JPS62142863A - Forward/reverse rotatable fluid machine - Google Patents

Forward/reverse rotatable fluid machine

Info

Publication number
JPS62142863A
JPS62142863A JP60283400A JP28340085A JPS62142863A JP S62142863 A JPS62142863 A JP S62142863A JP 60283400 A JP60283400 A JP 60283400A JP 28340085 A JP28340085 A JP 28340085A JP S62142863 A JPS62142863 A JP S62142863A
Authority
JP
Japan
Prior art keywords
drive shaft
mounting boss
blade
mounting
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60283400A
Other languages
Japanese (ja)
Other versions
JPH03508B2 (en
Inventor
Nobuo Kotaki
小瀧 信夫
Atsuichi Okuda
奥田 温一
Ikuo Nomura
育生 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Original Assignee
DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Dengyosha Machine Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENGIYOUSHIYA KIKAI SEISAKUSHO KK, Dengyosha Machine Works Ltd filed Critical DENGIYOUSHIYA KIKAI SEISAKUSHO KK
Priority to JP60283400A priority Critical patent/JPS62142863A/en
Publication of JPS62142863A publication Critical patent/JPS62142863A/en
Publication of JPH03508B2 publication Critical patent/JPH03508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To reduce a relative moving speed when relative rotation between a driving shaft and a mounting boss is limited and to relieve an impact force, by a method wherein a resistance mechanism employing viscous fluid is mounted between the driving shaft and the mounting boss or the mounting boss and a blade mounting shaft. CONSTITUTION:With a driving shaft 22 rotated with the aid of a motor 20, a mounting boss 26 is rotated in delay by inertia. Relative rotation between the driving shaft 22 and the mounting boss 26 causes rotation of a blade mounting shaft 28 through engagement of a bevel gear 30 with a pinion gear 29, and the direction of a blade 27 is varied. In this case, a relative movement speed between the driving shaft 22 and the mounting boss 26 is increased with the elapse of a time, and is increased to a maximum value when an engaging projection part 32 is forced into contact with a stopper 37. A resistance mechanism, formed with viscous fluid sealed between a rotary disc 34 and a hub cover 35, and a disc cover 38, is increased in friction resistance with the increase in a relative movement speed. This constitution enables relief of an impact force, exerted on the stopper 37 and the engaging projection part 32, through reduction of a relative movement speed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、駆動軸の回転方向の切り換えに伴って自動的
に翼の向きを切り換えて、正逆回転いずれも同様な運転
性能が得られ、しかも翼の向きを切り換える際の衝撃を
軽減できるようにした正逆回転可能な流体機械に関する
ものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention automatically switches the direction of the blades when the direction of rotation of the drive shaft is changed, so that the same driving performance can be obtained in both forward and reverse rotations. Moreover, the present invention relates to a fluid machine capable of forward and reverse rotation, which can reduce the impact when switching the direction of the blades.

(従来の枝術) 文が固定されていて一方向に回転駆動される流体機械に
あっては、正回転での運転性能は高いが逆回転での運転
性能が著しく低下する。そこで、正回転および逆回転で
駆動される正逆回転可能な流体機械にあっては、固定さ
れた翼を対称型として正逆回転での運転性能が等しくな
るように構成されたものがある。しかし、この正逆回転
可能な流体機械は、一方向に回転駆動される流体機械に
比較して運転性能が低下する。
(Conventional Branch Technique) In a fluid machine in which the shaft is fixed and is driven to rotate in one direction, the operating performance in forward rotation is high, but the operating performance in reverse rotation is significantly degraded. Therefore, some fluid machines that are driven in forward and reverse rotations and capable of forward and reverse rotation are constructed with fixed blades of a symmetrical type so that the operating performance in forward and reverse rotations is equal. However, this fluid machine that can rotate forward and backward has lower operating performance than a fluid machine that is rotationally driven in one direction.

ここで、正回転および逆回転で駆動される正逆回転可能
な流体機械において、回転方向の切り換えに伴なって翼
の向きを180度切り換え、いずれの回転方向の駆動で
あっても、一方向に回転駆動される翼が固定された流体
機械と同様な運転性能を得るようにした種種の正逆回転
可能な流体機械が提案されている。ところがこれらの正
逆回転可能な流体機械では、翼の向きを切り換えるため
の機構が複雑であって装置全体が大きくなり、また、翼
の向きを切り換えるための油圧等の他の動力が必要であ
って装置全体として高価なものであった。
Here, in a fluid machine that can rotate in forward and reverse directions and is driven in forward and reverse rotation, the direction of the blades is changed by 180 degrees as the direction of rotation is changed, and even when driving in either direction, it is possible to Various types of fluid machines capable of forward and reverse rotation have been proposed, which provide operating performance similar to fluid machines with fixed blades that are rotatably driven. However, in these fluid machines that can rotate forward and backward, the mechanism for switching the direction of the blades is complicated, making the entire device large, and other power sources such as hydraulic pressure are required to change the direction of the blades. Therefore, the entire device was expensive.

