JPS6214338Y2 - - Google Patents

Info

Publication number
JPS6214338Y2
JPS6214338Y2 JP17490279U JP17490279U JPS6214338Y2 JP S6214338 Y2 JPS6214338 Y2 JP S6214338Y2 JP 17490279 U JP17490279 U JP 17490279U JP 17490279 U JP17490279 U JP 17490279U JP S6214338 Y2 JPS6214338 Y2 JP S6214338Y2
Authority
JP
Japan
Prior art keywords
air
engine
intake
trunk
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17490279U
Other languages
Japanese (ja)
Other versions
JPS5692713U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17490279U priority Critical patent/JPS6214338Y2/ja
Publication of JPS5692713U publication Critical patent/JPS5692713U/ja
Application granted granted Critical
Publication of JPS6214338Y2 publication Critical patent/JPS6214338Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【考案の詳細な説明】 この考案は、空気が膨脹する際に、温度低下す
ることを利用して、この低温空気で機関の冷却を
行う空冷機関に関するものである。
[Detailed Description of the Invention] This invention relates to an air-cooled engine that cools the engine with low-temperature air by utilizing the temperature drop when air expands.

一般に、空気の熱容量が小さいために、中,大
型内燃機関では、機関のシリンダライナ、および
シリンダヘツドは水冷却されるのが通常である。
従来、内燃機関のシリンダライナの冷却は、内部
の第一ピストンリング附近の温度を200℃以下に
抑えるために、シリンダライナの表面を流れる冷
却水の温度を80℃以下にする必要があつた。機関
の構造上シリンダヘツドの冷却水通路には、シリ
ンダライナを冷却した水が流れるので、シリンダ
ヘツドの冷却だけを高温冷却(90゜〜100℃)に
することは困難で、そのために排気ガス通路の一
部で露点温度以下になる部分が生じ、そこに水滴
が発生し、排気ガスと結合し硫酸となつて、いわ
ゆる酸腐食が発生することが多い。またシリンダ
ライナ外周には冷却水の振動のためにキヤビテー
シヨン損傷を起こすことが多い。このためシリン
ダライナの空冷を行えば上記の水冷却による欠点
を除くことができる。一方シリンダライナの空冷
を効果的に行い、かつその空気を機関の給気とし
て利用するには、給気の最適温度(40℃〜60℃)
の制限から、冷却空気を10゜〜20℃の低温にする
必要があるが、これを冷却器で冷却するには水以
外の冷媒例えばフロン等が必要となり、冷却装置
の構造が大きくなる問題がある。また、機関の高
性能、高出力化に伴つて給気圧力は益々高くな
り、給気圧力の増加は、給気冷却後の水分の増加
をもたらし、これを効率よく回収しなければ、シ
リンダ内に吸入されて吸気弁の異状摩耗を発生さ
せたり、弁の亀裂等の損傷を起こす原因となる。
Generally, in medium to large-sized internal combustion engines, the cylinder liner and cylinder head of the engine are usually water cooled because the heat capacity of air is small.
Conventionally, in order to cool the cylinder liner of an internal combustion engine, it was necessary to keep the temperature of the cooling water flowing on the surface of the cylinder liner below 80°C in order to keep the temperature around the first piston ring inside to below 200°C. Due to the structure of the engine, water that has cooled the cylinder liner flows through the cylinder head cooling water passage, so it is difficult to cool only the cylinder head at a high temperature (90° to 100°C). There are parts of the engine where the temperature is below the dew point, where water droplets are generated and combine with exhaust gas to form sulfuric acid, often resulting in so-called acid corrosion. Furthermore, cavitation damage often occurs on the outer periphery of the cylinder liner due to vibration of cooling water. Therefore, by air cooling the cylinder liner, the above-mentioned drawbacks caused by water cooling can be eliminated. On the other hand, in order to effectively cool the cylinder liner and use the air as supply air for the engine, the optimum temperature for the supply air is 40℃ to 60℃.
Due to the restrictions of be. In addition, as the performance and output of engines increase, the supply air pressure becomes higher and higher, and the increase in the supply air pressure causes an increase in moisture after the supply air is cooled, and if this is not efficiently recovered, This can cause abnormal wear on the intake valves and damage such as cracks to the valves.

