JPS62142460A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS62142460A
JPS62142460A JP60283628A JP28362885A JPS62142460A JP S62142460 A JPS62142460 A JP S62142460A JP 60283628 A JP60283628 A JP 60283628A JP 28362885 A JP28362885 A JP 28362885A JP S62142460 A JPS62142460 A JP S62142460A
Authority
JP
Japan
Prior art keywords
light
original
photoelectric conversion
conversion element
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283628A
Other languages
Japanese (ja)
Inventor
Makoto Kato
誠 加藤
Masao Akimoto
正男 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic System Solutions Japan Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Graphic Communication Systems Inc
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Graphic Communication Systems Inc, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Graphic Communication Systems Inc
Priority to JP60283628A priority Critical patent/JPS62142460A/en
Publication of JPS62142460A publication Critical patent/JPS62142460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To suppress a crosstalk from an adjacent picture element and to attain high resolution by arranging an interference filter having a prescribed spectral transmittivity between an original face and a photoelectric transducer array. CONSTITUTION:The interference filter is provided between the photoelectric transducer array and the original. A multi-layer thin film filter 14 transmits a light with a small incident angle in the photoelectric transducer 8 among the light reflected from the original face, reflects the light having a large incident angle and selects the light not almost transmitted. The original 1 runs relatively on the transmission spacer 9 of a solid-state image pickup device in a subscanning direction at a position apart by a prescribed distance L from the photoelectric transducer 8. The luminous flux 10 from the light source 15 is made incident in the original 1 from the back side of the transparent base 6 through a slit opening 11, a part 12 of the reflected luminous flux from the original 1 is received by the photoelectric transducer and scanned electronically. In this case, the oblique incident component such as the reflected luminous flux 12A is reflected by the multi-layer film filter 14, the crosstalk is suppressed and excellent reading with the high resolution is attained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファクタ(IJ等の光電変換系における固体
撮像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a solid-state imaging device in a photoelectric conversion system such as a factor (IJ).

従来の技術 最近、等倍結像型の光電変換手段として、密着イメージ
センサと称されるタイプのリニアイノ−2ヘーパ ジセンサが開発され、ファクシミリの読取部などで実用
化されている。その読取部の従来例の構成を第5図に示
す。第5図において、■は原稿、2は螢光灯等の線状光
源、3はロッドレンズアレイ、4はリニアイメージセン
サであシ、原稿1が光源2で照明され、原稿1の矢印X
で示す線状部分の正立等倍像がイメージセンサ4の開口
列4Aに結像され、電子的に走査される。この矢印X方
向が主走査方向であり、原稿1はこれと直交する副走査
方向Yに送給され、原稿全面が読み取られる。
2. Description of the Related Art Recently, a type of linear INO-2 hepurge sensor called a contact image sensor has been developed as a photoelectric conversion means of the same magnification type, and has been put to practical use in facsimile reading units and the like. The structure of a conventional example of the reading section is shown in FIG. In FIG. 5, ■ is a document, 2 is a linear light source such as a fluorescent lamp, 3 is a rod lens array, 4 is a linear image sensor, document 1 is illuminated by light source 2, and document 1 is illuminated by an arrow X.
An erect equal-magnification image of the linear portion shown by is formed on the aperture array 4A of the image sensor 4 and electronically scanned. The direction of this arrow X is the main scanning direction, and the original 1 is fed in the sub-scanning direction Y that is perpendicular to this direction, and the entire surface of the original is read.

ここで、ロッドレンズアレイ3は多数のロッドレンズ3
Aを規則的に精度よく配列したもので、同じ王立等倍像
を得るための球面レンズを用いた通常の結像光学系に比
べ、光学系を大幅に小型化することができる。この大幅
な小型化が可能であるという点が、ロッドレンズアレイ
3による結像光学装置の大きな特徴である。しかし、ロ
ッドレンズアレイ3は球面レンズを用いた結像光学系に
比べて非常に高価であるという欠点を持っており、また
、上記イメージセンサを用いた光学系全体は3ヘーン ロッドレンズアレイ3を使用しているため、小型化にも
限度があった。
Here, the rod lens array 3 includes a large number of rod lenses 3.
A is arranged regularly and accurately, and the optical system can be made much smaller than a normal imaging optical system using a spherical lens to obtain the same Royal life-size image. A major feature of the imaging optical device using the rod lens array 3 is that it can be significantly miniaturized. However, the rod lens array 3 has the disadvantage that it is very expensive compared to an imaging optical system using a spherical lens, and the entire optical system using the image sensor described above uses a 3-hoen rod lens array 3. Because of this, there was a limit to miniaturization.

