JPS62143831A - Production of functional glass - Google Patents

Production of functional glass

Info

Publication number
JPS62143831A
JPS62143831A JP28473685A JP28473685A JPS62143831A JP S62143831 A JPS62143831 A JP S62143831A JP 28473685 A JP28473685 A JP 28473685A JP 28473685 A JP28473685 A JP 28473685A JP S62143831 A JPS62143831 A JP S62143831A
Authority
JP
Japan
Prior art keywords
glass
sol
aqueous solution
ions
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28473685A
Other languages
Japanese (ja)
Other versions
JPH0565449B2 (en
Inventor
Ryukichi Matsuo
龍吉 松尾
Katsunori Dochi
洞地 克敬
Kenji Morinaga
健次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP28473685A priority Critical patent/JPS62143831A/en
Publication of JPS62143831A publication Critical patent/JPS62143831A/en
Publication of JPH0565449B2 publication Critical patent/JPH0565449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To reduce moisture in glass and produce thick functional glass, by mixing a metal alkoxide with an aqueous solution of ions capable of imparting a desired function to the glass, hydrolyzing the alkoxide, extending and drying the resultant sol liquid and firing the dried sol. CONSTITUTION:A metal alkoxide to be a glass base material, e.g. ethyl silicate, etc., is mixed with an aqueous solution containing dissolved ions capable of imparting function to glass. As ion species, Nd<3+>, Tb<3+>, Ho<3+>, Er<3+>, Yb<3+> or Eu<3+> is used for laser emitting glass and Mn<2+> or UO2<2+> is used for luminous glass in addition to the above-mentioned ions. Fe<2+>, Fe<3+>, etc., are used for electrically conductive glass and heavy metal ion is used for colored glass. The mixture solution is then hydrolyzed while stirring and the sol solution after the reaction is extended into the form of a thin film. After the drying, plural sheets of the glass material in the form of thin film are laminated, fired and integrated. The desired functional glass, having a certain thickness and hardly causing strain or cracking can be produced by this method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属アルコキシドの加水分解反応により得られ
る多孔質ゲルを加熱焼結することによりガラス体を製造
する方法に係わるものであり、特に得られるガラス体に
何らかの機能を持たせる方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing a glass body by heating and sintering a porous gel obtained by a hydrolysis reaction of a metal alkoxide, and is particularly advantageous. This invention relates to a method of imparting some function to a glass body that is

(従来技術とその問題点) 金属アルコキシド(例えばケイ酸エチル−8L(OC2
H5)4 など)を加水分解する過程の前後あるいは途
中において、ガラスを着色する塩(金属イオン)を含む
水溶液を添加し、乾燥、焼成して着色ガラスを得ること
は、例えば、特開昭57−11845号公報、特開昭5
8−185441号公報などで知られている。これらの
方法は、ゾルゲル法と言われるガラス製造法のひとつの
展開手段として興味深いものがあり、特徴として、通常
の熔融法では得られにくいとされている着色石英ガラス
が容易に得られる。製造工程において高温焼成をそれほ
ど必要としない、という特長がある。
(Prior art and its problems) Metal alkoxides (e.g. ethyl silicate-8L (OC2
Adding an aqueous solution containing a salt (metal ion) that colors the glass before, during or after the hydrolysis process of H5)4, etc.), drying and firing to obtain colored glass is described, for example, in JP-A No. 57. -11845 Publication, Japanese Unexamined Patent Publication No. 5
This method is known from, for example, Japanese Patent No. 8-185441. These methods are interesting as a means of developing a glass manufacturing method called the sol-gel method, and are characterized by the ability to easily obtain colored quartz glass, which is difficult to obtain using normal melting methods. It has the advantage of not requiring much high-temperature firing in the manufacturing process.