そこで、本特許出願人は先に特願昭60−71900号
により簡単な機構により駆動軸の回転方向の切り換えに
伴って自動的に翼の向きが切り換えられるようにした正
逆回転可能な流体機械を提案している。
Therefore, the applicant of the present patent previously proposed a fluid machine capable of forward and reverse rotation in which the direction of the blades can be automatically switched in accordance with the change of the rotational direction of the drive shaft using a simple mechanism in Japanese Patent Application No. 60-71900. is proposed.

この先に提案した正逆回転可能な流体機械を第4図ない
し第6図を参照して説明する。第4図は、先に提案した
正逆回転可能な流体機械の要部断面図であり、第5図は
、第4図のA−A矢視断面図であり、第6図は、第5図
のB−B矢視断面図である。
The previously proposed fluid machine capable of forward and reverse rotation will be explained with reference to FIGS. 4 to 6. FIG. 4 is a sectional view of a main part of the previously proposed fluid machine capable of forward and reverse rotation, FIG. 5 is a sectional view taken along the line A-A in FIG. 4, and FIG. It is a sectional view taken along the line BB in the figure.

第4図ないし第6図において、正逆回転可能な流体機械
は、図示しないモータ等の駆動源により正逆回転される
駆動軸1に固定スリーブ2がキー3により固定されてい
る。この固定スリーブ2に取付ポス4が回転可能に軸支
され、さらにこの取付ポス4に翼5,5φ・が駆動軸l
に対して放射状に複数個配置され、翼取付軸6,6争・
により回転可能に軸支されている。そして、翼取付軸6
の先端にピニオンギヤ7が固定され、このピニオンギヤ
7に噛合するように、駆動軸lにベベルギヤ8が固定さ
れている。さらに、固定スリーブ2には、第5図のごと
く、凹部9,9が設けられ。
4 to 6, the fluid machine capable of forward and reverse rotation has a fixed sleeve 2 fixed by a key 3 to a drive shaft 1 which is rotated forward and backward by a drive source such as a motor (not shown). A mounting post 4 is rotatably supported on the fixed sleeve 2, and a blade 5, 5φ is attached to the drive shaft l.
A plurality of blades are arranged radially against the blade mounting shafts 6, 6, and
It is rotatably supported by. And the wing attachment shaft 6
A pinion gear 7 is fixed to the tip of the drive shaft 1, and a bevel gear 8 is fixed to the drive shaft l so as to mesh with the pinion gear 7. Furthermore, the fixed sleeve 2 is provided with recesses 9, 9 as shown in FIG.

この凹部9.9の両端部でストッパー10.10が形成
されている。そして、取付ポス4には、この凹部9,9
内で移動自在な係合凸部11が突設されている。この係
合凸部11とストッパーto、toで駆動軸lと取付ポ
ス4の相対回転できる角度を制限する制限機構が構成さ
れている。そして、係合凸部11がストッパー10.1
0に当接される位置で、翼5が駆動軸1の回転方向に最
適な向きとなるように構成されている。なお、12は翼
取付軸6を取付ポス4に回転自在に取り付けるためのナ
ツトであり、13は駆動軸lにベベルギヤ8を固定する
キーであり、14は駆動軸1に固定スリーブ2を固定す
るナツトであり、15は防塵カバーである。
Stops 10.10 are formed at both ends of this recess 9.9. The mounting post 4 has these recesses 9, 9.
An engaging convex portion 11 that is movable inside is provided in a protruding manner. The engaging convex portion 11 and the stoppers to constitute a limiting mechanism that limits the angle at which the drive shaft l and the mounting post 4 can rotate relative to each other. Then, the engaging convex portion 11 is connected to the stopper 10.1.
The blades 5 are configured to be oriented optimally in the rotational direction of the drive shaft 1 at the position where the blades 5 are in contact with the drive shaft 1. In addition, 12 is a nut for rotatably attaching the blade mounting shaft 6 to the mounting post 4, 13 is a key for fixing the bevel gear 8 to the drive shaft l, and 14 is for fixing the fixing sleeve 2 to the drive shaft 1. 15 is a dustproof cover.

かかる構成において、まず、駆動軸1が第6図の矢印X
方向に回転すると、慣性により取付ポス4は静止状態を
保とうとす、るために、駆動軸lに対して取付ポス4の
回転が遅れる。そこで、取付ポス4の係合凸部11が固
定スリーブ2の凹部9の一方のスト−ツバ−10に出接
され(第6図に実線で示す)、この駆動軸1と取付ポス
4の相対回転が停止された状態で100%の駆動力が伝
達されて取付ポス4が回転される。この駆動軸1と取付
ポス4の相対回転で、ベベルギヤ8に噛合するピニオン
ギヤ7が回転されて翼5が適宜に回転され、翼5が駆動
軸lのX方向回転に最適な向きとなる。よって、駆動軸
1の矢印X方向回転に対して、最適な運転性能を得るこ
とができる。
In such a configuration, first, the drive shaft 1 is aligned with the arrow X in FIG.
When the mounting post 4 rotates in this direction, the mounting post 4 tries to remain stationary due to inertia, so that the rotation of the mounting post 4 with respect to the drive shaft l is delayed. Therefore, the engagement convex portion 11 of the mounting post 4 is brought into contact with one of the stator bars 10 of the recess 9 of the fixed sleeve 2 (shown by a solid line in FIG. 6), and the relationship between the drive shaft 1 and the mounting post 4 is With rotation stopped, 100% of the driving force is transmitted and the mounting post 4 is rotated. This relative rotation between the drive shaft 1 and the mounting post 4 rotates the pinion gear 7 meshing with the bevel gear 8, and the blades 5 are appropriately rotated, so that the blades 5 are oriented in the optimal direction for the rotation of the drive shaft 1 in the X direction. Therefore, optimum driving performance can be obtained with respect to the rotation of the drive shaft 1 in the direction of the arrow X.

