JPS6214251B2 - - Google Patents

Info

Publication number
JPS6214251B2
JPS6214251B2 JP55184679A JP18467980A JPS6214251B2 JP S6214251 B2 JPS6214251 B2 JP S6214251B2 JP 55184679 A JP55184679 A JP 55184679A JP 18467980 A JP18467980 A JP 18467980A JP S6214251 B2 JPS6214251 B2 JP S6214251B2
Authority
JP
Japan
Prior art keywords
acid
protein
water
soybean
precipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55184679A
Other languages
Japanese (ja)
Other versions
JPS57129652A (en
Inventor
Juji Hisa
Shohachi Handa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP18467980A priority Critical patent/JPS57129652A/en
Publication of JPS57129652A publication Critical patent/JPS57129652A/en
Publication of JPS6214251B2 publication Critical patent/JPS6214251B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、NSI85以上の未変性脱脂大豆中の大
豆蛋白を新規な大豆蛋白素材として製造する方法
に関するものである。更に詳しくは、蛋白質に添
加する水酸化カルシウム、水酸化マグネシウム
等、添加する各々のアルカリ土類金属塩の割合を
適度に調節することによつて、水に対するなじみ
がよく(分散良好)高溶解性でゲル形成性に富
み、その物性は卵白様を呈し、大豆臭が軽減さ
れ、然も、色調にくすみのない大豆蛋白素材を製
造する方法に関する。 大豆蛋白素材のうち粉末状のものは、結着性、
ゲル形成能、乳化性、保水性、起泡性などの食品
加工に必要な性能が優れているので、畜肉練製
品、水産練製品、各種総菜などの広範囲の分野に
おいて品質改良材として利用されている。これら
粉末状大豆蛋白の公知の製法は以下の如くであ
る。脱脂大豆に対し約10倍量の水を加え、アルカ
リを添加してPH7〜8に調節し、水不溶区分(通
称、オカラという)を分離する。得られた抽出液
に酸を加えPH4〜5とし、大豆蛋白質を沈澱さ
せ、溶解物(通称、大豆ホエーという)を分離
し、酸沈澱大豆蛋白を得る。これに水を加え、さ
らにアルカリを加えて中和し大豆蛋白質を溶解さ
せて得られた中和溶解液を加熱した後、固形分濃
度が10〜13%になるまで濃縮し、更に噴霧乾燥し
て分離大豆蛋白または濃縮大豆蛋白の粉末を得て
きた。 上記製造法はゲル形成性に富み、溶解性、乳化
性に優れた製造法であるが、水へのなじみが悪
く、大豆臭が強くゲルを製造したときに色がくす
む欠点を持つていた。 本発明者らは、上記製造法によつてつくられた
特性を活かしつつ大豆臭を軽減し、水への分散を
良好にし、色調のくすみを改善する方法を鋭意検
討した結果、本発明を完成するに至つた。すなわ
ち、本発明はNSI85以上の未変性脱脂大豆の水溶
液又は水懸濁液をPH6.5ないし7.5に調節し、必要
により水不溶区分を除去し、抽出液を得る第1工
程、該抽出液をPH4.0ないし5.0に調節して酸沈澱
蛋白質を採取する第2工程、該酸沈澱蛋白質の分
散液に(水酸化カルシウムおよび/又は水酸化マ
グネシウム):水酸化ナトリウムの重量比が1:
12ないし10:7であるアルカリを添加してPHを
6.5ないし7.5に調節し、これをパイプライン中で
直接水蒸気と接触せしめて80℃ないし150℃にて
2秒間以上加熱した後、乾燥する第3工程とより
なる大豆蛋白素材の製造法であり、得られた大豆
蛋白素材は、従来の特性に加えて色調にくすみが
すくなく、大豆臭の弱い蛋白質粉末である。 本発明におけるNSI85以上の未変性脱脂大豆の
水溶液又は水懸濁液とは、低温抽出法によつて得
られる脱脂大豆などの水溶液又は水懸濁液を言
う。これらの脱脂大豆は一般にNSIが85以上であ
り、いわゆる未変性脱脂大豆と呼ばれている。 この未変性脱脂大豆に対し5〜15倍量、好まし
くは7〜12倍量となるように水を加えて水溶液又
は水懸濁液とする。この操作によつて未変性脱脂
大豆中に含有される水溶性蛋白質はほとんどすべ
てが溶解する。 まず、第1工程として、上記未変性脱脂大豆の
水溶液又は水懸濁液をPH6.5ないし7.5に調節し、
必要により水不溶区分を除去し、大豆蛋白の抽出
液を得る。すなわち、未変性脱脂大豆の水溶液又
は水懸濁液に、水酸化ナトリウムなどのアルカリ
を加えてPHを6.5ないし7.5に、好ましくはPH6.8な
いし7.3に調節し、10分以上浸漬し、好ましくは
液温を40℃ないし70℃に加温して水可溶物を溶解
させた後、得られたスラリーより必要によりスー
パーデカンター等の分離機を用いて水不溶区分を
除去し抽出液を得る。濃縮蛋白としてオカラを有
効利用する場合には、分離することなしに直ちに
次の行程を行なつてもよい。 次に第2工程として、該抽出液をPH4.0ないし
5.0に調節して、酸沈澱蛋白質を採取する。ここ
で使用する酸は、食品添加物として許されている
ものであればどのようなものであつてもよく、具
体的には硫酸、塩酸、リン酸、酢酸などが使い易
い。このような酸を用いて該抽出液のPHを4.0な
いし5.0に調節する。このPH範囲で蛋白質の溶解
度は最低となり、蛋白質は酸沈澱し、これを採取
することができる。採取の方法は、スーパーデカ
ンター等の分離機を用いて、沈澱区分と上澄区分
とを分離する方法など一般的に行なわれている分
離方法を用いることができる。 次に、第3工程として、該酸沈澱蛋白質に必要
により水を加え、固形分濃度15%ないし30%であ
る分散液とし、(水酸化カルシウムおよび/又は
水酸化マグネシウム):水酸化ナトリウムの重量
比が1:12ないし10:7、好ましくは1:10ない
し1:1であるアルカリを添加してPHを6.5ない
し7.5に調節し、これをパイプライン中で直接水
蒸気と接触せしめて80℃ないし150℃にて2秒間
以上、好ましくは1分間以上加熱した後、乾燥す
る。 本発明の特徴の1つは(水酸化カルシウムおよ
び/又は水酸化マグネシウム):水酸化ナトリウ
