JPH0565449B2 - - Google Patents

Info

Publication number
JPH0565449B2
JPH0565449B2 JP60284736A JP28473685A JPH0565449B2 JP H0565449 B2 JPH0565449 B2 JP H0565449B2 JP 60284736 A JP60284736 A JP 60284736A JP 28473685 A JP28473685 A JP 28473685A JP H0565449 B2 JPH0565449 B2 JP H0565449B2
Authority
JP
Japan
Prior art keywords
glass
aqueous solution
firing
water
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60284736A
Other languages
Japanese (ja)
Other versions
JPS62143831A (en
Inventor
Ryukichi Matsuo
Katsunori Dochi
Kenji Morinaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP28473685A priority Critical patent/JPS62143831A/en
Publication of JPS62143831A publication Critical patent/JPS62143831A/en
Publication of JPH0565449B2 publication Critical patent/JPH0565449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • C03C1/008Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route for the production of films or coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属アルコキシドの加水分解反応によ
り得られる多孔質ゲル加熱焼結することによりガ
ラス体を製造する方法に係わるものであり、特に
得られるガラス体に何らかの機能を持たせる方法
に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a glass body by heating and sintering a porous gel obtained by a hydrolysis reaction of a metal alkoxide. It relates to a method of imparting some kind of function to a glass body.

(従来技術とその問題点) 金属アルコキシド(例えばケイ酸エチル:Si
(OC2H54など)を加水分解する過程の前後ある
いは途中において、ガラスを着色する塩(金属イ
オン)を含む水溶液を添加し、乾燥、焼成して着
色ガラスを得ることは、例えば、特開昭57−
11845号公報、特開昭58−185441号公報などで知
られている。これらの方法は、ゾルゲル法と言わ
れるガラス製造法のひとつの展開手段として興味
深いものがあり、特徴として、通常の熔融法で得
られにくいとされている着色石英ガラスが容易に
得られる。製造工程において高温焼成をそれほど
必要としない、という特長がある。
(Prior art and its problems) Metal alkoxides (e.g. ethyl silicate: Si
(OC 2 H 5 ) 4 etc.) before or during the process of hydrolyzing, adding an aqueous solution containing salts (metal ions) that color the glass, drying and firing to obtain colored glass, for example, Unexamined Japanese Patent Publication 1987-
It is known from publications such as No. 11845 and Japanese Patent Application Laid-open No. 185441/1983. These methods are interesting as a means of developing a glass manufacturing method called the sol-gel method, and are characterized by the ability to easily obtain colored quartz glass, which is difficult to obtain using normal melting methods. It has the advantage of not requiring much high-temperature firing in the manufacturing process.

しかしながら、このようなゾルゲル法による従
来法も欠点がないではない。ひとつには、従来法
も欠点がないではない。ひとつには、従来法はガ
ラス中に着色機能を有する金属イオンを含有させ
るだけの、いわゆる着色ガラスしか提案されてい
ないこと、次に、ゾルゲル法の工程から避けるこ
とのできない事情として、製造されたガラス中に
水分が残存し、この水分が、ガラスに種々の機能
を発揮させる際の防害物質となること、さらに
は、加水分解後の乾燥時に、ひび割れや歪みを生
じやすく、ある程度の厚み(例えば5mm以上)の
あるガラス体を得にくいので、ある程度の厚みを
必要とする機能性ガラスを作成するうえで非常な
障害となること、などである。
However, the conventional sol-gel method is not without drawbacks. For one thing, conventional methods are not without drawbacks. One is that conventional methods have only proposed so-called colored glasses, in which metal ions with a coloring function are contained in the glass.Second, there are circumstances that cannot be avoided from the sol-gel method. Moisture remains in the glass, and this moisture acts as a harmful substance when the glass performs various functions.Furthermore, when it dries after hydrolysis, it tends to crack or distort, and the thickness (to a certain extent) For example, it is difficult to obtain a glass body with a thickness of 5 mm or more), which poses a serious obstacle to creating functional glass that requires a certain degree of thickness.