等倍読取型センサの小型化を更に徹底したものとして、
半透明の光導電性薄膜からなる光電変換材料を原稿面に
極めて接近させ、その背後から原稿面を照明し、反射光
をレンズ系を使用せず直接光電変換材料で受光させるよ
うに構成した固体撮像装置が、特公昭47−3482号
公報に提案されている。また、その後、第6図に示すよ
うに、透明基板6上に不透光層7を介して光電変換素子
8を配置し、更にその上に透光スペーサ9を設けてなる
固体撮像装置5が提案されている。同図において、(a
)は主走査方向の、巾)は副走査方向の断面図である。
As a further miniaturization of the same size reading sensor,
A solid state in which a photoelectric conversion material made of a translucent photoconductive thin film is placed very close to the document surface, the document surface is illuminated from behind, and the reflected light is directly received by the photoelectric conversion material without using a lens system. An imaging device is proposed in Japanese Patent Publication No. 47-3482. Thereafter, as shown in FIG. 6, a solid-state imaging device 5 is formed, in which a photoelectric conversion element 8 is arranged on a transparent substrate 6 with a non-light-transmitting layer 7 interposed therebetween, and a light-transmitting spacer 9 is further provided thereon. Proposed. In the same figure, (a
) is a cross-sectional view in the main scanning direction, and width ) is a cross-sectional view in the sub-scanning direction.

この固体撮像装置5では原稿1が透光スペーサ9によシ
光電変換素子8に対して一定の微小間隔りとなるように
保持され、適当な光源からの照明光束10が光電変換素
子8の背面側から不透光層7に形成された開口11を通
して原稿1に入射し、その反射光束12の一部が素子8
で受光され、原稿読取が行われる。
In this solid-state imaging device 5, an original 1 is held by a light-transmitting spacer 9 at a constant minute distance from the photoelectric conversion element 8, and an illumination light beam 10 from an appropriate light source is directed to the back surface of the photoelectric conversion element 8. It enters the original 1 from the side through the aperture 11 formed in the non-transparent layer 7, and a part of the reflected light beam 12 enters the element 8.
The light is received and the document is read.

発明が解決しようとする問題点 しかし、かかる構成によれば、第6図(a)に示す様に
、原稿上の画素1Aからの反射光の一部12は、その画
素と対応している光電変換素子8Aに入射するが、破線
で示すような他の反射光12Aが隣接する光電変換素子
8Bや8Cに入射し、いわゆるクロストークが生じてし
まう。このクロストークにより、解像度が低下するとい
う問題があった。
Problems to be Solved by the Invention However, according to this configuration, as shown in FIG. Although the reflected light 12A is incident on the conversion element 8A, other reflected light 12A as shown by the broken line is incident on the adjacent photoelectric conversion elements 8B and 8C, resulting in so-called crosstalk. This crosstalk has caused a problem in that the resolution is reduced.

上記問題点を解決する方法としては、第7図に示す様に
、透光スペーサ9を二つに分離し、二つの透光スペーサ
間に、光電変換素子8に対応したスリット列を配した遮
光体13を配置することによシ、他の画素からの反射光
1.2Aの遮光を行うことが考えられる。しかし、この
様な遮光体13を用いる方式にも問題がある。即ち、第
7図では、原稿面上の画素IAから3ピツチだけ離れた
光電変換素子8Dまでは画素1人からの反射光12Aが
遮光されて光電変換素子に入射しないが、原稿面上の画
素IBの様に3ピツチ以上離れた画素か5ベーノ らの反射光1.2Bは遮光体13のスリットを通して光
電変換素子に入射してしまい、クロストークが発生する
。また、遮光体のスリット間隔の誤差と光電変換素子の
間隔の誤差の違いによって、光電変換素子とスリットと
の位置関係が画素ごとに異なるという、製造上の問題が
新たに発生する。
As a method to solve the above problem, as shown in FIG. By arranging the body 13, it is possible to block 1.2 A of reflected light from other pixels. However, there are also problems with the method using such a light shielding body 13. That is, in FIG. 7, the reflected light 12A from one pixel is blocked and does not enter the photoelectric conversion element from the pixel IA on the original surface to the photoelectric conversion element 8D, which is 3 pitches away from the pixel IA on the original surface. 1.2B of reflected light from pixels or 5 pixels separated by 3 or more pitches like IB enters the photoelectric conversion element through the slit of the light shield 13, causing crosstalk. Furthermore, a new manufacturing problem occurs in that the positional relationship between the photoelectric conversion element and the slit differs from pixel to pixel due to the difference between the error in the slit spacing of the light shielding body and the error in the spacing of the photoelectric conversion element.