ムの重量比が1:12ないし10:7であるアルカリ
を添加してPHを6.5ないし7.5に調節する点にあ
る。水酸化カルシウムおよび/又は水酸マグネシ
ウムの量が多すぎると、製品の特性は、ゲル形成
性が弱くなり、乳化性も悪くなる。また、水酸化
カルシウムおよび/又は水酸化マグネシウムの量
が小なすぎると、くすみの改善および大豆臭の軽
減、卵白様のゲル物性を得ることが困難になる。 上記のような特定の比率のアルカリを加えてPH
を6.5ないし7.5に調節する。PHが7.5より高い場
合、ゲルの透明感は増すが緑褐色の色調を帯び、
また、アルカリ臭が強くなり、食品に不適であ
る。また、PHが6.5より小さい場合は、水に対す
る溶解性が悪くなり、ゲル形成能が低下し、ゲル
形成性に富む蛋白素材とは異なつた特性になる。 更に、これをパイプライン中で直接水蒸気と接
触せしめて、80℃ないし150℃にて2秒以上、好
ましくは1分間以上加熱した後乾燥する。上記の
加熱処理は、直接蒸気吹込型のパイプラインを備
えた高温瞬間気液混合器、一般にジエツト・クツ
カーとして知られている装置によつてなされる。
加熱条件は80℃ないし150℃にて2秒間以上の条
件が選ばれる。150℃より高温で加熱した場合、
蛋白質の過加熱によりゲル形成性の低下がみら
れ、色調も灰褐色にくすみ目的とする、製品を得
ることができない。一方、80℃以下で加熱した場
合、ゲル形成性に富む特性が付与できない。加熱
時間も2秒以下では、殺菌などの加熱処理の効果
が現われない。加熱後、噴霧乾燥などの一般に行
われている乾燥方法にて、水分10%以下に乾燥し
て、製品を得る。 本発明の大豆蛋白素材の製造方法は、蛋白質の
加熱処理による特性を活かし、かつ、従来の製造
法では欠点とされていた水への分散、色調のくす
みや、大豆臭を中和時のアルカリを調節すること
によつて、改善することが可能となつたものであ
る。本発明の大豆蛋白素材は特に畜肉、水産練製
品の品質改良剤として特に優れた機能を有する。 実施例および比較例における物性の測定法は以
下のとおりである。 ゲル強度:粉末8gに純水42gを加え、ライカイ
器にて混練後、ケーシングし100℃にて30分間
加熱、放冷したものをレオメーター(富士理科
工業(株)製)にて測定した。 乳化性:粉末;油;純水=1:50:50の重量比の
混合物をホモゲナイザー(日本精機(株)製)にて
15000rpm5分撹拌後、遠沈管にとり、
3000rpm10分遠心分離し、生成したエマルジヨ
ンカード量を百分率で表示した。 蛋白含量:試料0.1g〜0.5gをケールダール法に
て測定し、これに蛋白換算係数6.25を乗じて粗
蛋白質とした。(日本油化学協会編、基準油脂
分析試験法) NSI(水溶性窒素指数): 試料2.5gを三角フラスコにとり、純水100ml
を加え、振とう機(振幅60mm、150往復/分)
にて40℃、90分振とうする。該振とう液を
2000rpm10分遠心分離した後No.5A紙にて
過し、得られた液のNをケールダール法にて
測定した。 水溶性窒素指数NSI=S−N/T−N×100 但し、T−N:抽出試料の全窒素分(%) S−N:抽出試料の水溶性窒素分
(%) (日本油化学協会編、基準油脂分析試験法) 色調:色差計は日本電色工業(株)製を使用し、L、
a、b色立体における試料の色の位置を求め
た。ここでL値は明度を表わし数値の高い程明
るい。
The present invention relates to a method for producing soybean protein in undenatured defatted soybeans with an NSI of 85 or higher as a new soybean protein material. More specifically, by appropriately adjusting the ratio of each alkaline earth metal salt added to the protein, such as calcium hydroxide and magnesium hydroxide, proteins can be made to have good compatibility with water (good dispersion) and high solubility. The present invention relates to a method for producing a soybean protein material which has excellent gel-forming properties, exhibits egg white-like physical properties, has a reduced soybean odor, and has no dull color tone. Powdered soy protein materials have binding properties,
Because it has excellent properties necessary for food processing, such as gel-forming ability, emulsifying ability, water retention, and foaming ability, it is used as a quality improvement material in a wide range of fields such as meat paste products, seafood paste products, and various delicatessen dishes. There is. A known method for producing these powdered soybean proteins is as follows. Approximately 10 times the amount of water is added to the defatted soybeans, an alkali is added to adjust the pH to 7-8, and the water-insoluble fraction (commonly known as okara) is separated. Acid is added to the obtained extract to adjust the pH to 4 to 5 to precipitate soybean protein, and the dissolved material (commonly referred to as soybean