次に、駆動軸lが逆回転されて、第6図の矢印X方向と
逆方向に回転すると、やはり慣性により取付ポス4は静
止状態を保とうとするために、こんどは取付ポス4の係
合凸部11が他方のストッパーlOに当接するまで、逆
方向に相対的に回転して駆動軸1に対して取付ポス4の
相対回転が停止される(第6図に破線で示す)。この駆
動軸1と取付ポス4の相対回転により、ベベルギヤ8に
噛合するピニオンギヤ7が逆回転され、これに固定され
た翼5が180度逆回転される。よって、駆動軸1の矢
印X方向と逆方向の回転に対して、翼5を最適な向きに
切り換えることができ、駆動輔1の逆方向の回転でも最
適な運転性能を得ることができる。
Next, when the drive shaft l is reversely rotated in the direction opposite to the direction of the arrow X in FIG. The mounting post 4 rotates in the opposite direction until the convex portion 11 comes into contact with the other stopper IO, and the relative rotation of the mounting post 4 with respect to the drive shaft 1 is stopped (as shown by the broken line in FIG. 6). Due to this relative rotation between the drive shaft 1 and the mounting post 4, the pinion gear 7 meshing with the bevel gear 8 is rotated in the opposite direction, and the blade 5 fixed thereto is rotated in the opposite direction by 180 degrees. Therefore, when the drive shaft 1 rotates in the direction opposite to the arrow X direction, the blades 5 can be switched to the optimum direction, and even when the drive shaft 1 rotates in the opposite direction, optimum driving performance can be obtained.

(発明が解決しようとする問題点) ところで、上記した先に提案した正逆回転可能な流体機
械においては、駆動軸1の回転方向が切り換えられ、翼
5の向きが切り換えられて所定の角度に制限される際に
、固定スリーブ2に設けたストッパー10.10・・・
と取付ボス4に設けた係合凸部11.11・・・に衝撃
が加わる。即ち、駆動軸1の回転トルクは、取付ボス4
との相対回転時の摩擦エネルギーとして一部消費される
が、取付ボス4の相対回転が制限された瞬間に、取付ボ
ス4を回転運動させるためのストッパーto、to・・
・および係合凸部11.11・・・に衝撃力として加わ
る。この衝撃力は小型の流体機械であれば、取付ボス4
および翼5等の全質量が比較的に小さくてさほど問題と
ならないが、流体機械の大容量化に伴い取付ボス4およ
び翼5等の全質量が大きくなると衝撃力も大きなものと
なり、ストッパー10.10・・・や係合凹部11.1
1・・・からなる制限機構を破壊する虞れがある。
(Problems to be Solved by the Invention) By the way, in the above-mentioned fluid machine that can rotate in forward and reverse directions, the direction of rotation of the drive shaft 1 is switched, and the direction of the blades 5 is switched to a predetermined angle. When restricted, the stoppers 10, 10, provided on the fixed sleeve 2...
An impact is applied to the engaging protrusions 11, 11, . . . provided on the mounting boss 4. That is, the rotational torque of the drive shaft 1 is
Although some of it is consumed as frictional energy during relative rotation with the mounting boss 4, at the moment when the relative rotation of the mounting boss 4 is restricted, the stoppers to, to...
- and the engaging convex portions 11, 11... are applied as an impact force. If this impact force is a small fluid machine, the mounting boss 4
The total mass of the mounting boss 4, the blade 5, etc. is relatively small, so it is not a big problem. However, as the capacity of fluid machinery increases, the total mass of the mounting boss 4, the blade 5, etc. increases, and the impact force becomes large. ...and engagement recess 11.1
There is a risk that the restriction mechanism consisting of 1... may be destroyed.

本発明の目的は、上記した先に提案した正逆回転可能な
流体機械の問題点を解決すべくなされたもので、翼の向
きが切り換えられる際の駆動軸と取付ボス等の相対移動
速度を減速させて衝撃力を軽減させるようにした正逆回
転可能な流体機械を提供することにある。
The purpose of the present invention was to solve the problems of the above-mentioned forward-reverse rotatable fluid machine. To provide a fluid machine capable of forward and reverse rotation and capable of decelerating and reducing impact force.

