, the zoom function of the television camera is activated using the camera controller 4, and the leak situation is clearly shown on the monitor television 5 by focusing only on the pressure tube 1a where the leak is occurring among the hundreds of pressure tubes. Display it as a video.

この映像信号を処理することにより、滴下する水滴を定
損する。映像信号の思理方法としては、例えば第2図に
示したように、圧力管下端から水滴が滴下している状況
を映し出しているモニターテレビの映像5a(第2図A
)から走査線SLの1本(数本でもよい)の電気信号を
取出し、水滴が滴下するごとに変化する電位変化(第2
図B)のピーク電位から水滴を識別し水滴2の大きざと
数を求める方法が採用できる。
By processing this video signal, the falling water droplets are fixed. For example, as shown in Fig. 2, a video signal 5a on a monitor TV showing a situation in which water droplets are dripping from the lower end of a pressure pipe (Fig. 2A)
), the electrical signal of one (or several) scanning line SL is extracted, and the potential change (second
A method of identifying water droplets from the peak potential in Figure B) and determining the approximate size and number of water droplets 2 can be adopted.

あるいはまた、第3図に示したように、モニターテレビ
の映像5a(第3図A)を画像処理機6によって水滴の
みを二値画像化しく第3図B)、画像上の水滴に相当す
る帯の幅と数から水滴2の大きざと数を求める(第3図
C)方法が採用できる。
Alternatively, as shown in FIG. 3, only the water droplets are converted into a binary image by the image processor 6 from the monitor TV image 5a (FIG. 3A) (FIG. 3B), which corresponds to the water droplets on the image. The method of determining the size and number of water droplets 2 from the width and number of bands (FIG. 3C) can be adopted.

〈発明の効果〉 以上説明したところかられかるように、この発明の方法
によれば、圧力管型原子炉における圧力管シールプラグ
からの冷却水漏洩の従来の検出、定量方法に必要であっ
たシールリーク検出配管、二次シールおよび圧力管下部
の冷却手段が不要となり、装置的により安価に効果的な
漏洩検出、定損を行なうことができる。
<Effects of the Invention> As can be seen from the above explanation, the method of the present invention has the advantages of the conventional method of detecting and quantifying cooling water leakage from the pressure tube seal plug in a pressure tube nuclear reactor. Seal leak detection piping, secondary seals, and cooling means for the lower part of the pressure pipe are not required, making it possible to perform effective leak detection and constant loss at a lower cost.

なお、以上の説明は圧力管型原子炉にあける圧力管シー
ルプラグからの冷却水漏洩検出にこの発明を適用した例
について記述したが、この発明はこれに限定されず、一
般的な液体シール部からの液体の漏洩を遠隔から検出し
、その漏洩量を定量する目的に広く利用することができ
るものでおる。
Although the above explanation describes an example in which the present invention is applied to detection of cooling water leakage from a pressure pipe seal plug provided in a pressure tube type nuclear reactor, the present invention is not limited to this, and can be applied to a general liquid seal part. It can be widely used for the purpose of remotely detecting liquid leakage from and quantifying the amount of leakage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法の実施例を示す説明図、第2図
はモニターテレビ画面の映像信号を電気的に処理する例
を示す説明図、第3図はモニターテレビ画面の映像信号
を画@処理殿により処理する例を示す説明図、第4図は
圧力管型原子炉における圧力管のシールプラグからの漏
洩を検出、定損する従来の方法を示す説明図、および第
5図はこの発明の方法を通用できる圧力管のシールプラ
グ構造の例を示す説明図でおる。 1・・・圧力管群、2・・・水滴、3・・・テレビカメ
ラ、5・・・モニターテレビ、6・・・画像処理機。 特許出願人   動力炉・核燃お1開発事業団同   
富士電機株式会社
FIG. 1 is an explanatory diagram showing an embodiment of the method of the present invention, FIG. 2 is an explanatory diagram showing an example of electrically processing a video signal on a monitor television screen, and FIG. 3 is an explanatory diagram showing an example of electrically processing a video signal on a monitor television screen. An explanatory diagram showing an example of processing using a processing hall, Fig. 4 is an explanatory diagram showing a conventional method for detecting leakage from a seal plug of a pressure tube in a pressure tube nuclear reactor and damage, and Fig. 5 is an explanatory diagram showing the method of this invention. This is an explanatory diagram showing an example of a seal plug structure for a pressure pipe to which the method described above can be applied. DESCRIPTION OF SYMBOLS 1... Pressure tube group, 2... Water droplet, 3... Television camera, 5... Monitor TV, 6... Image processing machine. Patent applicant: Power Reactor and Nuclear Fuel 1 Development Corporation
Fuji Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 1、液体シール部からの液滴の滴下をテレビカメラによ
り遠隔から監視することによって液体の漏洩を検出し、
モニターテレビ上に映し出された画面の映像信号を処理
して漏洩する液滴を計数することによって漏洩量の定量
を行なうことを特徴とする液体漏洩の遠隔検出定量方法
。 2、前記映像信号処理による液滴の計数は、モニターテ
レビの走査線信号の電位変化から液滴の大きさと数を求
めることからなる特許請求の範囲第1項記載の方法。 3、前記映像信号処理による液滴の計数は、モニターテ
レビの映像を画像処理機により液滴のみを二値画像化し
、液滴に相当する帯の幅と数から水滴の大きさと数を求
めることからなる特許請求の範囲第1項記載の方法。
[Claims] 1. Detecting liquid leakage by remotely monitoring the dripping of liquid droplets from the liquid seal part using a television camera,
A remote detection and quantification method for liquid leakage, characterized in that the amount of leakage is quantified by processing a video signal displayed on a monitor television and counting the number of leaking droplets. 2. The method according to claim 1, wherein the counting of droplets by the video signal processing comprises determining the size and number of droplets from changes in potential of a scanning line signal of a monitor television. 3. To count the droplets using the video signal processing, only the droplets are converted into a binary image using an image processor from the monitor TV video, and the size and number of water droplets are determined from the width and number of bands corresponding to the droplets. A method according to claim 1, comprising:
JP28460085A 1985-12-18 1985-12-18 Remote detection and measuring liquid leakage Pending JPS62144038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28460085A JPS62144038A (en) 1985-12-18 1985-12-18 Remote detection and measuring liquid leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28460085A JPS62144038A (en) 1985-12-18 1985-12-18 Remote detection and measuring liquid leakage