whey) is separated to obtain acid-precipitated soybean protein. After adding water and further adding an alkali to neutralize and dissolve soybean protein, the resulting neutralized solution was heated, concentrated to a solid concentration of 10 to 13%, and further spray-dried. We have obtained isolated soy protein or concentrated soy protein powder. The above production method has excellent gel-forming properties and excellent solubility and emulsification properties, but it has the drawbacks of poor compatibility with water, a strong soybean odor, and a dull color when the gel is produced. The present inventors have completed the present invention as a result of intensive study on a method to reduce soybean odor, improve dispersion in water, and improve dullness of color while taking advantage of the characteristics created by the above manufacturing method. I came to the conclusion. That is, the present invention provides a first step of obtaining an extract by adjusting an aqueous solution or suspension of undenatured defatted soybeans with an NSI of 85 or higher to pH 6.5 to 7.5, and removing water-insoluble fractions if necessary. In the second step of adjusting the pH to 4.0 to 5.0 and collecting the acid-precipitated protein, the acid-precipitated protein dispersion has a weight ratio of (calcium hydroxide and/or magnesium hydroxide):sodium hydroxide of 1:
Adjust the pH by adding an alkali with a ratio of 12 to 10:7.
6.5 to 7.5, and the third step is to bring it into direct contact with steam in a pipeline, heat it at 80°C to 150°C for 2 seconds or more, and then dry it, The obtained soybean protein material is a protein powder that, in addition to the conventional characteristics, has a less dull color tone and a weak soybean odor. In the present invention, the aqueous solution or suspension of unmodified defatted soybeans with an NSI of 85 or higher refers to an aqueous solution or suspension of defatted soybeans obtained by a low-temperature extraction method. These defatted soybeans generally have an NSI of 85 or higher and are called undenatured defatted soybeans. Water is added to the unmodified defatted soybeans in an amount of 5 to 15 times, preferably 7 to 12 times, to form an aqueous solution or suspension. By this operation, almost all of the water-soluble proteins contained in the undenatured defatted soybeans are dissolved. First, as the first step, the aqueous solution or suspension of the unmodified defatted soybeans is adjusted to pH 6.5 to 7.5,
If necessary, remove the water-insoluble fraction to obtain a soybean protein extract. That is, an alkali such as sodium hydroxide is added to an aqueous solution or aqueous suspension of unmodified defatted soybeans to adjust the pH to 6.5 to 7.5, preferably 6.8 to 7.3, and the mixture is immersed for 10 minutes or more, preferably After heating the liquid temperature to 40° C. to 70° C. to dissolve water-soluble substances, water-insoluble fractions are removed from the resulting slurry using a separator such as a super decanter, if necessary, to obtain an extract. When using okara effectively as a concentrated protein, the next step may be carried out immediately without separating it. Next, as a second step, the extract is adjusted to a pH of 4.0 to