(発明が解決しようとする問題点) 本発明は、上述したゾルゲル法の欠点を踏ま
え、ガラス中に残存する水分を極力減らし、かつ
相当な厚みのあるガラス体を作成することで、機
能性ガラスとしての性能を如何なく発揮させるガ
ラスの製造法を提案しようとするものである。
(Problems to be Solved by the Invention) In view of the above-mentioned drawbacks of the sol-gel method, the present invention aims to reduce the amount of water remaining in the glass as much as possible, and to create a glass body with considerable thickness. The purpose of this paper is to propose a method for producing glass that fully demonstrates its performance.

(問題点を解決する具体的手段) すなわち、本発明は、少なくともガラス母体と
なる金属アルコキシドと、ガラスに機能を与える
イオンを溶存する水溶液を含む混合液を、攪拌し
て加水分解反応終了後のゾル液を薄膜状に展開
し、乾燥後、薄膜化した複数枚のガラス材料を積
層して、焼成一体化することを特徴とする機能性
ガラスの製造方法である。
(Specific Means for Solving the Problems) That is, the present invention involves stirring a mixed solution containing at least a metal alkoxide serving as a glass matrix and an aqueous solution dissolving ions that give functions to the glass, This method of manufacturing functional glass is characterized by spreading a sol solution into a thin film, drying it, then laminating a plurality of glass materials made into thin films and firing them into one piece.

以下さらに詳細に説明すると、ここで言う機能
性ガラスとは、着色ガラスや分光フイルターガラ
スはもとより、発光ガラスやレーザー発振ガラ
ス、電気伝導性ガラス、感光性ガラス等を意味
し、石英ガラスやアルミナ石英ガラスに機能を持
たせる活性な金属イオンを混在させることで、作
成することができる。以下に種々の機能性ガラス
に混在すべきイオン種の例を示せば、 (1) レーザー発振ガラス ネオジウムイオン (Nd3+) テルビウムイオン (Tb3+) ホルミウムイオン (Ho3+) エルビウムイオン (Er3+) イツテルビウムイオン (Yb3+) ユーロピウムイオン (Eu3+) (2) 発光ガラス 上記レーザー発振ガラスに記載したイオン種以
外にマンガンイオン(Mn2+)などの遷移金属イ
オン 酸化ウランイオン(UO2 2+)などの複合イ
オンなど、注入可能な発光イオン全て、 (3) 電気伝導性ガラス 鉄イオン(Fe2+とFe3+)、バナジウムイオン
(V4+とV5+)などのホツピング伝導タイプのイオ
ンのほか、金属粒子や炭素粒子をガラス中に析出
させること、 (4) 着色ガラス(分光フイルターガラス) ガラスを着色させることで知られている重金属
イオンの全て、(例 Cr3+(緑)、Fe3+(茶)、Nd3+
(うす紫)、Er3+(ピンク)など) などであり、これらのイオン種は、ガラス中では
多くの場合酸化物として存在する。もちろん、本
発明では、上記した機能またはイオン種にのみ限
定されるものではない。
To explain in more detail below, the functional glass referred to here means not only colored glass and spectral filter glass, but also light emitting glass, laser oscillation glass, electrically conductive glass, photosensitive glass, etc. It can be created by mixing active metal ions that give glass functionality. The following are examples of ion species that should be mixed in various functional glasses: (1) Laser oscillation glass Neodymium ion (Nd 3+ ) Terbium ion (Tb 3+ ) Holmium ion (Ho 3+ ) Erbium ion (Er 3+ ) Yzterbium ion (Yb 3+ ) Europium ion (Eu 3+ ) (2) Luminescent glass In addition to the ion species listed in the laser oscillation glass above, transition metal ions such as manganese ion (Mn 2+ ) Uranium oxide ion ( (3) Electrically conductive glass All luminescent ions that can be injected, such as complex ions such as UO 2 2+ ); ( 3) Electrically conductive glass; In addition to hopping conduction type ions, metal particles and carbon particles can be precipitated in glass. (4) Colored glass (spectral filter glass) All heavy metal ions known to color glass (e.g. Cr 3 + (green), Fe 3+ (brown), Nd 3+
(light purple), Er 3+ (pink), etc., and these ionic species often exist as oxides in glass. Of course, the present invention is not limited to the functions or ionic species described above.