(問題を解決するための手段) かかる目的を達成するために、本発明の正逆回転可能な
流体機械は、翼の翼取付軸を回転可能に取付ボスに軸支
し、前記買取付軸にピニオンギヤを固定し、駆動軸に前
記取付ボスを回転可能に設け、前記駆動軸に前記ピニオ
ンギヤに噛合するベベルギヤを固定し、前記駆動軸と前
記取付ボスとの相対回転できる角度を制限する制御機構
を設け、さらに前記駆動軸と前記取付ボスの間および前
記取付ボスと前記翼取付軸の間の少なくとも一方に双方
の相対移動速度に応じた抵抗力を生ずる粘性流体を用い
た抵抗機構を設け、前記駆動軸の正逆回転の切り換えに
より前記式の向きを前記制御機構で所定の角度に規制し
て切り換えるとともに、前記粘性流体を用いた抵抗機構
で翼の向きが切り換えられる際の前記駆動軸と前記取付
ボスおよび前記取付ボスと前記翼取付軸の相対移動速度
を減速するように構成されている。
(Means for Solving the Problem) In order to achieve such an object, a fluid machine capable of forward and reverse rotation of the present invention rotatably supports a blade mounting shaft of a blade on a mounting boss, and a blade mounting shaft of the blade is rotatably supported on a mounting boss. A control mechanism that fixes a pinion gear, rotatably provides the mounting boss on a drive shaft, fixes a bevel gear meshing with the pinion gear on the drive shaft, and limits the angle at which the drive shaft and the mounting boss can rotate relative to each other. Further, a resistance mechanism using a viscous fluid is provided between the drive shaft and the mounting boss and at least one of the mounting boss and the blade mounting shaft using a viscous fluid that generates a resistance force according to the relative movement speed of both, By switching between forward and reverse rotation of the drive shaft, the direction of the equation is regulated to a predetermined angle by the control mechanism, and the direction of the drive shaft and the direction of the blade are changed by the resistance mechanism using the viscous fluid. The mounting boss is configured to reduce the relative movement speed between the mounting boss and the blade mounting shaft.

(作用) 駆動軸と取付ボスの間および取付ボスと翼取付軸の間の
少なくとも一方に、粘性流体を用いた抵抗機構を設けた
ので、駆動軸の回転方向が切り換えられて駆動軸と取付
ボスおよび取付ボスと翼取付軸の相対移動速度が速くな
るほど抵抗機構はこの相対移動速度が遅くなる方向に大
きな抵抗として作用し、制限機構によって駆動軸と取付
ボス等の相対回転が制限される際の相対移動速度を減速
し、制限機構に加わる衝撃力を軽減することができる。
(Function) A resistance mechanism using viscous fluid is provided between the drive shaft and the mounting boss and between the mounting boss and the blade mounting shaft, so the rotation direction of the drive shaft is switched and the rotation direction of the drive shaft and the mounting boss is As the relative movement speed between the mounting boss and the blade mounting shaft increases, the resistance mechanism acts as a greater resistance in the direction of slowing down the relative movement speed, and when the relative rotation of the drive shaft and the mounting boss, etc. is restricted by the restriction mechanism, It is possible to reduce the relative movement speed and reduce the impact force applied to the restriction mechanism.

しかも、駆動軸が停市されて自然風等を翼が受けるとき
は、駆動軸と取付ボス等の相対移動速度が小さいので、
抵抗機構による相対回転に対する抵抗力は小さく、自然
風等により翼が最も風圧の小さい角度となることを妨げ
るようなことがない。
Moreover, when the drive shaft is stopped and the blades are exposed to natural wind, etc., the relative movement speed between the drive shaft and the mounting boss etc. is small.
The resistance force against relative rotation by the resistance mechanism is small, and natural wind etc. do not prevent the blade from reaching the angle with the lowest wind pressure.

(実施例の説明) 以下、本発明の実施例を第1図および第2図を参照して
説明する。第1図は、本発明の正逆回転可能な流体機械
の一実施例の要部切欠斜視図であり、第2図は、第1図
の要部断面図である。
(Description of Examples) Examples of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a cutaway perspective view of an essential part of an embodiment of a fluid machine capable of forward and reverse rotation of the present invention, and FIG. 2 is a sectional view of the essential part of FIG. 1.

第1図および第2図において、モータ20により駆動さ
れる駆動軸21に固定スリーブ22がキー23により固
定されている。この固定スリーブ22に軸受24.25
で取付ボス26が回転可能に軸支され、さらに、この取
付ボス26にi27.27・・・が駆動軸21に等分周
で複数個放射状に配置され、翼取付軸28.28・・・
により回転可能に軸支されている。そして、翼取付軸2
8 、28・・・の先端にピニオンギヤ29が固定され
、このピニオンギヤ29に噛合するように駆動軸21に
ベベルギヤ30がキー31で固定されている。さらに、
このベベルギヤ30に係合凸部32.32を有するスト
ッパハブ33が固定され、このストッパハブ33にロー
タリディスク34が固定されている。一方、取付ボス2
6に固定するハブカバー35に係合凸部32.32を所
定の範囲で移動可能とする四部36゜36が設けられ、
この凹部3B 、 3[1の両端部でストッパー37’
、37・・・が形成されている。また、ハブカバー35
はロータリーディスク34の一方の片面に僅かな隙間を
残して対面し、ロータリーディスク34の他方の片面に
僅かな隙間を残して対面してディスクカバー38がハブ
カバー35に固定されている。
In FIGS. 1 and 2, a fixing sleeve 22 is fixed by a key 23 to a drive shaft 21 driven by a motor 20. As shown in FIG. Bearings 24 and 25 are attached to this fixed sleeve 22.
A mounting boss 26 is rotatably supported on the mounting boss 26, and a plurality of i27, 27... are arranged radially on the drive shaft 21 with equal circumferences, and blade mounting shafts 28, 28...
It is rotatably supported by. And the wing attachment shaft 2
A pinion gear 29 is fixed to the tips of the pinion gears 8, 28, . moreover,
A stopper hub 33 having engaging projections 32, 32 is fixed to this bevel gear 30, and a rotary disk 34 is fixed to this stopper hub 33. On the other hand, mounting boss 2
The hub cover 35 fixed to the hub cover 6 is provided with four parts 36° 36 that allow the engaging protrusion 32, 32 to move within a predetermined range,
Stoppers 37' are provided at both ends of the recesses 3B and 3[1].
, 37... are formed. In addition, the hub cover 35
A disk cover 38 is fixed to the hub cover 35 so as to face each other with a slight gap left on one side of the rotary disk 34, and to face each other with a slight gap left on the other side of the rotary disk 34.