Adjust to 5.0 and collect acid precipitated proteins. The acid used here may be any acid as long as it is permitted as a food additive, and specifically, sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, etc. are easy to use. The pH of the extract is adjusted to 4.0 to 5.0 using such an acid. In this pH range, protein solubility is at its lowest, and the protein is acid precipitated and can be collected. As a collection method, a commonly used separation method such as a method of separating a precipitate section and a supernatant section using a separator such as a super decanter can be used. Next, as a third step, water is added to the acid-precipitated protein as necessary to form a dispersion with a solid content concentration of 15% to 30%, and (calcium hydroxide and/or magnesium hydroxide): weight of sodium hydroxide The pH is adjusted to 6.5 to 7.5 by adding alkali in a ratio of 1:12 to 10:7, preferably 1:10 to 1:1, and the mixture is brought into direct contact with steam in the pipeline to a temperature of 80°C to After heating at 150°C for 2 seconds or more, preferably 1 minute or more, it is dried. One of the features of the present invention is that the pH is adjusted to 6.5 to 7.5 by adding an alkali (calcium hydroxide and/or magnesium hydroxide):sodium hydroxide weight ratio of 1:12 to 10:7. It is in. If the amount of calcium hydroxide and/or magnesium hydroxide is too large, the properties of the product will be poor gel-forming properties and poor emulsifying properties. Furthermore, if the amount of calcium hydroxide and/or magnesium hydroxide is too small, it will be difficult to improve dullness, reduce soybean odor, and obtain egg white-like gel properties. PH by adding a specific ratio of alkali as above
Adjust to 6.5 to 7.5. When the pH is higher than 7.5, the gel becomes more transparent but takes on a greenish-brown tone.
In addition, it has a strong alkaline odor, making it unsuitable for food. Furthermore, if the pH is lower than 6.5, the solubility in water will be poor, the gel-forming ability will be reduced, and the material will have properties different from those of protein materials that are highly gel-forming. Further, this is brought into direct contact with steam in a pipeline, heated at 80°C to 150°C for at least 2 seconds, preferably at least 1 minute, and then dried. The heat treatment described above is carried out in a high temperature instantaneous gas-liquid mixer equipped with a direct steam injection pipeline, an apparatus commonly known as a jet cooker.
The heating conditions are selected to be 80°C to 150°C for 2 seconds or more. When heated at a temperature higher than 150℃,