本発明に用いられる、ガラス母体となる金属ア
ルコキシドとは、ガラス構造のうえで網目構造を
とりうる金属酸化物の金属アルコキシドであつ
て、今日比較的簡単に入手できるものとしては、
ケイ酸メチル(Si(OCH34)、ケイ酸エチル(Si
(OC2H54)、ケイ酸プロピル(Si(OC3H74)、ホ
ウ酸メチル(B(OCH33)、ホウ酸エチル(B
(OC2H53)、リン酸メチル(P(OCH35)、リン
酸エチル(P(OC2H55)などであり、これらの
金属アルコキシドのうちから選択された少なくと
も一種を用いれば充分である。ただし、これら上
記の金属アルコレートに加えて、補助的に用いる
金属アルコキシドの例がある。それらは、例え
ば、アルミニウムアルコキシド(Al(OR)3:R
は炭素数1〜3のアルキル基)、チタンアルコキ
シド(Ti(OR)4:Rは炭素数1〜3のアルキル
基)などである。
The metal alkoxide used as the glass matrix used in the present invention is a metal alkoxide of a metal oxide that can form a network structure on top of the glass structure, and the metal alkoxides that are relatively easily available today include:
Methyl silicate (Si(OCH 3 ) 4 ), ethyl silicate (Si
(OC 2 H 5 ) 4 ), propyl silicate (Si(OC 3 H 7 ) 4 ), methyl borate (B(OCH 3 ) 3 ), ethyl borate (B
(OC 2 H 5 ) 3 ), methyl phosphate (P(OCH 3 ) 5 ), ethyl phosphate (P(OC 2 H 5 ) 5 ), and at least one selected from these metal alkoxides. It is sufficient to use However, in addition to the above-mentioned metal alcoholates, there are examples of metal alkoxides that are used auxiliary. They are, for example, aluminum alkoxides (Al(OR) 3 :R
is an alkyl group having 1 to 3 carbon atoms), titanium alkoxide (Ti(OR) 4 :R is an alkyl group having 1 to 3 carbon atoms), and the like.

ガラスに機能を持たせるイオンは、前述したよ
うに様々のものがあるが、本発明では、これらの
活性イオンは、それらを溶存する水溶液の形で用
いる。水溶液は、要するにイオン種を溶存してい
れば良いのであるが、イオンの材料物質を水溶液
とするために、純粋を用いることはもちろんであ
るが、酸性水溶液、アルカリ性水溶液を用いるこ
とも全くさしつかえない。多くの場合、活性イオ
ン種の材料は、金属、塩、酸化物、水酸化物の形
で存在するから、これらを溶かすのに、純水の他
に塩酸希釈液、硝酸希釈液、硫酸希釈液、酢酸水
溶液、あるいは、水酸化アンモニウム水溶液を用
いるのは、水溶液を得る手段として手取り早く実
際的である。それに、酸性あるいはアルカリ性の
水溶液を添加することは、溶液を調整することに
よつて金属アルコキシドの加水分解反応を促進す
る触媒的働きがあり、推奨できる。
As mentioned above, there are various types of ions that impart functions to glass, but in the present invention, these active ions are used in the form of an aqueous solution in which they are dissolved. In short, the aqueous solution only needs to have ionic species dissolved in it, but in order to make the ionic material into an aqueous solution, it is of course possible to use a pure aqueous solution, but it is also perfectly acceptable to use an acidic aqueous solution or an alkaline aqueous solution. . In many cases, active ionic materials exist in the form of metals, salts, oxides, and hydroxides, so to dissolve them, in addition to pure water, diluted hydrochloric acid, diluted nitric acid, or diluted sulfuric acid are required. , acetic acid aqueous solution, or ammonium hydroxide aqueous solution is quick and practical as a means of obtaining an aqueous solution. In addition, it is recommended to add an acidic or alkaline aqueous solution because it has a catalytic effect to promote the hydrolysis reaction of the metal alkoxide by adjusting the solution.