そして、ハブカバー35とロータリディスク34および
ディスクカバー38とローリディスク34のそれぞれの
隙間には、シリコンオイル等の粘性流体がシール39 
、39等により密封されている。このロータリディスク
34とハブカバー35とディスクカバー38および隙間
に密封されたシリコンオイル等により粘性流体を用いた
抵抗機構が形成されている。
A viscous fluid such as silicone oil is applied to the seal 39 in the gaps between the hub cover 35 and the rotary disk 34 and between the disk cover 38 and the lorry disk 34.
, 39, etc. A resistance mechanism using viscous fluid is formed by the rotary disk 34, the hub cover 35, the disk cover 38, and silicone oil sealed in the gap.

かかる構成において、まず駆動軸21が、第1図のS矢
印方向に回転すると、慣性により取付ポス2Bは回転が
遅れ、駆動軸21と取付ポス26の相対回転によりベベ
ルギヤ30とピニオンギヤ29の噛合で翼取付軸28 
、28・・・が回転し翼27,27・・・の向きが変更
される。この駆動軸21と取付ポス26の相対移動速度
は、駆動軸21の回転立上りからの時間経過に応じて急
激に増大し、ストッパー37.37・・・に係合凸部3
2 、32・・・が当接するときが最大となる。ここで
、粘性流体を用いた抵抗機構は、駆動軸21と取付ポス
2Bの相対移動速度が小さいうちは摩擦抵抗も小さく、
相対移動速度が増大するのに伴ない急激に摩擦抵抗が大
きくなる。したがって、駆動軸21の回転に取付ポス2
8を追従させて回転させ、相対回転が制限される際の相
対移動速度を大きく減速させてストッパー37 、37
・・・および係合凸部32゜32・・・に加わる衝撃力
を軽減することができる。
In this configuration, when the drive shaft 21 first rotates in the direction of the arrow S in FIG. Wing attachment shaft 28
, 28... rotate, and the direction of the blades 27, 27... is changed. The relative movement speed between the drive shaft 21 and the mounting post 26 increases rapidly as time passes from the start of rotation of the drive shaft 21, and the engagement convex portions 3
The maximum value occurs when 2, 32, etc. are in contact with each other. Here, in the resistance mechanism using viscous fluid, the frictional resistance is small as long as the relative movement speed between the drive shaft 21 and the mounting post 2B is small.
As the relative movement speed increases, the frictional resistance increases rapidly. Therefore, due to the rotation of the drive shaft 21, the mounting post 2
The stoppers 37 , 37 are rotated by following the stopper 8 , greatly reducing the relative movement speed when the relative rotation is restricted.
... and the impact force applied to the engaging convex portions 32, 32, etc. can be reduced.

次に駆動軸21が逆回転されると、やはり慣性により取
付ポス26は回転が遅れ、駆動軸21と取付ポスの上記
と逆方向の相対回転によりR27,27・・・の向きが
上記と180度逆回転される。そして、この相対回転が
制限される際には、粘性流体を用いた抵抗機構の摩擦抵
抗は最も大きくなり、相対移動速度を大きく減速させて
、制限機構に加わる衝撃力を軽減することができる。
Next, when the drive shaft 21 is reversely rotated, the rotation of the mounting post 26 is delayed due to inertia, and due to the relative rotation of the drive shaft 21 and the mounting post in the opposite direction, the directions of R27, 27, etc. are 180 degrees from the above. Rotated in the opposite direction. When this relative rotation is restricted, the frictional resistance of the resistance mechanism using viscous fluid becomes maximum, and the relative movement speed can be greatly reduced to reduce the impact force applied to the restriction mechanism.