Due to overheating of the protein, the gel-forming properties are reduced, and the color becomes dull and grayish brown, making it impossible to obtain the desired product. On the other hand, when heated at 80° C. or lower, properties with excellent gel-forming properties cannot be imparted. If the heating time is less than 2 seconds, the effects of heat treatment such as sterilization will not be apparent. After heating, the product is dried to a moisture content of 10% or less using commonly used drying methods such as spray drying. The method for producing soybean protein material of the present invention takes advantage of the properties of protein through heat treatment, and also eliminates the drawbacks of conventional production methods, such as dispersion in water, dull color tone, and soybean odor, with alkali alkali when neutralizing the soybean odor. This can be improved by adjusting the The soybean protein material of the present invention has particularly excellent functions as a quality improver for livestock meat and fish paste products. The methods for measuring physical properties in Examples and Comparative Examples are as follows. Gel strength: 42 g of pure water was added to 8 g of powder, kneaded in a Laikai machine, heated in a casing at 100° C. for 30 minutes, left to cool, and measured using a rheometer (manufactured by Fuji Rika Kogyo Co., Ltd.). Emulsifying property: Powder; oil; pure water = 1:50:50 weight ratio mixture using a homogenizer (manufactured by Nippon Seiki Co., Ltd.)
After stirring at 15,000 rpm for 5 minutes, transfer to a centrifuge tube.
The mixture was centrifuged at 3000 rpm for 10 minutes, and the amount of emulsion card produced was expressed as a percentage. Protein content: 0.1 g to 0.5 g of the sample was measured by the Kjeldahl method, and this was multiplied by a protein conversion coefficient of 6.25 to obtain crude protein. (Edited by Japan Oil Chemists' Association, Standard Oil and Fat Analysis Test Method) NSI (Water Soluble Nitrogen Index): Place 2.5g of sample in an Erlenmeyer flask and add 100ml of pure water.
shaker (amplitude 60 mm, 150 reciprocations/min)
Shake at 40℃ for 90 minutes. The shaking liquid
After centrifugation at 2000 rpm for 10 minutes, it was filtered through No. 5A paper, and the N content of the resulting liquid was measured by the Kjeldahl method. Water-soluble nitrogen index NSI=S-N/T-N×100 However, T-N: Total nitrogen content (%) of the extracted sample S-N: Water-soluble nitrogen content (%) of the extracted sample (edited by Japan Oil Chemists Association) , standard oil and fat analysis test method) Color tone: The color difference meter used was manufactured by Nippon Denshoku Kogyo Co., Ltd.
The position of the color of the sample in the a, b color solid was determined. Here, the L value represents brightness, and the higher the value, the brighter it is.