しかしながら、このようなゾルゲル法による従来法も欠
点がないではない。ひとつには、従来法はガラス中に着
色機能を有する金属イオンを含有させるだけの、いわゆ
る着色ガラスしか提案されていないこと、次に、ゾルゲ
ル法の工程から避けることのできない事情として、製造
さねたガラス中に水分が残存し、この水分が、ガラスに
種々の機能を発揮させる際の妨害物質となること、さら
には、加水分解後の乾燥時に、ひび割れや歪みを生じや
すく、ある程度の厚み(例えば5 mm以上)のあるガ
ラス体を得にくいので、ある程度の厚みを必要とする機
能性ガラスを作成するうえで非常な障害になること、な
どである。
However, the conventional sol-gel method is not without drawbacks. One is that conventional methods have only proposed so-called colored glasses, in which metal ions with a coloring function are contained in the glass.Second, there are unavoidable circumstances in the sol-gel process, such as manufacturing problems. Moisture remains in the glass, and this moisture becomes a substance that interferes with the glass's ability to perform various functions.Furthermore, when it dries after hydrolysis, it tends to crack and distort, and the thickness (to a certain extent) For example, it is difficult to obtain a glass body with a thickness of 5 mm or more, which poses a serious obstacle in producing functional glass that requires a certain thickness.

(発明が解決しようとする問題点) 本発明は、上述したゾルゲル法の欠点を踏まえ、ガラス
中に残存する水分を極力減らし、かつ相当な厚みのある
ガラス体を作成することで、機能性ガラスとしての性能
を如何なく発揮させるガラスの製造法を提案しようとす
るものである。
(Problems to be Solved by the Invention) In view of the above-mentioned drawbacks of the sol-gel method, the present invention aims to reduce the amount of water remaining in the glass as much as possible, and to create a glass body with considerable thickness. The purpose of this paper is to propose a method for producing glass that fully demonstrates its performance.

(問題点を解決する具体的手段) すなわち、本発明は、少なくともガラス母体となる金属
アルコキシドと、ガラスに機能を与えるイオンを溶存す
る水溶液を含む混合液を、攪拌して加水分解反応終了後
のゾル液を薄膜状に展開し、乾燥後、薄膜化した複数枚
のガラス材料を積層して、焼成一体化することを特徴と
する機能性ガラスの製造方法である。
(Specific Means for Solving the Problems) That is, the present invention involves stirring a mixed solution containing at least a metal alkoxide serving as a glass matrix and an aqueous solution dissolving ions that give functions to the glass, This method of manufacturing functional glass is characterized by spreading a sol solution into a thin film, drying it, then laminating a plurality of glass materials made into thin films and firing them into one piece.

以下さらに詳細に説明すると、ここで言う機能性ガラス
とは、着色ガラスや分光フィルターガラスはもとより、
発光ガラスやレーザー発振ガラス、電気伝導性ガラス、
感光性ガラス等を意味し、石英ガラスやアルミナ石英ガ
ラスに機能を持たせる活性な金属イオンを混在させるこ
とで、作成することができる。以下に種々の機能性ガラ
スに混在すべきイオン種の例を示せば、 (1)レーザー発振ガラス ネオジウムイオン (Nd ”) テルビウムイオン (Tb”+) ホルミウムイオン (l(o 3+ )エルビウムイオ
ン (Er”) インテルビウムイオン(yb”) ユーロピウムイオン(E u 3” )(21発光ガラ
ス 上記レーザー発振ガラスに記載したイオン種以外にマン
ガンイオン(yl n2 + )などの遷移金属イオン
 酸化ウランイオン(U 022+ )などの複合イオ
ンなど、注入可能な発光イオン全て、 (3)電気伝導性ガラス 鉄イオン(Fe2+とp e3+ )、バナジウムイオ
ン(■4+とV5+)などのホッピング伝導タイプのイ
オンのほか、金属粒子や炭素粒子をガラス中に析出させ
ること、 (4)着色ガラス(分光フィルターガラス〕ガラスを着
色させることで知られている重金属イオ7の全て、(例
 Cr”(緑)、Fe3+(茶)、Nd5+(うす紫)
、Er”(ピンク)など) などであり、これらのイオン種は、ガラス中では多くの
場合酸化物として存在する。もちろん、本発明では、上
記した機能またはイオン種にのみ限定されるものではな
い。
To explain in more detail below, the functional glass referred to here includes not only colored glass and spectral filter glass, but also
Luminescent glass, laser oscillation glass, electrically conductive glass,
It refers to photosensitive glass, etc., and can be created by mixing silica glass or alumina quartz glass with active metal ions that give them functionality. The following are examples of ion species that should be mixed in various functional glasses: (1) Laser oscillation glass neodymium ions (Nd") terbium ions (Tb"+) holmium ions (l(o3+)) erbium ions (Er) ”) Interbium ion (yb”) Europium ion (E u 3”) (21 Luminescent glass In addition to the ion species listed in the laser oscillation glass above, transition metal ions such as manganese ion (yl n2 + ) Uranium oxide ion (U 022+ ), (3) hopping conduction type ions such as electrically conductive glass iron ions (Fe2+ and p e3+ ), vanadium ions (■4+ and V5+), and metal particles. (4) Colored glass (spectral filter glass) All of the heavy metal ions known to color glass (e.g. Cr” (green), Fe3+ (brown), Nd5+ (light purple)
, Er” (pink), etc.), and these ionic species often exist as oxides in glass.Of course, the present invention is not limited to the functions or ionic species described above. .