また、駆動軸21が停止されていて、駆動軸21と取付
ポス26との相対移動速度が極めて小さいときは、粘性
流体を用いた抵抗機構の摩擦抵抗は極めて小さい、この
ために、道路トンネル換気用のジェットファンとして用
いられ、駆動軸21が停止されてi27,27・・・に
自然風あるいは車輌の走行風を受けて取付ポス26が空
転するときには、抵抗機構の摩擦抵抗は小さく、翼27
.27・・・が最も風圧の小さい角度となるのを妨げる
ことがない。
Furthermore, when the drive shaft 21 is stopped and the relative movement speed between the drive shaft 21 and the mounting post 26 is extremely small, the frictional resistance of the resistance mechanism using viscous fluid is extremely small. When the drive shaft 21 is stopped and the mounting post 26 idles due to natural wind or vehicle running wind, the frictional resistance of the resistance mechanism is small and the blades 27
.. 27... is the angle with the smallest wind pressure.

上記実施例では、駆動軸21と取付ポス2Bの間に粘性
流体を用いた抵抗機構を設けたが、取付ポス26と翼取
付軸28.28・・・の間に粘性流体を用いた抵抗機構
を設けても上記実施例と同様の効果が得られる。
In the above embodiment, a resistance mechanism using viscous fluid was provided between the drive shaft 21 and the attachment post 2B, but a resistance mechanism using viscous fluid was provided between the attachment post 26 and the blade attachment shafts 28, 28... The same effect as in the above embodiment can be obtained even if the above embodiment is provided.

第3図は、本発明の正逆回転可能な流体機械を構成する
粘性流体を用いた抵抗機構の他の実施例の概略図である
FIG. 3 is a schematic diagram of another embodiment of the resistance mechanism using viscous fluid constituting the fluid machine capable of forward and reverse rotation of the present invention.

第3図において、取付ポス26に、駆動軸21との相対
回転方向に伸縮する2つのシリンダー型オイルダンパー
40 、40を逆向きで1組として複数組固定する。こ
れらのシリンダー型オイルダンパー40.40のピスト
ン41 、41の先端をそれぞれL型アーム42.42
の一端の長孔に連結し、このL型アーム42 、42の
折曲り部を駆動軸21に揺動自在に軸支させてL型アー
ム42.42の他端をシリンダー型オイルダンパー40
 、40の伸縮方向と直交する方向に揺動させる。そし
て、このL型アーム42.42の他端を取付ポス26に
当接する圧接子43.43にそれぞれ連結する。なお、
44 、44は圧接子43 、43のガイドである。
In FIG. 3, a plurality of sets of two cylinder-type oil dampers 40, 40, which extend and contract in the direction of relative rotation with the drive shaft 21, are fixed to the mounting post 26 in opposite directions. The ends of the pistons 41 and 41 of these cylinder type oil dampers 40 and 40 are connected to L-shaped arms 42 and 42, respectively.
The bent portions of the L-shaped arms 42 and 42 are pivotably supported on the drive shaft 21, and the other ends of the L-shaped arms 42 and 42 are connected to long holes in the cylinder-shaped oil damper 40.
, 40 in a direction perpendicular to the expansion/contraction direction. The other ends of the L-shaped arms 42 and 42 are connected to pressure contacts 43 and 43 that abut the mounting post 26, respectively. In addition,
44, 44 are guides for the pressure contacts 43, 43.

かかる構成において、シリンダー型オイルダンパー40
.40は、公知のごとくピストン41.41の移動に対
してシリンダーに封入したオイル等の粘性流体の絞り抵
抗により、ピストン41.41の移動が速いほど抵抗は
大きなものとなる。また、取付ポス2Bと駆動軸21の
相対移動速度が大きいと、強くL型アーム42 、42
を回動させる力が作用し、一方の圧接子43を取付ポス
26により強く圧接して摩擦抵抗を大とする。ここで、
2つのシリンダー型オイルダンバー40.40を逆向き
として1組としてそれぞれL型アーム42 、42およ
び圧接子43 、43を連結するのは、駆動軸21の回
転方向に応じた一方のみが取付ボス28に摩擦抵抗を作
用させ得るためである。
In such a configuration, the cylinder type oil damper 40
.. As is well known, the resistance of the viscous fluid such as oil sealed in the cylinder against the movement of the piston 41.41 increases as the piston 41.41 moves faster. Also, if the relative movement speed between the mounting post 2B and the drive shaft 21 is high, the L-shaped arms 42, 42
A force is applied to rotate the pressure contact 43, which presses one pressure contact 43 more strongly against the mounting post 26, thereby increasing the frictional resistance. here,
The L-shaped arms 42 , 42 and pressure contacts 43 , 43 are connected to each other as a set of two cylinder-type oil dampers 40 and 40 in opposite directions, so that only one of the cylinder-shaped oil dampers 40 and 40 is connected to the mounting boss 28 in accordance with the rotational direction of the drive shaft 21 . This is because frictional resistance can be applied to the surface.

なお、第3図に示す実施例では、シリンダー型オイルダ
ンパー40.40に作用する絞り抵抗を同時に圧接子4
3.43と取付ボス2Bとの機械的な摩擦抵抗に変換し
ているが、ピストン41.41を適宜なリンク機構を介
して駆動軸21に固定して、シリンダー型オイルダンパ
ー40 、40の絞り抵抗のみにより相対移動速度を減
速させるように構成しても良い。
In the embodiment shown in FIG.
3.43 and the mounting boss 2B, the piston 41.41 is fixed to the drive shaft 21 via an appropriate link mechanism, and the aperture of the cylinder type oil damper 40, 40 is The configuration may be such that the relative movement speed is reduced only by resistance.