この考案は上記に鑑みてなされたもので、空気
が膨張する際に、温度が低下することを利用し
て、この低温空気で機関シリンダライナの冷却を
行い、更に、この空気を機関の給気として利用
し、前記問題点を解消する空冷機関を提供するこ
とを目的とする。以下、この考案の一実施例を図
面にもとづいて説明する。
This idea was made in view of the above, and by taking advantage of the fact that the temperature decreases when air expands, this low-temperature air is used to cool the engine cylinder liner, and furthermore, this air is used as the engine supply air. It is an object of the present invention to provide an air-cooled engine that can be used as an air-cooled engine to solve the above-mentioned problems. An embodiment of this invention will be described below based on the drawings.

図面において、1は内燃機関Eの排気ガスによ
つて駆動され、吸入空気を圧縮する排気タービン
過給機で、そのタービン入口が排気管2により内
燃機関Eのシリンダヘツド3の排気口に接続され
ている。4は前記過給機1から送出された空気
を、配管5よりの冷却水との熱交換によつて冷却
する空気冷却器で第1、第2の空気ダクト6a,
6bを介して前記過給機1のブロワ出口に接続さ
れている。7は前記空気冷却器4を出た空気の流
路の断面積を縮少させ、該空気の流量を制限し、
内燃機関Eのトランク8内に放出膨脹させる絞り
弁で、第3の空気ダクト9を介して空気冷却器4
の出口に連結されており、内端部が対向している
一対の絞り板を相互に接近、離反させることによ
り、該絞り板の相互間に形成される絞り径が可変
になつている。上記絞り弁7は、上記のごとく絞
り板により絞り径が可変のオリフイスとして形成
してもよいが、所要の固定絞り径のオリフイスと
して形成してもよく、また仕切り弁等の形式のも
のでもよく、要は空気の流路の断面積を縮小し、
その流量を制限するものであれば種々の形式のも
のが採用して得る。10は前記絞り弁7を出て膨
脹し、温度が低下した空気の中に含まれる水分を
回収するドレンセパレータで、一端が絞り弁7に
接続され、他端が内燃機関Eの給気トランク8の
入口に装着されている。このドレンセパレータ1
0の底部はドレン溜り10aとなつておりコツク
11を有するドレンパイプ12が接続して設けら
れている。13は機関シリンダライナ14の外周
を囲繞するように形成した給気トランク8の出口
と機関シリンダヘツド3の吸気口を連結する吸気
枝管で、15はシリンダヘツド3に設けられた吸
気弁である。16は給気トランク8内に送出され
た給気が直接吸気枝管13に行かないよう、給気
トランク8の内壁に設けられた邪魔板である。
In the drawing, reference numeral 1 denotes an exhaust turbine supercharger that is driven by the exhaust gas of the internal combustion engine E and compresses intake air, and its turbine inlet is connected to the exhaust port of the cylinder head 3 of the internal combustion engine E through an exhaust pipe 2. ing. Reference numeral 4 denotes an air cooler that cools the air sent out from the supercharger 1 by heat exchange with cooling water from the piping 5, and includes first and second air ducts 6a,
It is connected to the blower outlet of the supercharger 1 via 6b. 7 reduces the cross-sectional area of the flow path of the air exiting the air cooler 4 to limit the flow rate of the air;
A throttle valve for discharging and expanding air into the trunk 8 of the internal combustion engine E via a third air duct 9 to the air cooler 4
The diameter of the aperture formed between the aperture plates is made variable by moving a pair of aperture plates, which are connected to the outlet of the aperture plate and whose inner ends face each other, toward and away from each other. The throttle valve 7 may be formed as an orifice with a variable throttle diameter using a throttle plate as described above, but it may also be formed as an orifice with a required fixed throttle diameter, or it may be in the form of a gate valve or the like. , the key is to reduce the cross-sectional area of the air flow path,
Various types can be adopted as long as the flow rate is restricted. Reference numeral 10 denotes a drain separator that recovers moisture contained in the air that expands after exiting the throttle valve 7 and whose temperature has decreased. One end is connected to the throttle valve 7, and the other end is connected to the air intake trunk 8 of the internal combustion engine E. installed at the entrance. This drain separator 1
The bottom of the tank 0 serves as a drain reservoir 10a, and a drain pipe 12 having a pot 11 is connected thereto. 13 is an intake branch pipe that connects the outlet of the air intake trunk 8 formed to surround the outer periphery of the engine cylinder liner 14 and the intake port of the engine cylinder head 3; 15 is an intake valve provided in the cylinder head 3; . Reference numeral 16 denotes a baffle plate provided on the inner wall of the air supply trunk 8 so that the air supplied into the air supply trunk 8 does not go directly to the intake branch pipe 13.