本発明に用いられる、ガラス母体となる金属アルコキシ
ドとは、ガラス構造のうえで網目構造をとりうる金属酸
化物の金属アルコキシドであって、今日比較的簡単に入
手できるもあとしては、ケイ酸メチル(Si(OCH3
)4)、ケイ酸エチル(Si(OC2Hs )4 )、
ケイ酸プロピル(Si(OCx)−17)4)、ホウ酸
メチル(B(OCH3) s )、ホウ酸エチル(B(
OC2H5) s )、リン酸メチル(P(OCH5)
 s )、リン酸エチル(P(OC285ハンナトテあ
り、これらの金属アルコキシドのウチから選択された少
なくとも一種を用いれば充分である。ただし、これら上
記の金属アルコレートに加えて、補助的に用いる金属ア
ルコキシドの例がある。それらは、例えば、アルミニウ
ムアルコキシド(Ae(OR)5:Rは炭素数1〜3の
アルキル基ン、チタンアルコキシド(Ti(OR)4:
Rは炭素数1〜3のアルキル基)などである。
The metal alkoxide used as the glass matrix used in the present invention is a metal alkoxide of a metal oxide that can form a network structure on top of the glass structure, and one that is relatively easily available today is methyl silicate. (Si(OCH3
)4), ethyl silicate (Si(OC2Hs)4),
Propyl silicate (Si(OCx)-17)4), methyl borate (B(OCH3) s ), ethyl borate (B(
OC2H5) s ), methyl phosphate (P(OCH5)
s), ethyl phosphate (P(OC285)), and it is sufficient to use at least one selected from these metal alkoxides.However, in addition to these metal alkoxides, metal alkoxides used as an auxiliary Examples include aluminum alkoxide (Ae(OR)5: R is an alkyl group having 1 to 3 carbon atoms, titanium alkoxide (Ti(OR)4:
R is an alkyl group having 1 to 3 carbon atoms).

ガラスに機能を持たせるイオンは、前述したように様々
のものがあるが、本発明では、これらの活性イオンは、
それらを溶存する水溶液の形で用いる。水溶液は、要す
るにイオン種を溶存していれば良いのであるが、イオン
の材料物質を水f8.g。
As mentioned above, there are various ions that give glass functions, but in the present invention, these active ions are
They are used in the form of dissolved aqueous solutions. In short, the aqueous solution only needs to have ionic species dissolved in it, but the ionic material can be mixed with water f8. g.