溶媒は、加水分解反応を起こさせるのであるか
ら、水が必要である。ただ、イオン種を水溶液の
形で添加している場合は水として別個に加える必
要がないこともある。また、極めて薄い膜の状態
の混合液を想定すれば、水分は空気中から供給さ
れるから、混合液に全く水を加えなくても良い場
合すらある。溶媒として、前述したように酸ある
いはアルカリ液を加えることが、加水分解反応を
促進するから、存在することが好ましい。さらに
言えば、金属アルコキシドとして、M(OCH3
xを用いた場合は、メチルアルコールを溶媒の一
成分として添加し、M(OC2H5)xを用いたエチ
ルアルコールを溶媒の一成分として添加すること
が、加水分解反応を促進するので好ましい実施態
様であると言える。
Water is necessary as a solvent because it causes the hydrolysis reaction to occur. However, if the ionic species is added in the form of an aqueous solution, it may not be necessary to add it separately as water. Furthermore, assuming that the liquid mixture is in the form of an extremely thin film, the water is supplied from the air, so it may not even be necessary to add water to the liquid mixture at all. As mentioned above, the addition of an acid or alkaline solution as a solvent promotes the hydrolysis reaction, so it is preferable to add the acid or alkaline solution. Furthermore, as a metal alkoxide, M(OCH 3 )
When x is used, it is preferable to add methyl alcohol as a component of the solvent, and add ethyl alcohol using M(OC 2 H 5 ) x as a component of the solvent because this promotes the hydrolysis reaction. It can be said that this is an embodiment.

次に、加水分解を行なう混合液の各成分の適正
な割合について述べる。仮にシリコンテトラアル
コキシド(Si(OR)4)を1モル用いた場合を想定
すると、イオン種としての金属イオンは、理論上
は1PPbから1.0モルまで可能である。また、水
(H2O)の添加量は、大気中の水蒸気から水分が
供給されることを考慮すれば、全く加えない状態
から実用的には100モル程度まで可能であるが、
少なすぎると加水分解反応が遅れ、多すぎると乾
燥、焼成工程で、不都合があるから、実際的には
2〜20モル程度が適当である。塩酸、硝酸などの
酸、あるいは水酸化アンモニウム等のアルカリ液
は、全く添加しない場合から、適量加える場合ま
であるが、最大10モル程度で、それ以上加えても
あまり意味がないようである。溶媒の一成分とし
て添加させる低級アルコール類は、金属アルコキ
シドと活性イオンを含む水溶液との相溶性を向上
させる仲介の働きがあり、結果として加水分解反
応を短時間で終了させる作用が認められる。この
ような低級アルコール類の添加量は、0.2〜10モ
ル程度が適当であるが、全く加えない場合でも本
発明の実施を妨げるものではない。
Next, the appropriate proportions of each component in the liquid mixture to be hydrolyzed will be described. Assuming that 1 mol of silicon tetraalkoxide (Si(OR) 4 ) is used, the amount of metal ions as ion species can theoretically range from 1PPb to 1.0 mol. In addition, the amount of water (H 2 O) added can range from no addition to about 100 moles in practical terms, considering that water is supplied from water vapor in the atmosphere.
If the amount is too small, the hydrolysis reaction will be delayed, and if it is too large, there will be problems in the drying and baking steps, so in practice, about 2 to 20 moles is appropriate. Acids such as hydrochloric acid and nitric acid, or alkaline solutions such as ammonium hydroxide, may be added at all or in appropriate amounts, but the maximum amount is about 10 moles, and adding more than that does not seem to make much sense. The lower alcohol added as a component of the solvent acts as a mediator to improve the compatibility between the metal alkoxide and the aqueous solution containing active ions, and as a result, it is recognized that it has the effect of completing the hydrolysis reaction in a short time. The appropriate amount of such lower alcohols to be added is about 0.2 to 10 moles, but the practice of the present invention will not be hindered even if they are not added at all.