本発明は、上述の問題点に鑑みて為されたもので、隣接
する画素からのクロストークを抑え、高い解像度の得ら
れる、製造の容易な完全密着型の固体撮像装置を提供す
ることを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a fully contact solid-state imaging device that suppresses crosstalk from adjacent pixels, provides high resolution, and is easy to manufacture. shall be.

問題点を解決するための手段 本発明は上述の問題点を解決するため、原稿面を照明す
る光源として、少なくとも短波長側の成分を有しない、
所定の分光分布特性の光源を用い、更に、少なくとも長
波長側の光を透過させない、所定の分光透過率特性の干
渉フィルタを前記原稿面と光電変換素子列との間に配置
するという構成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a light source that does not have at least a component on the short wavelength side as a light source for illuminating the document surface.
A light source having a predetermined spectral distribution characteristic is used, and an interference filter having a predetermined spectral transmittance characteristic that does not transmit at least light on the long wavelength side is arranged between the document surface and the photoelectric conversion element array. It is something that

作用 本発明は上記構成によって、干渉フィルタが入6ページ 射角の小さい(フィルタ面に垂直に入射する)光に対し
ては、フィルタの透過波長帯域に重なる波長の光を透過
させるが、入射角の大きい光に対しては、フィルタの光
透過波長帯域が短波長側に移動する特性のため、透過す
る波長の光が殆ど無くなり、従って、入射角の大きい光
は透過させない。
Effects of the present invention With the above configuration, the interference filter transmits light having a wavelength that overlaps with the transmission wavelength band of the filter for light having a small incident angle (incident perpendicularly to the filter surface); For light with a large angle of incidence, the light transmission wavelength band of the filter shifts to the shorter wavelength side, so that almost no light of the wavelength is transmitted, and therefore, light with a large angle of incidence is not transmitted.

この結果、原稿面で反射した光のうち、光電変換素子に
対して直角方向に入射する光はフィルタを通って光電変
換素子に達するが、傾斜方向に入射する光は殆どがフィ
ルタで反射されることとなり、クロストークが抑圧され
、高い解像度が得られると共に、光電変換素子の主走査
方向の開口を大きくとることができる。
As a result, among the light reflected from the document surface, the light that is incident at right angles to the photoelectric conversion element passes through the filter and reaches the photoelectric conversion element, but most of the light that is incident in the oblique direction is reflected by the filter. As a result, crosstalk is suppressed, high resolution can be obtained, and the aperture of the photoelectric conversion element in the main scanning direction can be made large.

実施例 以下、本発明の詳細な説明する。第1図は本発明の一実
施例を示すもので、(a)は主走査方向の断面図、(b
)は副走査方向の断面図である。同図において、本発明
になる固体撮像装置5は、透明基板6と、この透明基板
6の上面に不透光層7を介して、主走査方向(X方向)
に適当な間隔をあけ7ページ て配置された多数の光電変換素子8からなる光電変換素
子列と、原稿1が密着して副走査方向(Y方向)に移動
する面を備え、且つ光電変換素子8を保護する透光スペ
ーサ9と、透光スペーサ9と光電変換素子8との間に介
在した干渉フィルタ即ち多層薄膜フィルタ14とを重ね
合わせ一体化したものである。不透光層7には光電変換
素子列に沿って、副走査方向の読取幅W□と同程度の幅
を持ったスリット開口11が形成されている。透明基板
6の下方には主走査方向に不連続的に線状配列したT、
 ED (発光ダイオード)光源15が配置され、この
光源15からの放射光束10は、スリット開口11によ
り、原稿1をW、の幅で照射する。光源2としては、多
層薄膜フィルタ14の特性に関連した所定の分光分布特
性のものが使用されるが、その詳細は後述する。
EXAMPLES The present invention will be described in detail below. FIG. 1 shows an embodiment of the present invention, in which (a) is a sectional view in the main scanning direction, and (b) is a sectional view in the main scanning direction.
) is a sectional view in the sub-scanning direction. In the figure, the solid-state imaging device 5 according to the present invention includes a transparent substrate 6 and an opaque layer 7 on the upper surface of the transparent substrate 6 in the main scanning direction (X direction).
A photoelectric conversion element row consisting of a large number of photoelectric conversion elements 8 arranged at appropriate intervals for seven pages, and a surface on which the original 1 is brought into close contact and moves in the sub-scanning direction (Y direction), and the photoelectric conversion elements A light-transmitting spacer 9 for protecting the photoelectric conversion element 8 and an interference filter, that is, a multilayer thin film filter 14 interposed between the light-transmitting spacer 9 and the photoelectric conversion element 8, are stacked and integrated. A slit opening 11 having a width comparable to the reading width W□ in the sub-scanning direction is formed in the non-transparent layer 7 along the photoelectric conversion element array. Below the transparent substrate 6, Ts are arranged discontinuously in a linear manner in the main scanning direction.
An ED (light emitting diode) light source 15 is arranged, and a radiant beam 10 from the light source 15 irradiates the document 1 with a width of W through a slit opening 11 . As the light source 2, one having predetermined spectral distribution characteristics related to the characteristics of the multilayer thin film filter 14 is used, the details of which will be described later.