とするために、純水を用いることはもちろんであるが、
酸性水溶液、アルカリ注水@夜を用いることも全くさし
つかえない。多(の場合、活性イオン種の材料は、金属
、塩、酸化物、水酸化物の形で存在するから、これらを
溶かすのに、純水の他に塩酸希釈液、硝酸希釈液、硫酸
希釈液、酢酸水溶液、あるいは、水酸化アンモニウム水
溶液を用いるのは、水溶液を得る手段として手取り早く
実際的である。それに、酸性あるいはアルカリ性の水溶
液を添加することは、溶液を調整することによって金属
アルコキシドの加水分解反応を促進する触媒的働きがあ
り、推奨できる。
Of course, pure water is used to achieve this, but
There is no problem with using acidic aqueous solution or alkaline water injection at night. In the case of multi-active ion species, materials with active ionic species exist in the form of metals, salts, oxides, and hydroxides, so to dissolve them, in addition to pure water, diluted hydrochloric acid, diluted nitric acid, and diluted sulfuric acid are used. Using an aqueous acetic acid solution or an aqueous ammonium hydroxide solution is quick and practical as a means of obtaining an aqueous solution.Additionally, adding an acidic or alkaline aqueous solution can improve the concentration of metal alkoxide by adjusting the solution. It has a catalytic function that promotes hydrolysis reactions and is recommended.

溶媒は、加水分解反応を起こさせるのであるから、水が
必要である。ただ、イオン種を水溶液の形で添加してい
る場合は水として別個に加える必要がないこともある。
Water is necessary as a solvent because it causes the hydrolysis reaction to occur. However, if the ionic species is added in the form of an aqueous solution, it may not be necessary to add it separately as water.

また、極めて薄い膜の状態の混合液を想定すれば、水分
は空気中から供給されるから、混合液に全く水を加えな
くても良い場合すらある。溶媒として、前述したように
酸あるいはアルカリ液を加えることが、加水分解反応を
促進するから、存在することが好ましい。さらに言えば
、金属アルコキシドとして、 M(OCH5) xを用
いた場合は、メチルアルコールを溶媒の一成分として添
加し、M(OC2H5) xを用いた時にはエチルアル
コールを溶媒の一成分として添加することが、加水分解
反応を促進するので好ましい実施態様であると言える。
Further, assuming that the mixed liquid is in the form of an extremely thin film, the water is supplied from the air, so it may not even be necessary to add water to the mixed liquid at all. As mentioned above, the addition of an acid or alkaline solution as a solvent promotes the hydrolysis reaction, so it is preferable that it be present. Furthermore, when M(OCH5) x is used as the metal alkoxide, methyl alcohol is added as a component of the solvent, and when M(OC2H5) x is used, ethyl alcohol is added as a component of the solvent. can be said to be a preferred embodiment since it promotes the hydrolysis reaction.

次に、加水分解を行なう混合液の各成分の適正な割合に
ついて述べる。仮にシリコンテトラアルコキシド(Si
(OR)4)を1モル用いた場合を想定すると、イオン
種としての金属イオンは、理論上はI PPbから1.
0モルまで可能である。また、水(H2O)の添加量は
、大気中の水蒸気から水分が供給されることゆキを考慮
すれば、全く加えない状態から実用的には100モル程
度まで可能であるが、少なすぎると加水分解反応が遅れ
、多すぎると乾燥、焼結工程で、不都合があるから、実
際的には2〜20モル程度が適当である。塩酸、硝酸な
どの酸、あるいは水酸化アンモニウム等のアルカリ液は
、全(添加しない場合から、適量加える場合まであるが
、最大10モル程度で、それ以上加えてもあまり意味が
ないようである。溶媒の一成分として添加させる低級ア
ルコール類は、金属アルコキシドと活性イオンを含む水
溶液との相溶性を向上させる仲介の働きがあり、結果と
して加水分解反応を短時間で終了させる作用が認められ
る。このような低級アルコール類の添加量は、02〜1
0モル程度が適当であるが、全く加えない場合でも本発
明の実施を妨げるものではない。
Next, the appropriate proportions of each component in the liquid mixture to be hydrolyzed will be described. If silicon tetraalkoxide (Si
Assuming that 1 mole of (OR)4) is used, the metal ion as an ionic species will theoretically be 1 mole from IPPb.
Possible up to 0 mol. In addition, the amount of water (H2O) added can range from no addition to about 100 moles in practice, considering that moisture is supplied from water vapor in the atmosphere, but if it is too small, Since the hydrolysis reaction is delayed and the amount is too large, there are problems in the drying and sintering steps, so in practice, about 2 to 20 mol is appropriate. Acids such as hydrochloric acid and nitric acid, or alkaline solutions such as ammonium hydroxide, may be added in an appropriate amount, ranging from not being added at all, to about 10 moles at most, and adding more than that does not seem to make much sense. The lower alcohol added as a component of the solvent acts as a mediator to improve the compatibility between the metal alkoxide and the aqueous solution containing active ions, and as a result, it is recognized that it has the effect of completing the hydrolysis reaction in a short time. The amount of lower alcohols added is 02 to 1
Approximately 0 mol is appropriate, but even if it is not added at all, the practice of the present invention will not be hindered.