以上のような割合で混合した混合液は、そのま
まの状態では加水分解反応はゆるやかに進行する
だけであるから、反応を促進するために攪拌操作
や加熱操作を行なう。攪拌は磁石を回転子とした
攪拌装置を用いたり、超音波を混合液に印加する
方法がある。反応の終点は、急激な発熱があつた
直後、あるいは混合液が透明化するなど、劇的な
変化を呈することにより容易に知ることができ
る。かくして加水分解反応が終了したゾル液が得
られる。興味深いことには、ガラスに機能を与え
る活性イオン種を含む水溶液は、加水分解の前お
よび途中で添加できることはもちろんのこと、加
水分解反応が終了した時点でも、全く支障なく追
加的に混入できることである。
Since the hydrolysis reaction of the liquid mixture mixed at the above ratio will proceed only slowly if it is kept as it is, stirring and heating operations are performed to accelerate the reaction. For stirring, there are methods such as using a stirring device using a magnet as a rotor or applying ultrasonic waves to the mixed liquid. The end point of the reaction can be easily detected by a dramatic change, such as immediately after a sudden exotherm occurs or when the mixture becomes transparent. In this way, a sol solution in which the hydrolysis reaction has been completed is obtained. Interestingly, aqueous solutions containing active ionic species that impart functionality to glass can not only be added before and during hydrolysis, but can also be added additionally after the hydrolysis reaction is complete without any hindrance. be.

得られたゾル液は、任意の容器あるいは平面上
に薄膜状に展開し、ピンセツト等で取り扱える程
度に硬化するまで、空気中で湿度変化を小さく保
つて放置乾燥し、その後、常温から100℃程度ま
で数日かけて、ゆるやかに乾燥する。この時点で
相当な量の水分その他の不要成分が抜けることに
なる。展開する薄膜の厚さは、数10ミクロンか
ら、上限は1mm程度とする。いずれにしても薄膜
の状態で乾燥させることで均質な乾燥が為しう
る。続いて、得られた薄膜体を複数枚積層し、
600℃までは10〜50℃/hの昇温速度で昇温し、
600℃から900℃にかけては、OH基による発泡現
象が起こるので、さらに緩慢に昇温することで焼
成させ、厚手のガラス体を得るものである。焼成
時のOH基による発泡を防ぐには、塩素ガス等の
ハロゲン元素のガス雰囲気中で行なうとか、ある
いは真空脱気雰囲気中で焼成することにより、ガ
ラス中に気泡のない緻密な機能性ガラスが得られ
るものである。
The obtained sol solution is spread into a thin film on any container or flat surface, left to dry in the air while keeping humidity changes small until it hardens to the extent that it can be handled with tweezers, etc., and then heated at room temperature to about 100℃. It will take a few days to dry slowly. At this point, a considerable amount of water and other unnecessary components will be removed. The thickness of the developed thin film is several tens of microns, with an upper limit of about 1 mm. In any case, homogeneous drying can be achieved by drying in a thin film state. Subsequently, multiple sheets of the obtained thin film bodies were laminated,
Up to 600℃, the temperature is increased at a rate of 10 to 50℃/h.
From 600°C to 900°C, a foaming phenomenon occurs due to OH groups, so the temperature is raised even more slowly to produce a thick glass body. To prevent foaming caused by OH groups during firing, it is possible to create dense functional glass without bubbles by firing in a halogen gas atmosphere such as chlorine gas, or firing in a vacuum degassing atmosphere. That's what you get.

(作用) 本発明のゾルゲル法によるガラスの製造法は、
機能性ガラスを得ることができ、しかも任意の厚
さで水分含有量の少ないガラスを得ることができ
るので、機能を発揮しやすいガラス体となるもの
である。
(Function) The method for producing glass by the sol-gel method of the present invention is as follows:
Since it is possible to obtain a functional glass and also to obtain a glass with a desired thickness and a low water content, the glass body can easily perform its functions.