上記構成の装置において、内燃機関の排気ター
ビン過給機1によつて圧縮されて、圧力約2Kg/
cm2,温度160゜〜180℃になつた空気は、ダクト6
a,6bを通つて空気冷却器4で約60℃に冷却さ
れた後に、絞り弁7およびドレンセパレータ10
を経て給気トランク8内に放出されて膨脹させら
れるために、圧力約1Kg/cm2,温度10゜〜20℃に
低下する。この低温空気はドレンセパレータ10
で空気中の水分が回収された後に給気トランク8
内に入り、シリンダライナ14の周辺を流れてシ
リンダライナ14を冷却し、空気自身はシリンダ
ライナ14よりの放熱で加熱されて40゜〜60℃に
温度が上昇するので、その際ドレンセパレータ1
0で取り切れなかつた水分が再気化する。この空
気が機関Eの吸気行程で、給気トランク8の出口
より吸気枝管13を経てシリンダヘツド3の吸気
口に至り、機関シリンダ内に吸入される。ドレン
セパレータ10で回収された水分は、ドレン溜り
10aに収容されているので、随時ドレンコツク
11を開いて排出する。なお、機関Eに吸入され
る空気量と、絞り弁7を通つて給気トランク8の
中に流入する空気量がバランスするよう絞り弁7
の径が設定されているので、給気トランク8内の
圧力が上昇して絞り弁前後の圧力差がなくなるこ
とはない。
In the device configured as described above, the exhaust gas is compressed by the exhaust turbine supercharger 1 of the internal combustion engine to a pressure of approximately 2 kg/kg.
cm 2 , the air with a temperature of 160° to 180°C is transferred to duct 6.
After being cooled to about 60°C by the air cooler 4 through the air filters a and 6b, the throttle valve 7 and the drain separator 10
As the air is discharged into the air supply trunk 8 and expanded, the pressure decreases to approximately 1 kg/cm 2 and the temperature to 10° to 20° C. This low temperature air is transferred to the drain separator 10.
After the moisture in the air is collected in the air supply trunk 8
The air flows around the cylinder liner 14 and cools the cylinder liner 14, and the air itself is heated by heat radiation from the cylinder liner 14 and its temperature rises to 40° to 60°C.
The water that cannot be removed at 0 is re-vaporized. During the intake stroke of the engine E, this air reaches the intake port of the cylinder head 3 from the outlet of the intake trunk 8 through the intake branch pipe 13, and is sucked into the engine cylinder. Since the water collected by the drain separator 10 is stored in the drain reservoir 10a, the drain tank 11 is opened at any time to drain it. Note that the throttle valve 7 is adjusted so that the amount of air taken into the engine E and the amount of air flowing into the air supply trunk 8 through the throttle valve 7 are balanced.
Since the diameter of the throttle valve is set, the pressure inside the air supply trunk 8 will not increase and the pressure difference before and after the throttle valve will not disappear.