以上のような割合で混合した混合液は、そのままの状態
では加水分解反応はゆるやかに進行するだけであるから
、反応を促進するために攪拌操作や加熱操作を行なう。
Since the hydrolysis reaction of the liquid mixture mixed at the above ratio will proceed only slowly if it is kept as it is, stirring and heating operations are performed to accelerate the reaction.

攪拌は磁石を回転子とした攪拌装置を用いたり、超音波
を混合液に印加する方法がある。反応の終点は、急激な
発熱があった直後、あるいは混合液が透明化するなど、
劇的な変化を呈することにより容易に知ることができる
For stirring, there are methods such as using a stirring device using a magnet as a rotor or applying ultrasonic waves to the mixed liquid. The end point of the reaction is immediately after a sudden heat generation occurs, or when the mixture becomes transparent.
It can be easily recognized by the dramatic changes it exhibits.

かくして加水分解反応が終了したゾル液が得られろ。興
味深いことには、ガラスに機能を与える活性イオン種を
含む水溶液は、加水分解の前および途中で添加できるこ
とはもちろんのこと、加水分解反応が終了した時点でも
、全く支障なく追加的に混入できることである。
In this way, a sol solution in which the hydrolysis reaction has been completed can be obtained. Interestingly, aqueous solutions containing active ionic species that impart functionality to glass can not only be added before and during hydrolysis, but can also be added additionally after the hydrolysis reaction is complete without any hindrance. be.

得られたゾル液は、任意の容器あるいは平面上に薄膜状
に展開し、ビンセット等で取り扱える程度に硬化するま
で、空気中で湿度変化を小さく保って放置乾燥し、その
後、常温から100℃程度まで数日かけて、ゆるやかに
乾燥する。この時点で相当な量の水分その他の不要成分
が抜けることになる。展開する薄膜、の厚さは、数10
ミクロンから、上限は1mm程度とする。いずれにして
も薄膜の状態で乾燥させることで均質な乾燥が為しうる
。続いて、得られた薄膜体を複数枚積層し、600℃ま
では10〜b 温し、600℃から900℃にかけては、OH基による
発泡現象が起こるので、さらに緩慢に昇温することで焼
結させ、厚手のガラス体を得るものである。焼成時のO
H基による発泡を防ぐには、塩素ガス等のハロゲン元素
のガス雰囲気中で行なうとか、あるいは真空脱気雰囲気
中で焼成することにより、ガラス中に気泡のない緻密な
機能性ガラスが得られるものである。
The obtained sol solution is spread into a thin film on any container or flat surface, left to dry in the air while keeping humidity changes small until it hardens to the extent that it can be handled with a bottle set, etc., and then heated from room temperature to 100°C. Allow to dry slowly over a few days until dry. At this point, a considerable amount of water and other unnecessary components will be removed. The thickness of the developed thin film is several 10
From micron, the upper limit is about 1 mm. In any case, homogeneous drying can be achieved by drying in a thin film state. Subsequently, a plurality of the obtained thin film bodies were laminated and heated for 10 to 600°C. From 600°C to 900°C, foaming phenomenon due to OH groups occurs, so the temperature was increased more slowly to prevent sintering. This is to obtain a thick glass body. O during firing
To prevent foaming due to H groups, it is possible to obtain a dense functional glass without bubbles by firing in a halogen element gas atmosphere such as chlorine gas, or by firing in a vacuum degassing atmosphere. It is.