(発明の効果) 以上説明したように、本発明に係わる正逆回転可能な流
体機械は、駆動軸と取付ボスの間および取付ボスと翼取
付軸の間の少なくとも一方に、粘性流体を用いた抵抗機
構を設けたので、駆動軸の回転方向が切り換えられて駆
動軸と取付ボスおよび取付ボスと翼取付軸の相対移動速
度が速くなるほど抵抗機構はこの相対移動速度が遅くな
る方向に大きな抵抗として作用し、制限機構によって駆
動軸と取付ボス等の相対回転が制限される際の相対移動
速度を減速し、制限機構に加わる衝撃力を軽減すること
ができる。しかも、駆動軸が停止されて自然風等を翼が
受けるときは、駆動軸と取付ボス等の相対移動速度が小
さいので、抵抗機構による相対回転に対する抵抗力は小
さく、自然風等により翼が最iも風圧の小さい角度とな
ることを妨げるようなことがないという優れた効果を奏
する。
(Effects of the Invention) As explained above, the fluid machine capable of forward and reverse rotation according to the present invention uses a viscous fluid between the drive shaft and the mounting boss and at least one of the mounting boss and the blade mounting shaft. Since the resistance mechanism is provided, as the rotation direction of the drive shaft is switched and the relative movement speed between the drive shaft and the mounting boss and between the mounting boss and the blade mounting shaft becomes faster, the resistance mechanism acts as a larger resistance in the direction where the relative movement speed becomes slower. This reduces the relative movement speed when the relative rotation of the drive shaft, the mounting boss, etc. is restricted by the restriction mechanism, and reduces the impact force applied to the restriction mechanism. Moreover, when the drive shaft is stopped and the blades are exposed to natural wind, etc., the relative movement speed between the drive shaft and the mounting boss is small, so the resistance force against relative rotation by the resistance mechanism is small, and the natural wind etc. i also has the excellent effect of not hindering the angle from which the wind pressure is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の正逆回転可能な流体機械の一実施例
の要部切欠斜視図であり、第2図は、第1図の要部断面
図であり、第3図は、本発明の正逆回転可能な流体機械
を構成する粘性流体を用いた抵抗機構の他の実施例の概
略図であり、第4図は、先に提案した正逆回転可能な流
体機械の要部断面図であり、第5図は、第4図のA−A
矢視断面図であり、第6図は、第5図のB−B矢視断面
図であ。 21:駆動軸、     26:取付ボス、27:翼、
       28:翼取付軸、28:ビニオンギヤ、
 30:ベベルギヤ、32:係合凸部、   34:ロ
ータリディスク、35:ハブカバー、  36コ凹部、 37:ストッパー、  38:ディスク力バー、39:
シール、 40ニジリンダ−型オイルダンパー。 (夕 第1図
FIG. 1 is a cutaway perspective view of a main part of an embodiment of a fluid machine capable of forward and reverse rotation of the present invention, FIG. 2 is a sectional view of a main part of FIG. 1, and FIG. FIG. 4 is a schematic diagram of another embodiment of a resistance mechanism using viscous fluid constituting a fluid machine capable of forward and reverse rotation of the invention, and FIG. FIG. 5 is a diagram showing A-A in FIG.
6 is a cross-sectional view taken along the line BB in FIG. 5. FIG. 21: Drive shaft, 26: Mounting boss, 27: Wing,
28: Blade mounting shaft, 28: Binion gear,
30: Bevel gear, 32: Engagement protrusion, 34: Rotary disc, 35: Hub cover, 36 recess, 37: Stopper, 38: Disc force bar, 39:
Seal, 40 cylinder type oil damper. (Evening figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)翼の翼取付軸を回転可能に取付ボスに軸支し、前
記翼取付軸にピニオンギヤを固定し、駆動軸に前記取付
ボスを回転可能に設け、前記駆動軸に前記ピニオンギヤ
に噛合するベベルギヤを固定し、前記駆動軸と前記取付
ボスとの相対回転できる角度を制限する制御機構を設け
、さらに前記駆動軸と前記取付ボスの間および前記取付
ボスと前記翼取付軸の間の少なくとも一方に双方の相対
移動速度に応じた抵抗力を生ずる粘性流体を用いた抵抗
機構を設け、前記駆動軸の正逆回転の切り換えにより前
記翼の向きを前記制御機構で所定の角度に規制して切り
換えるとともに、前記粘性流体を用いた抵抗機構で翼の
向きが切り換えられる際の前記駆動軸と前記取付ボスお
よび前記取付ボスと前記翼取付軸の相対移動速度を減速
するようにしたことを特徴とする正逆回転可能な流体機
械。
(1) A blade attachment shaft of a blade is rotatably supported on a mounting boss, a pinion gear is fixed to the blade attachment shaft, the attachment boss is rotatably provided on a drive shaft, and the drive shaft meshes with the pinion gear. A control mechanism is provided for fixing the bevel gear and limiting the relative rotation angle between the drive shaft and the mounting boss, and further includes at least one of between the drive shaft and the mounting boss and between the mounting boss and the blade mounting shaft. A resistance mechanism using viscous fluid that generates a resistance force according to the relative movement speed of both is provided in the blade, and the direction of the blade is controlled and switched at a predetermined angle by the control mechanism by switching between forward and reverse rotation of the drive shaft. Further, the relative movement speed between the drive shaft and the mounting boss, and between the mounting boss and the wing mounting shaft when the direction of the blade is switched by the resistance mechanism using the viscous fluid is reduced. A fluid machine that can rotate forward and backward.
(2)前記粘性流体を用いた抵抗機構が、粘性流体の摩
擦抵抗を作用させる構造であることを特徴とする特許請
求の範囲第1項記載の正逆回転可能な流体機械。
(2) The fluid machine capable of forward and reverse rotation according to claim 1, wherein the resistance mechanism using the viscous fluid has a structure that applies frictional resistance of the viscous fluid.
(3)前記粘性流体を用いた抵抗機構が、粘性流体の絞
り抵抗を作用させる構造であることを特徴とする特許請
求の範囲第1項記載の正逆回転可能な流体機械。
(3) The fluid machine capable of forward and reverse rotation according to claim 1, wherein the resistance mechanism using the viscous fluid has a structure that applies throttling resistance to the viscous fluid.
JP60283400A 1985-12-17 1985-12-17 Forward/reverse rotatable fluid machine Granted JPS62142863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283400A JPS62142863A (en) 1985-12-17 1985-12-17 Forward/reverse rotatable fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283400A JPS62142863A (en) 1985-12-17 1985-12-17 Forward/reverse rotatable fluid machine