以上のように、この考案は、過給機によつて圧
縮された空気を空気冷却器を通して冷却した後、
絞り弁を通過させて、機関の給気トランク内に放
出、膨脹させて空気温度を低下させ、この低温空
気によりシリンダライナを冷却すると共に、シリ
ンダライナの冷却により温度上昇した空気を機関
シリンダに給気するようにしたので、シリンダラ
イナの冷却を効率よく行うことができ、しかも前
記空気冷却器は通常の水冷却式のものでよく、あ
まり大きな構造のものは必要としない。また機関
給気圧力の増加により、給気冷却後に増加する給
気中の水分は、ドレンセパレータで回収されなか
つた残部が、給気トランク内で空気がシリンダラ
イナの熱放散により温度上昇するとき、再気化す
るため、結果的に水分の回収率が良くなり、この
ように水分の回収された空気が適温となつて機関
シリンダに給気として利用でき、この際吸気弁の
異状摩耗や、亀裂等の損傷を防止することができ
る。そして、上記のように空気を温度上昇させて
再気化するために、特別の加熱装置を付設する必
要がないので、装置の構造が簡単であり、その実
施が容易である。また、シリンダライナを水冷却
しないので、機関冷却水の総量を少くすることが
できるとともにシリンダヘツドの高温冷却が可能
となり、シリンダヘツドの酸腐食を防止し、さら
に冷却水の振動によつて惹起されるシリンダライ
ナのキヤビテーシヨン損傷を無くすることができ
る等の利点を有する。
As mentioned above, this idea cools the air compressed by the supercharger through an air cooler, and then
The air passes through the throttle valve and is discharged into the engine's air supply trunk and expanded to lower the air temperature. This low-temperature air cools the cylinder liner, and the air whose temperature has risen due to cooling the cylinder liner is supplied to the engine cylinder. Since the air cooler can be cooled efficiently, the cylinder liner can be cooled efficiently, and the air cooler can be a normal water cooling type, and does not require a very large structure. In addition, due to an increase in the engine supply air pressure, the moisture in the supply air that increases after the supply air is cooled is the remainder that was not recovered by the drain separator. As a result of re-vaporization, the moisture recovery rate improves, and the air with moisture recovered in this way is at an appropriate temperature and can be used as air supply to the engine cylinders. damage can be prevented. Further, since there is no need to attach a special heating device to raise the temperature of the air and revaporize it as described above, the structure of the device is simple and its implementation is easy. In addition, since the cylinder liner is not cooled with water, the total amount of engine cooling water can be reduced and the cylinder head can be cooled at high temperatures, preventing acid corrosion of the cylinder head and preventing acid corrosion caused by vibration of the cooling water. This has the advantage that cavitation damage to the cylinder liner can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案に係る空冷機関の構成説明
図、第2図は一部を断面して示した空冷機関の平
面図である。 1……過給機、3……機関シリンダヘツド、4
……空気冷却器、7……絞り弁、8……給気トラ
ンク、13……吸気枝管、14……シリンダライ
ナ。
FIG. 1 is an explanatory diagram of the configuration of an air-cooled engine according to the present invention, and FIG. 2 is a partially sectional plan view of the air-cooled engine. 1...supercharger, 3...engine cylinder head, 4
... Air cooler, 7 ... Throttle valve, 8 ... Air supply trunk, 13 ... Intake branch pipe, 14 ... Cylinder liner.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関の各シリンダライナの外周を囲繞する
ように設けた給気トランクと、該給気トランクの
入口に連通して設けた絞り弁と、前記内燃機関の
排気ガスにより駆動される過給機と、該過給機に
より圧縮された空気を冷却して前記絞り弁に送る
空気冷却器と、前記給気トランクの出口を機関シ
リンダヘツドの吸気口に連絡する吸気枝管とを備
えていることを特徴とする空冷機関。
An air intake trunk provided to surround the outer periphery of each cylinder liner of the internal combustion engine, a throttle valve provided in communication with an inlet of the air intake trunk, and a supercharger driven by the exhaust gas of the internal combustion engine. , an air cooler that cools the air compressed by the supercharger and sends it to the throttle valve, and an intake branch pipe that connects the outlet of the air supply trunk to the intake port of the engine cylinder head. Features an air-cooled engine.
JP17490279U 1979-12-19 1979-12-19 Expired JPS6214338Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17490279U JPS6214338Y2 (en) 1979-12-19 1979-12-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17490279U JPS6214338Y2 (en) 1979-12-19 1979-12-19

Publications (2)

Publication Number Publication Date
JPS5692713U JPS5692713U (en) 1981-07-23
JPS6214338Y2 true JPS6214338Y2 (en) 1987-04-13

Family

ID=29685603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17490279U Expired JPS6214338Y2 (en) 1979-12-19 1979-12-19

Country Status (1)

Country Link
JP (1) JPS6214338Y2 (en)

Also Published As

Publication number Publication date
JPS5692713U (en) 1981-07-23

Similar Documents

Publication Publication Date Title
JP3518875B2 (en) Engine with two-stage turbocharger
JPS6214338Y2 (en)
US6073616A (en) Arrangement at the intake manifold of an internal combustion engine
CN214464603U (en) Engine system and vehicle
JPH01104912A (en) Internal air cooling mechanism for internal combustion engine
JPH02245415A (en) Air-cooled internal combustion engine
JP2022540247A (en) Novel cooling system for internal combustion engines
JPS6214344Y2 (en)
WO2021115448A1 (en) Cylinder head for engine and engine having same
JP3608668B2 (en) Diesel engine with intercooler
JPS6135697Y2 (en)
JPH0329538Y2 (en)
CN105927346A (en) Cooling system of internal combustion engine
JPH0814052A (en) Internal combustion engine with turbo-cooling device
JPS5820924A (en) Intake device for engine with supercharger
JPH0545806Y2 (en)
JPS58162716A (en) Cooling device for water-cooled engine
JPS638833Y2 (en)
JPS6026178Y2 (en) Internal combustion engine cooling system
US2600736A (en) Method and apparatus for cooling the air supplied to internal-combustion engines
JPS6133465Y2 (en)
JPH0332743Y2 (en)
JPS6129931Y2 (en)
JPH03112519U (en)
JPH0216015Y2 (en)