(作 用) 本発明のゾルゲル法によるガラスの製造法は、機能性ガ
ラスを得ろことができ、しかも任意の厚さで水分含有量
の少ないガラスを得ることができるので、機能を発揮し
やすいガラス体となるものである。
(Function) The glass manufacturing method using the sol-gel method of the present invention can obtain functional glass, and can also obtain glass with a desired thickness and low water content. It is the body.

(実施例1) ケイ酸エチル(Si(OC2Hs)4) 20 me 
 を入した100me入りビーカーに対して、12規定
塩酸/水=1/4に希釈した希塩酸30meに塩化第二
鉄()”eCex、6H20) 10 gを溶解した水
溶液を調整し、この水溶液の4meを、前記したケイ酸
エチル20meと混合する。さらにエチルアルコール3
meおよび水3meを添加して得られた混合液を、磁石
回転子を用いた攪拌装置により常温にて攪拌した。約5
分間攪拌したところ、混合液が発熱し、続いて混合液が
透明化したので、しばら(して攪拌を止め、加水分解反
応が進行した黄色のゾル体を得た。次いで、このゾル体
をアクリル樹脂板の上に厚さ約0.5 mmに薄く展開
し、常温で湿度変化を小さく保って数日乾燥して硬化さ
せた後、加熱オープン中で100°C3日間の加熱乾燥
を行ない、適当な大きさに断裁した後、20枚程度積層
して、温度1000℃になるまで除々に昇温して、焼結
したガラス体を得た。得られたガラス体は、最高厚さ7
mm、茶かっ色の着色石英ガラスである。
(Example 1) Ethyl silicate (Si(OC2Hs)4) 20 me
Prepare an aqueous solution of 10 g of ferric chloride ()"eCex, 6H20) dissolved in 30 me diluted hydrochloric acid diluted to 1/4 of 12N hydrochloric acid/water, and add 4 me is mixed with 20 me of ethyl silicate described above.Additionally, ethyl alcohol 3
The mixed solution obtained by adding me and 3me of water was stirred at room temperature using a stirring device using a magnetic rotor. Approximately 5
When stirred for a minute, the mixture generated heat and then became transparent, so stirring was stopped for a while and a yellow sol in which the hydrolysis reaction had progressed was obtained.Next, this sol was mixed with acrylic Spread it thinly on a resin plate to a thickness of about 0.5 mm, dry and harden it at room temperature for a few days while keeping humidity changes small, and then heat dry it for 3 days at 100°C in a heated open air oven. After cutting the glass into a size, about 20 sheets were laminated and the temperature was gradually raised to 1000°C to obtain a sintered glass body.The resulting glass body had a maximum thickness of 7.
mm, brownish colored quartz glass.

(実施例2) 金属ネオジウム(Nd)3gを、12規定塩酸/水=1
/4の希塩酸30meに溶解して得た水溶液2.3 m
 eを、ケイ酸エチル20meと混合し、さらに水3m
eとエチルアルコール3meを添加し℃得た混合液(う
す青色)を、約10分量感石回転子により攪拌したとこ
ろ、急激な発熱のあと、液が透明化し、澄んだ紫色に変
化した。得られた加水分解反応後のゾル体を、実施例1
と全く同様にして薄く展開し、乾燥して積層して焼成す
る。
(Example 2) 3 g of metal neodymium (Nd) was added to 12N hydrochloric acid/water = 1
2.3 m of an aqueous solution obtained by dissolving 30 me of diluted hydrochloric acid
Mix e with 20m of ethyl silicate and add 3m of water.
When a mixed solution (light blue color) obtained by adding E and ethyl alcohol 3ME was stirred using a stone rotor for about 10 minutes, after a rapid heat generation, the solution became transparent and turned clear purple. The obtained sol body after the hydrolysis reaction was prepared in Example 1.
In exactly the same manner as above, spread out thinly, dry, laminate, and fire.