【式】【formula】

【式】 各々の度合を示す。 粉末色調:試料約3gを測定用セルに充填し測定
した。 ゲル色調:ゲル強度測定と同様に調整したゲルを
測定用セルに充填し測定した。 大豆臭:試料10gを水道水500gに分散溶解し、
クレハロンチユーブに入れて、90℃30分加熱
後、急冷し3時間後に官能評価した。 評価法:パネル11名にて比較例1にて製造された
サンプルの大豆臭強度を5点とし評点評価をお
こなつた。 実施例 1 低温抽出法により得た未変性脱脂大豆
(NSI87)15Kgを水150Kg中に懸濁し、水酸化ナト
リウム68gを加えPH7.2とした。ついで50℃、30
分撹拌抽出し、分離機にて、溶解区分と水不溶区
分とに分けた。得られた溶解区分に150gの硫酸
を添加し、PHを4.5に調整し、たん白質を凝集さ
せた。ついで分離機にて、上澄区分と凝集区分を
分離し、22.8Kgの酸沈澱蛋白質を得た。得られた
酸沈澱蛋白質全量に対し、18Kgの水を加え、解砕
した後、水酸化カルシウム:水酸化ナトリウム=
1:7混合液にてPH6.9に調整した。ついで、110
℃にて2分間ジエツトクツカーにて加熱殺菌した
後、スプレードライヤーで噴霧乾燥し、5.5Kgの
本発明の大豆蛋白素材を得た。 比較例 1 比較例として、実施例1と同様の方法にて酸沈
澱蛋白質を得、得られた酸沈澱蛋白質22.8Kgに、
15Kgの水を加え、解砕機にて解砕した後、水酸化
ナトリウムにてPH7.0に調整した。ついで120℃に
て2分間ジエツトクツカーにて加熱殺菌した後、
スプレードライヤーで噴霧乾燥し、5.3Kgの分離
大豆蛋白粉末を得た。 得られた粉末の物性を表1に示す。
[Formula] Indicates the degree of each. Powder color tone: Approximately 3 g of sample was filled into a measurement cell and measured. Gel color tone: A measurement cell was filled with a gel prepared in the same manner as in the gel strength measurement and measured. Soy odor: Disperse and dissolve 10g of sample in 500g of tap water,
The mixture was placed in a Kurehalon tube, heated at 90°C for 30 minutes, rapidly cooled, and sensory evaluated after 3 hours. Evaluation method: A panel of 11 people evaluated the soybean odor intensity of the sample produced in Comparative Example 1 by giving it a score of 5 points. Example 1 15 kg of undenatured defatted soybean (NSI87) obtained by low temperature extraction method was suspended in 150 kg of water, and 68 g of sodium hydroxide was added to adjust the pH to 7.2. Then 50℃, 30
The mixture was extracted with stirring for several minutes, and separated into a soluble section and a water-insoluble section using a separator. 150 g of sulfuric acid was added to the obtained dissolution section to adjust the pH to 4.5 and aggregate the proteins. Next, a supernatant fraction and an agglomerated fraction were separated using a separator to obtain 22.8 kg of acid-precipitated protein. After adding 18 kg of water to the total amount of acid-precipitated protein obtained and crushing it, calcium hydroxide: sodium hydroxide =
The pH was adjusted to 6.9 using a 1:7 mixture. Then, 110
After heat sterilizing at ℃ for 2 minutes in a diet stocker, spray drying was performed with a spray dryer to obtain 5.5 kg of soybean protein material of the present invention. Comparative Example 1 As a comparative example, acid-precipitated protein was obtained in the same manner as in Example 1, and 22.8 kg of the obtained acid-precipitated protein was
After adding 15 kg of water and crushing it with a crusher, the pH was adjusted to 7.0 with sodium hydroxide. Then, after sterilizing by heating at 120°C for 2 minutes in a diet stocker,
Spray drying was performed using a spray dryer to obtain 5.3 kg of isolated soybean protein powder. Table 1 shows the physical properties of the obtained powder.

【表】 実施例2ないし4、比較例2および3 実施例1と同様の方法で酸沈澱蛋白質を得た。 得られた酸沈澱蛋白質1部に対して水0.7部を
加えて解砕機にて解砕した。ついで表2に示した
水酸化カルシウムと水酸化ナトリウムの混合液を
加えてPHを7.2に調節した後、ジエツトクツカー
にて120℃にて1分間加熱処理し、更にスプレー
ドライヤーで噴霧乾燥し、製品を得た。得られた
製品の物性を表2に示す。
[Table] Examples 2 to 4, Comparative Examples 2 and 3 Acid-precipitated proteins were obtained in the same manner as in Example 1. 0.7 parts of water was added to 1 part of the acid-precipitated protein obtained, and the mixture was crushed using a crusher. Next, a mixture of calcium hydroxide and sodium hydroxide shown in Table 2 was added to adjust the pH to 7.2, followed by heat treatment at 120°C for 1 minute in a jet stocker, and then spray drying with a spray dryer to obtain the product. Obtained. Table 2 shows the physical properties of the obtained product.