Publications (2)

Publication Number Publication Date
JPS62142863A true JPS62142863A (en) 1987-06-26
JPH03508B2 JPH03508B2 (en) 1991-01-08

Family

ID=17665029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283400A Granted JPS62142863A (en) 1985-12-17 1985-12-17 Forward/reverse rotatable fluid machine

Country Status (1)

Country Link
JP (1) JPS62142863A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134099A (en) * 1987-08-21 1989-05-26 Ishikawajima Harima Heavy Ind Co Ltd Hydraulic machine
KR100754790B1 (en) * 2002-02-05 2007-09-04 신한국산업 (주) Wind powered generator
NL2000840C2 (en) * 2007-08-31 2009-03-03 Tocardo B V Device for converting kinetic energy of a flowing water into kinetic energy of a rotatable rotor shaft.
CN111365295A (en) * 2020-04-24 2020-07-03 皮芝青 Axial flow fan impeller

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071109A (en) * 2017-12-14 2019-06-24 전자부품연구원 Axial Type Bi-Directional Flow Fan

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134099A (en) * 1987-08-21 1989-05-26 Ishikawajima Harima Heavy Ind Co Ltd Hydraulic machine
KR100754790B1 (en) * 2002-02-05 2007-09-04 신한국산업 (주) Wind powered generator
NL2000840C2 (en) * 2007-08-31 2009-03-03 Tocardo B V Device for converting kinetic energy of a flowing water into kinetic energy of a rotatable rotor shaft.
WO2009031887A1 (en) * 2007-08-31 2009-03-12 Tocardo Bv Device for converting kinetic energy of a flowing water into kinetic energy of a rotatable rotor shaft
US9534578B2 (en) 2007-08-31 2017-01-03 Tocardo International B.V. Device for converting kinetic energy of a flowing water into kinetic energy of a rotatable rotor shaft
CN111365295A (en) * 2020-04-24 2020-07-03 皮芝青 Axial flow fan impeller

Also Published As

Publication number Publication date
JPH03508B2 (en) 1991-01-08

Similar Documents

Publication Publication Date Title
CA2401474C (en) Drive roller control for toric-drive transmission
JPH0429659A (en) Friction wheel type continuously variable transmission
JP2593049B2 (en) Wind direction adjustment device
KR20080055142A (en) Flywheel
JPS62142863A (en) Forward/reverse rotatable fluid machine
JP2000046116A (en) Revolving speed adaptive vibration absorber
JPH06123332A (en) Slow-acting device
KR880012920A (en) Torsion damping device with motion transfer member
JPH1054430A (en) Viscous coupling
CA1194710A (en) Orbital speed reducer with compensation coupling
JP2020026804A5 (en)
JP4283579B2 (en) Power transmission device having reverse rotation prevention function
JPS61232303A (en) Normal/reverse rotatable fluid machinery
KR960031832A (en) Clutch device
RU2052670C1 (en) Device for controlling working wheel of fan
JP3696788B2 (en) motor
KR0127527Y1 (en) Linear drive machine
JP2785304B2 (en) Valve timing control device
WO2023026377A1 (en) Strain wave gear device
CN112762109B (en) Experiment bench for toothed belt brake
JPH09271233A (en) Cutting blade device
CN216279090U (en) Generator set rotating shaft radial wedge-shaped braking device adopting periodic braking
KR100220473B1 (en) Clutch disc structure of automatic transmission
KR20020047607A (en) Torsional damper of manual transmission
DE834487C (en) Mechanical torque amplifier