ただし、焼成炉内部を気密構造とし、内部を真空吸引し
てから、焼成を行なった。焼成の最高温度は1050℃
である。こうして得られたネオジウム含有石英ガラスは
、内部に気泡がなくうす紫色の透明ガラスである。この
ガラスは、プラズマ法で作製した同系のガラスと同様の
螢光スペクトルを示した。
However, the inside of the firing furnace was made airtight, and the inside was vacuumed before firing. Maximum firing temperature is 1050℃
It is. The neodymium-containing quartz glass thus obtained is a light purple transparent glass with no bubbles inside. This glass exhibited a fluorescence spectrum similar to that of similar glasses made by plasma methods.

またキセノン(Xe)フラッシュランプ励起で発振実験
を行なった結果10Hz以上の繰返しで安定に発振し、
耐熱負荷特性も優れていた。
In addition, we conducted an oscillation experiment using xenon (Xe) flash lamp excitation, and the result was stable oscillation at a repetition rate of 10 Hz or more.
The heat load resistance characteristics were also excellent.

(実施例3) 酸化ユーロピウム(Eu203)5gを10重量%の水
希釈硝酸20meに溶解して得た水溶液1゜m eヲ、
ケイ酸メチル(Sl(OCH3)4)20meと混合し
、さらにメチルアルコール3 m eヲ添加した混合液
を、約5分間攪拌回転子により攪拌し、加水分解して得
た透明ゾル液(つすピンク色)をアクリル樹脂板上に厚
さ約Q、4mmに薄く展開し、常温空気中で乾燥するこ
とによりゲル状に硬化させ、しかる後、実施例1と同様
に加熱乾燥および積層焼成を行なったところ、厚さ5m
mのピンク色のエルビウム含有石英ガラスを得た。この
ガラスの発光特性を確認するため、355 nmの紫外
線を照射し、暗所に置いたところ、橙色の可視光線の発
光が見られた。
(Example 3) An aqueous solution obtained by dissolving 5 g of europium oxide (Eu203) in 20 me of nitric acid diluted with 10% by weight of water,
A mixed solution of 20 me of methyl silicate (Sl(OCH3)4) and 3 m e of methyl alcohol was stirred for about 5 minutes using a stirring rotor to form a transparent sol solution obtained by hydrolysis. Pink color) was spread thinly on an acrylic resin plate to a thickness of about Q, 4 mm, and cured into a gel-like form by drying in air at room temperature, and then heated and dried and laminated and fired in the same manner as in Example 1. It was 5m thick
A pink erbium-containing quartz glass of m was obtained. In order to confirm the luminescent properties of this glass, when it was irradiated with 355 nm ultraviolet rays and placed in a dark place, it was observed to emit orange visible light.

(効 果) 本発明の機能性ガラスの製造方法は、以上のようなもの
であり、従来ゾルゲル法によるガラス製造法では、厚手
のガラスを作成する際には、歪みや割れを生じていたの
に対して、本発明によれば、薄膜硬化したものを積層し
て焼結させるものであり、歪みや割れを生じにくく、機
能性ガラスとしである程度の厚さを必要とするレーザー
発振ガラスや疑似宝石ガラス等に対しても充分対応でき
るものであり、また真空吸引下で焼成すれば、ガラス体
内部に気泡等の残留することも防ぐことができる。その
うえ、乾燥工程を薄膜状態で行なうので、ガラス成分と
して不要な、アルコール、水、残留酸成分等を、低エネ
ルギーで極力減らすことができろΩであり、水がガラス
中に存在することで機能が阻害されるガラス、例えば分
光フィルターガラスの分光特性、発光ガラスやレーザー
発振ガラスの発光特性などの機能を阻害されることのな
い機能性ガラスが得られるのである。
(Effects) The method for manufacturing functional glass of the present invention is as described above, and has the advantages that the conventional glass manufacturing method using the sol-gel method causes distortions and cracks when creating thick glass. On the other hand, according to the present invention, hardened thin films are laminated and sintered, which is less likely to cause distortion or cracking, and is suitable for use as functional glass such as laser oscillation glass or pseudo glass that requires a certain thickness. It is fully compatible with jewelry glass and the like, and by firing under vacuum suction, it is possible to prevent air bubbles from remaining inside the glass body. Furthermore, since the drying process is carried out in a thin film state, alcohol, water, residual acid components, etc., which are unnecessary as glass components, can be reduced as much as possible with low energy. This makes it possible to obtain a functional glass whose functions, such as the spectral properties of a spectral filter glass and the light emission properties of a light-emitting glass or a laser oscillation glass, are not inhibited.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくともガラス母体となる金属アルコキシドと
、ガラスに機能を持たせるイオンを溶存する水溶液とを
含む混合液を、攪拌して加水分解反応後のゾル液を薄膜
状に展開し、乾燥後、薄膜化した複数枚のガラス材料を
積層して焼成一体化することを特徴とする機能性ガラス
の製造方法。
(1) A mixed solution containing at least a metal alkoxide that serves as a glass matrix and an aqueous solution containing dissolved ions that give functions to the glass is stirred to spread the sol after the hydrolysis reaction into a thin film, and after drying, A method for manufacturing functional glass, characterized by laminating a plurality of thin glass materials and firing them into one piece.
(2)焼成を、真空雰囲気下で行なう特許請求の範囲第
1項記載の機能性ガラスの製造方法。
(2) The method for producing functional glass according to claim 1, wherein the firing is performed in a vacuum atmosphere.
JP28473685A 1985-12-18 1985-12-18 Production of functional glass Granted JPS62143831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28473685A JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28473685A JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Publications (2)