【表】 実施例5および6、比較例4および5 実施例1と同様の方法で酸沈澱蛋白質を得た。
得られた酸沈澱蛋白質1部に対して、水1.0部を
加えて解砕機にて解砕した。次いで水酸化カルシ
ウム:水酸化ナトリウム=1:3の混合液にてPH
を表3の如く調整した後、ジエツトクツカーにて
100℃、2分間加熱処理し、更にスプレードライ
ヤーで噴霧乾燥し製品を得た。得られた製品の物
性を表3に示す。
[Table] Examples 5 and 6, Comparative Examples 4 and 5 Acid-precipitated proteins were obtained in the same manner as in Example 1.
1.0 part of water was added to 1 part of the acid-precipitated protein obtained, and the mixture was crushed using a crusher. Then pH was adjusted with a mixture of calcium hydroxide and sodium hydroxide = 1:3.
After adjusting as shown in Table 3, use a jet stocker.
The mixture was heat treated at 100°C for 2 minutes and then spray dried using a spray dryer to obtain a product. Table 3 shows the physical properties of the obtained product.

【表】【table】

【表】 実施例7および8、比較例6および7 実施例1と同様の方法で酸沈澱蛋白質を得、得
られた酸沈澱蛋白質1部に対して、水1.2部を加
えて解砕機にて解砕した。次いで水酸化カルシウ
ム:水酸化ナトリウム=1:6の混合液にてPHを
7.0に調整した。PH調整を行つた後、ジエツトク
ツカーにて、表4に示した条件で加熱処理し、ス
プレードライヤーで噴霧乾燥し、表4に示す物性
の製品を得た。
[Table] Examples 7 and 8, Comparative Examples 6 and 7 Acid-precipitated proteins were obtained in the same manner as in Example 1, 1.2 parts of water was added to 1 part of the obtained acid-precipitated proteins, and the mixture was crushed in a disintegrator. Disintegrated. Next, adjust the pH using a mixture of calcium hydroxide and sodium hydroxide = 1:6.
Adjusted to 7.0. After adjusting the pH, heat treatment was performed in a jet stocker under the conditions shown in Table 4, and spray drying was performed in a spray dryer to obtain a product having the physical properties shown in Table 4.

【表】 実施例 9、10、11 実施例1と同様の方法で酸沈澱蛋白質を得、得
られた酸沈澱蛋白質1部に対して、水1.1部を加
えて解砕機にて解砕した。 次いで、表5の水酸化マグネシウム:水酸化ナ
トリウムの混合比にて中和液を調整した。中和液
を調整した後、ジエツトクツカーにて120℃、90
秒加熱処理し、スプレードライヤーで噴霧乾燥
し、表5に示す物性の製品を得た。
[Table] Examples 9, 10, 11 Acid-precipitated proteins were obtained in the same manner as in Example 1, and 1.1 parts of water was added to 1 part of the obtained acid-precipitated proteins, followed by disintegration using a disintegrator. Next, a neutralized solution was prepared at the mixing ratio of magnesium hydroxide:sodium hydroxide shown in Table 5. After adjusting the neutralizing solution, heat at 120℃ and 90
The product was heat-treated for seconds and spray-dried using a spray dryer to obtain a product having the physical properties shown in Table 5.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 NSI85以上の未変性脱脂大豆の水溶液又は水
懸濁液をPH6.5ないし7.5に調節し、必要により水
不溶区分を除去し、抽出液を得る第1工程、該抽
出液をPH4.0ないし5.0に調節して酸沈澱蛋白質を
採取する第2工程、該酸沈澱蛋白質の分散液に、
(水酸化カルシウムおよび/又は水酸化マグネシ
ウム):水酸化ナトリウムの重量比が1:12ない
し10:7であるアルカリを添加してPHを6.5ない
し7.5に調節し、これをパイプライン中で直接水
蒸気と接触せしめて80℃ないし150℃にて2秒間
以上加熱した後、乾燥する第3工程とよりなる大
豆蛋白素材の製造方法。
1 The first step of obtaining an extract by adjusting an aqueous solution or aqueous suspension of undenatured defatted soybeans with an NSI of 85 or higher to PH 6.5 to 7.5, and removing water-insoluble fractions if necessary. 5.0 and collect the acid-precipitated protein, in the dispersion of the acid-precipitated protein,
Add an alkali (calcium hydroxide and/or magnesium hydroxide):sodium hydroxide weight ratio of 1:12 to 10:7 to adjust the pH to 6.5 to 7.5, and then directly steam it in the pipeline. A method for producing a soybean protein material, which comprises a third step of contacting with a soybean protein material, heating at 80°C to 150°C for 2 seconds or more, and then drying.
JP18467980A 1980-12-25 1980-12-25 Production of soybean protein material Granted JPS57129652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18467980A JPS57129652A (en) 1980-12-25 1980-12-25 Production of soybean protein material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18467980A JPS57129652A (en) 1980-12-25 1980-12-25 Production of soybean protein material