Publications (1)

Publication Number Publication Date
JPS62144038A true JPS62144038A (en) 1987-06-27

Family

ID=17680553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28460085A Pending JPS62144038A (en) 1985-12-18 1985-12-18 Remote detection and measuring liquid leakage

Country Status (1)

Country Link
JP (1) JPS62144038A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423085A2 (en) * 1989-10-13 1991-04-17 Ente per le nuove tecnologie, l'energia e l'ambiente (ENEA) Automatic leak detection apparatus for process fluids from production and/or research plants, in particular energy plants
FR2697632A1 (en) * 1992-11-03 1994-05-06 Electricite De France System for locating a tube in a steam generator water box and method of operating this system.
JP2019184462A (en) * 2018-04-12 2019-10-24 日立グローバルライフソリューションズ株式会社 Water leakage inspection system and water leakage inspection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224037A (en) * 1984-03-29 1985-11-08 ドイツチエ・ゲゼルシヤフト・フユア・ヴイーダーアオフアルバイテユング・フオン・ケルンブレンシユトツフエン・エムベーハー Method and device for inspecting leakage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224037A (en) * 1984-03-29 1985-11-08 ドイツチエ・ゲゼルシヤフト・フユア・ヴイーダーアオフアルバイテユング・フオン・ケルンブレンシユトツフエン・エムベーハー Method and device for inspecting leakage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423085A2 (en) * 1989-10-13 1991-04-17 Ente per le nuove tecnologie, l'energia e l'ambiente (ENEA) Automatic leak detection apparatus for process fluids from production and/or research plants, in particular energy plants
FR2697632A1 (en) * 1992-11-03 1994-05-06 Electricite De France System for locating a tube in a steam generator water box and method of operating this system.
EP0596793A1 (en) * 1992-11-03 1994-05-11 Electricite De France System for indentification of the position of a tube in a water container of a steam generator and procedure therefor
JP2019184462A (en) * 2018-04-12 2019-10-24 日立グローバルライフソリューションズ株式会社 Water leakage inspection system and water leakage inspection method

Similar Documents

Publication Publication Date Title
CN100470222C (en) Bridge flexibility and displacement monitoring device and monitoring method
US4913558A (en) Method and apparatus for detecting leaks and other defects on sewers and the like channels
CN106969885B (en) Power plant condenser leakage detection system and detection method
RU2297726C2 (en) Insertion video complex for industrial furnaces and image processing system
CN206684036U (en) A kind of water quality on-line monitoring instrument
CN109580109B (en) Automatic monitoring method for cooling water leakage of valve tower of flexible straight converter valve
JPS62144038A (en) Remote detection and measuring liquid leakage
KR101104882B1 (en) Leakage detection method of pipelines and it&#39;s connection
JPS61280541A (en) Method for detecting leakage of liquid
CN117072888A (en) Water diversion pipeline leakage degree detection device and detection method thereof
JPS63263421A (en) Remote detecting and determining method for dripping liquid drop
JPH07280198A (en) Method for monitoring liquid leakage by photographing device
JP2002106800A (en) Fluid leak detection system
CN111855548B (en) Monitoring probe, system and method for corrosion damage of pressure pipeline
CN211780246U (en) Urban rain sewage pipeline leakage monitoring device
CN216899278U (en) Uninterrupted monitoring and alarming system for electric tracing
JP2004264162A (en) Installation and method for monitoring sealing of radioactive substance storage cask
KR101999387B1 (en) System for sensing leaking oil
JPS63177022A (en) Method for remote detection and determination of liquid leakage
CN220732910U (en) Photographing device for defect detection of protective film
CN214200516U (en) Air tightness detection device for rocket engine pipeline
CN219265618U (en) Water leakage monitoring system for converter valve
US4040790A (en) Moisture and rust detector for hydraulic control systems
JP3246949U (en) Oil leakage monitoring device for conductive rods in box transformers
CN217277777U (en) Explosion-proof concentration analyzer for online acid-base concentration detection