Publication Number Publication Date
JPS62143831A true JPS62143831A (en) 1987-06-27
JPH0565449B2 JPH0565449B2 (en) 1993-09-17

Family

ID=17682318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28473685A Granted JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Country Status (1)

Country Link
JP (1) JPS62143831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047331U (en) * 1990-05-08 1992-01-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185441A (en) * 1982-04-22 1983-10-29 Seiko Epson Corp Preparation of colored glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185441A (en) * 1982-04-22 1983-10-29 Seiko Epson Corp Preparation of colored glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047331U (en) * 1990-05-08 1992-01-23

Also Published As

Publication number Publication date
JPH0565449B2 (en) 1993-09-17

Similar Documents

Publication Publication Date Title
CN101531459A (en) Rare earth thulium-doped aluminate fluorescent glass and preparation method thereof
CN100484896C (en) Geen light emitting vycor glass production method
CN107586126B (en) Double-layer composite ceramic and preparation method and application thereof
US5932498A (en) Magnet and method for manufacturing a magnet
CN1944297A (en) Method for producing neodymium-ytterbium co-blended high silicon-oxygen laser glass
CN1308255C (en) Manufacturing method of erbium doped high silicon oxygen infrared luminous glass
CN111018321A (en) Method for preparing glass through 3D printing and photocuring molding
JPS62143831A (en) Production of functional glass
CN100378020C (en) Manufacturing method of high silica blue light emitting glass
JP4521831B2 (en) Method for producing high silicate glass and high silicate glass
JP3932323B2 (en) Organic group-modified silicate composite with improved emission intensity
CN105419796B (en) A kind of molybdic acid bismuthino transparent iron electroluminescence film and preparation method thereof
JPS62143830A (en) Production of luminous glass
CN102730967B (en) Preparation method for sensitization-enhanced green light-emitting high-silica glass
CN101376566A (en) Zinc oxide quantum dots sensitized rare earth doping glass ceramics and sol-gel preparation thereof
CN111196687A (en) Preparation process of rare earth doped high silica glass
CN112300783B (en) Lithium niobate up-conversion luminescent material with core-shell structure and preparation method thereof
CN1278970C (en) Method for preparing bismuth blended high silicon oxygen and infrared broad band luminous glass
CN1259265C (en) Production of Nd doped high silicon-oxygen laser glass
JP2005142037A (en) Light emitting apparatus
CN113149647A (en) Ytterbium and up-conversion rare earth luminescent ion double-doped potassium-sodium niobate thick film
CN1263694C (en) Preparation method of neodymium doped high silica blue light glass
CN103274597B (en) The method of the near-infrared luminous glass of a kind of bismuth ion doped micropore molecular sieve
CN1160266C (en) Process for preparing long-afterglow and light excited long-afterglow glass and pyroceram with memory function
JP4131437B2 (en) Method for manufacturing illuminant