(実施例 1) ケイ酸エチル(Si(OC2H54)20mlを入れた100
ml入りビーカーに対して、12規定塩酸/水=1/
4に希釈した希塩酸30mlに塩化第二鉄(Fecl3
6H2O)10gを溶解した水溶液を調整し、この水
溶液の4mlを、前記したケイ酸エチル20mlと混合
する。さらにエチルアルコール3mlおよび水3ml
を添加して得られた混合液を、磁石回転子を用い
た攪拌装置により常温にて攪拌した。約5分間攪
拌したところ、混合液が発熱し、続いて混合液が
透明化したので、しばらくして攪拌を止め、加水
分解反応が進行した黄色のゾル体を得た。次い
で、このゾル体をアクリル樹脂板の上に厚さ約
0.5mmに薄く展開し、常温で湿度変化を小さく保
つて数日乾燥して硬化させた後、加熱オーブン中
で100℃3日間の加熱乾燥を行ない、適当な大き
さに断裁した後、20枚程度積層して、温度1000℃
になるまで徐々に昇温して、焼成したガラス体を
得た。得られたガラス体は、最高厚さ7mm、茶か
つ色の着色石英ガラスである。
(Example 1) 100ml containing 20ml of ethyl silicate (Si(OC 2 H 5 ) 4 )
For a ml beaker, 12N hydrochloric acid/water = 1/
Add ferric chloride (Fecl 3 ,
An aqueous solution containing 10 g of 6H 2 O) is prepared, and 4 ml of this aqueous solution is mixed with 20 ml of the above-mentioned ethyl silicate. Additionally, 3 ml of ethyl alcohol and 3 ml of water
The resulting mixed solution was stirred at room temperature using a stirring device using a magnetic rotor. When the mixture was stirred for about 5 minutes, the mixture generated heat and subsequently became transparent, so stirring was stopped after a while to obtain a yellow sol in which the hydrolysis reaction had proceeded. Next, this sol body was spread on an acrylic resin plate to a thickness of approximately
Roll it out thinly to 0.5mm, dry and harden it at room temperature for a few days while keeping humidity changes small, heat dry it in a heating oven at 100℃ for 3 days, cut it into an appropriate size, and make 20 sheets. Laminated to a temperature of 1000℃
A fired glass body was obtained by gradually raising the temperature until . The resulting glass body was brown colored quartz glass with a maximum thickness of 7 mm.

(実施例 2) 金属ネオジウム(Nd)3gを、12規定塩酸/
水=1/4の希塩酸30mlに溶解して得た水溶液
2.3mlを、ケイ酸エチル20mlと混合し、さらに水
3mlとエチルアルコール3mlを添加して得た混合
液(うす青色)を、約10分間磁石回転子により攪
拌したところ、急激な発熱のあと、液が透明化
し、澄んだ紫色に変化した。得られた加水分解反
応後のゾル体を、実施例1と全く同様にして薄く
展開し、乾燥して積層して焼成する。ただし、焼
成炉内部を気密構造とし、内部を真空吸引してか
ら、焼成を行なつた。焼成の最高温度は1050℃で
ある。こうして得られたネオジウム含有石英ガラ
スは、内部に気泡がなくうす紫色の透明ガラスで
ある。このガラスは、プラズマ法で作製した同系
のガラスと同様の蛍光スペクトルを示した。
(Example 2) 3 g of metal neodymium (Nd) was dissolved in 12N hydrochloric acid/
Aqueous solution obtained by dissolving 1/4 water in 30ml of diluted hydrochloric acid.
When the mixture (light blue) obtained by mixing 2.3 ml with 20 ml of ethyl silicate and adding 3 ml of water and 3 ml of ethyl alcohol was stirred with a magnetic rotor for about 10 minutes, a sudden heat generation occurred. The liquid became transparent and turned a clear purple color. The obtained sol body after the hydrolysis reaction is spread thinly in exactly the same manner as in Example 1, dried, laminated, and fired. However, the inside of the firing furnace was made airtight, and the inside was vacuumed before firing. The maximum temperature for firing is 1050℃. The neodymium-containing quartz glass thus obtained is a light purple transparent glass with no bubbles inside. This glass exhibited a fluorescence spectrum similar to that of similar glasses made using plasma methods.