Publications (2)

Publication Number Publication Date
JPS57129652A JPS57129652A (en) 1982-08-11
JPS6214251B2 true JPS6214251B2 (en) 1987-04-01

Family

ID=16157461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18467980A Granted JPS57129652A (en) 1980-12-25 1980-12-25 Production of soybean protein material

Country Status (1)

Country Link
JP (1) JPS57129652A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3793723B2 (en) * 2002-01-15 2006-07-05 株式会社協和食品 Production method of soy milk products
JP5903759B2 (en) * 2010-09-30 2016-04-13 味の素株式会社 Meat-like food manufacturing method
JP7365016B2 (en) * 2018-07-12 2023-10-19 株式会社カネカ High purity vegetable protein

Also Published As

Publication number Publication date
JPS57129652A (en) 1982-08-11

Similar Documents

Publication Publication Date Title
CA1100949A (en) Low phytate acid precipitated soy protein isolate
KR101302533B1 (en) Fat-reduced soybean protein material and soybean emulsion composition, and processes for production thereof
JPS6261543A (en) Production of low phytinate soy protein isolate
KR100933767B1 (en) Improved Oil Seed Protein Recovery
JP4389785B2 (en) Soy protein acidic gel food and production method thereof
JPS6133541B2 (en)
JP4330627B2 (en) Process for the preparation of flax protein isolate
US4278597A (en) Protein isolate having low solubility characteristics and process for producing same
RU2005101354A (en) EXTRACTION OF PROTEIN FROM FODDER FLOUR FROM CAKE SEEDS OF OIL CANOLA
US20060062894A1 (en) 7S/2S-rich soy protein globulin fraction composition and process for making same
JP2765489B2 (en) Soy protein and its manufacturing method
WO2010067533A1 (en) Soy protein and method for producing the same
JPS593178B2 (en) Method for producing milk protein isolate, milk protein/vegetable protein isolate and its composition
JPS6214251B2 (en)
US4062409A (en) Method for the production of fish meat powder retaining functional properties of fresh fish meat
JP2822666B2 (en) Manufacturing method of soy protein material
JPS6214250B2 (en)
JP6848191B2 (en) Fisheries paste product containing powdered soy protein composition
JPS5856612B2 (en) Manufacturing method for food materials with protein as the main component
JP3212017B2 (en) Production method of powdery isolated soy protein
KR20190032766A (en) Preparation method of bean curd solidifier containing crustacea shell powder and bean curd solidifier prepared therefrom
JP2018102138A (en) Production method of mung bean protein ingredients
WO2006102353A2 (en) A high beta-conglycinin soy protein isolate comprising food ingredient and process for preparing the same
WO2022015165A2 (en) Texturized oilseed proteinaceous material
RU2191521C1 (en) Method of preparing soya product