またキセノン(Xe)フラツシユランプ励起で
発振実験を行なつた結果10Hz以上の繰返しで安定
に発振し、耐熱負荷特性も優れていた。
In addition, an oscillation experiment using xenon (Xe) flash lamp excitation revealed that the device oscillated stably at a repetition rate of 10Hz or more, and had excellent heat load resistance.

(実施例 3) 酸化ユーロピウム(Eu2O3)5gを10重量%の
水希釈硝酸20mlに溶解して得た水溶液10mlを、ケ
イ酸メチル(Si(OCH34)20mlと混合し、さら
にメチルアルコール3mlを添加した混合液を、約
15分間磁石回転子により攪拌し、加水分解して得
た透明ゾル液(うすピンク色)をアクリル樹脂板
上に厚さ約0.4mmに薄く展開し、常温空気中で乾
燥することによりゲル状に硬化させ、しかる後、
実施例1と同様に加熱乾燥および積層焼成を行な
つたところ、厚さ5mmのピンク色のエルビウム含
有石英ガラスを得た。このガラスの発光特性を確
認するため、365nmの紫外線を照射し、暗所に置
いたところ、橙色の可視光線の発光が見られた。
(Example 3) 10 ml of an aqueous solution obtained by dissolving 5 g of europium oxide (Eu 2 O 3 ) in 20 ml of 10% by weight water-diluted nitric acid was mixed with 20 ml of methyl silicate (Si(OCH 3 ) 4 ), and then Add 3 ml of methyl alcohol to the mixture and add approx.
Stir with a magnetic rotor for 15 minutes and then hydrolyze. Spread the resulting transparent sol (light pink) on an acrylic resin plate to a thickness of about 0.4 mm, and dry in air at room temperature to form a gel. After hardening,
When heating drying and lamination firing were performed in the same manner as in Example 1, a pink erbium-containing quartz glass having a thickness of 5 mm was obtained. In order to confirm the luminescent properties of this glass, when we irradiated it with 365 nm ultraviolet light and placed it in a dark place, we observed that it emitted orange visible light.

(効果) 本発明の機能性ガラスの製造方法は、以上のよ
うなものであり、従来ゾルゲル法によるガラス製
造法では、厚手のガラスを作成する際には、歪み
や割れを生じていたのに対して、本発明によれ
ば、薄膜硬化したものを積層して焼結させるもの
であり、歪みや割れを生じにくく、機能性ガラス
としてある程度の厚さを必要とするレーザー発振
ガラスや凝似宝石ガラス等に対しても充分対応で
きるものであり、また真空吸引下で焼成すれば、
ガラス体内部に気泡等の残留することも防ぐこと
ができる。そのうえ、乾燥工程を薄膜状態で行な
うので、ガラス成分として不要な、アルコール、
水、残留酸成分等を、低エネルギーで極力減らす
ことができるのであり、水がガラス中に存在する
ことで機能が阻害されるガラス、例えば分光フイ
ルターガラスの分光特性、発光ガラスやレーザー
発振ガラスの発光特性などの機能を阻害されるこ
とのない機能性ガラスが得られるのである。
(Effects) The method for manufacturing functional glass of the present invention is as described above, and unlike the conventional glass manufacturing method using the sol-gel method, when creating thick glass, distortions and cracks occurred. On the other hand, according to the present invention, hardened thin films are laminated and sintered, which is less likely to cause distortion or cracking, and is suitable for use with laser oscillation glass or figurative jewelry, which require a certain thickness as functional glass. It is fully compatible with glass, etc., and if fired under vacuum suction,
It is also possible to prevent air bubbles from remaining inside the glass body. Moreover, since the drying process is performed in a thin film state, unnecessary alcohol and
Water, residual acid components, etc. can be reduced as much as possible with low energy, and the spectral characteristics of glasses whose functions are inhibited by the presence of water in the glass, such as spectral filter glass, light-emitting glass, and laser oscillation glass. This makes it possible to obtain functional glass whose functions such as light emitting properties are not inhibited.

Claims (1)

【特許請求の範囲】 1 少なくともガラス母体となる金属アルコキシ
ドと、ガラスに機能を持たせるイオンを溶存する
水溶液とを含む混合液を、攪拌して加水分解反応
後のゾル液を薄膜状に展開し、乾燥後、薄膜化し
た複数枚のガラス材料を積層して焼成一体化する
ことを特徴とする機能性ガラスの製造方法。 2 焼成を、真空雰囲気下で行なう特許請求の範
囲第1項記載の機能性ガラスの製造方法。
[Claims] 1. A mixed solution containing at least a metal alkoxide serving as a glass matrix and an aqueous solution containing dissolved ions that impart functionality to the glass is stirred to develop a sol solution after a hydrolysis reaction into a thin film. A method for producing functional glass, which comprises laminating a plurality of thin glass materials after drying and firing them into one piece. 2. The method for producing functional glass according to claim 1, wherein the firing is performed in a vacuum atmosphere.
JP28473685A 1985-12-18 1985-12-18 Production of functional glass Granted JPS62143831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28473685A JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28473685A JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Publications (2)

Publication Number Publication Date
JPS62143831A JPS62143831A (en) 1987-06-27
JPH0565449B2 true JPH0565449B2 (en) 1993-09-17

Family

ID=17682318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28473685A Granted JPS62143831A (en) 1985-12-18 1985-12-18 Production of functional glass

Country Status (1)

Country Link
JP (1) JPS62143831A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047331U (en) * 1990-05-08 1992-01-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185441A (en) * 1982-04-22 1983-10-29 Seiko Epson Corp Preparation of colored glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185441A (en) * 1982-04-22 1983-10-29 Seiko Epson Corp Preparation of colored glass

Also Published As

Publication number Publication date
JPS62143831A (en) 1987-06-27

Similar Documents

Publication Publication Date Title
Yu et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4: A (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol− gel soft lithography
CN101531459A (en) Rare earth thulium-doped aluminate fluorescent glass and preparation method thereof
CN1944297A (en) Method for producing neodymium-ytterbium co-blended high silicon-oxygen laser glass
US5932498A (en) Magnet and method for manufacturing a magnet
CN1308255C (en) Manufacturing method of erbium doped high silicon oxygen infrared luminous glass
CN102906224B (en) Silicate luminescent material and preparation method thereof
KR20020025483A (en) Phosphors for PDP coated with continuous thin protective layer and preparing process therefor
CN101555595B (en) Nanocomposite rare earth doping bismuth titanate ferroelectric film and preparation method thereof
CN105116665A (en) Method for realizing light amplification of optical waveguide device using up-conversion luminescent material
TW200813186A (en) Fluorescent substance paste and method for producing display
JPH0565449B2 (en)
CN100378020C (en) Manufacturing method of high silica blue light emitting glass
JPS62143830A (en) Production of luminous glass
CN105419796B (en) A kind of molybdic acid bismuthino transparent iron electroluminescence film and preparation method thereof
CN101376566A (en) Zinc oxide quantum dots sensitized rare earth doping glass ceramics and sol-gel preparation thereof
JP3890418B2 (en) Luminous equipment
CN1278970C (en) Method for preparing bismuth blended high silicon oxygen and infrared broad band luminous glass
CN1259265C (en) Production of Nd doped high silicon-oxygen laser glass
CN113149647A (en) Ytterbium and up-conversion rare earth luminescent ion double-doped potassium-sodium niobate thick film
CN102211871B (en) Ytterbium-bismuth co-doped base-free borophosphate optical glass and preparation method thereof
CN103274597B (en) The method of the near-infrared luminous glass of a kind of bismuth ion doped micropore molecular sieve
JP2806724B2 (en) Method for producing phosphor layer for gas discharge panel
CN1160266C (en) Process for preparing long-afterglow and light excited long-afterglow glass and pyroceram with memory function
JP2007161556A (en) Paste composition, inorganic film, and partition member for plasma display panel using the inorganic film
US2523005A (en) Method of stabilzing phosphors