多層薄膜フィルタ14は、透光スペーサ9の光電変換素
子列側に蒸着されている。ここで使用される多層薄膜フ
ィルタ14は、原稿面から反射した光のうち、第1図(
1))に示すように光電変換素子8に入射する小さい入
射角のものは透過させるが、第1図(alに示すように
、一つの画素IAから破線で示すように他の光電変換素
子に入射する入射角の大きいものを反射して殆ど透過さ
せない特性のものが選ばれる。このような特性のフィル
タは、光源の分光分布特性との関連によって定められる
The multilayer thin film filter 14 is deposited on the side of the light-transmitting spacer 9 facing the photoelectric conversion element array. The multilayer thin film filter 14 used here filters out the light reflected from the document surface as shown in FIG.
1) As shown in Figure 1 (al), the light that enters the photoelectric conversion element 8 at a small angle of incidence is transmitted, but as shown in Figure 1 (al), from one pixel IA to other photoelectric conversion elements as shown by the broken line. A filter is selected that has characteristics that reflect light that enters at a large angle of incidence and hardly transmit it.A filter with such characteristics is determined in relation to the spectral distribution characteristics of the light source.

例えば、成る波長域にエネルギーピークを持ったLED
光源に対して、フィルタ]4として、入射角θ=08(
垂直入射)に対する分光透過率特性が、前記光源からの
光の最短波長よりも長い、所定の透過限界波長λ。を有
するローパスフィルタが使用可能である。このローパス
フィルタでは、光の入射角θの場合の分光透過率特性は
前記λ。
For example, an LED with an energy peak in the wavelength range consisting of
With respect to the light source, the angle of incidence θ=08(
a predetermined transmission limit wavelength λ at which the spectral transmittance characteristic with respect to normal incidence is longer than the shortest wavelength of light from the light source; A low pass filter with . In this low-pass filter, the spectral transmittance characteristic when the incident angle of light is θ is the above-mentioned λ.

が短波長側へλ。−λθだけシフトし、よく知られた関
係式 を満足している。ここで、nは多層薄膜フィルタ14の
平均的な屈折率である。本実施例では、光源10が、主
波長λm、、 = 57 Qmya、半値幅△λ9へ一
7′ 1/2=20nmであるGaP系のLED発光光源が使
用され、多層薄膜フィルター4として、酸化チタ7 (
IV ) (T + 02、n t 勾2.2 )、二
酸化ケイ素(S I Os 、nx #1.46 )の
2種類で交互に多層膜を構成したものが使用される。こ
のフィルター4の平均屈折率nは、 n、十n。
is λ toward the short wavelength side. It is shifted by −λθ and satisfies the well-known relational expression. Here, n is the average refractive index of the multilayer thin film filter 14. In this embodiment, the light source 10 is a GaP-based LED light source with a main wavelength λm, = 57 Qmya and a half-value width Δλ9 = 7' 1/2 = 20 nm, and the multilayer thin film filter 4 is Chita 7 (
IV) (T + 02, nt gradient 2.2) and silicon dioxide (SI Os, nx #1.46) are used to form a multilayer film alternately. The average refractive index n of this filter 4 is n, 10n.

nm □−1,8 となる。第2図にλ。−602nm、 n== 1.8
とした場合の多層薄膜フィルター4の光の入射角θに対
する分光透過率特性(実線部)、並びに、前記LED発
光光源の分光エネルギー特性(破線部)を簡単の為にモ
デル化して示している。同図において、光源及び多層薄
膜フィルタの分光特性が交わる部分(例えば、△ABC
)は、入射角θ(例えばθ=40°)における多層薄膜
フィルタ14を透過する光量に相当しておシ、この光量
はθ=0〜27°では変化しないが、それ以上になると
減少し、θ=0°の場合に比較してθ=400で1/4
以下、θ=45°では1/10以下とな10ベーノ リ、θ=50°ではほぼO(はとんど透過しない状態)
となる。従って、上記光源と多層薄膜フィルタとの組み
合わせによシ、入射角が成る大きさ以上の光の透過を阻
止することができ、この透過可能な入射角の限界は光源
或いはフィルタの分光特性を適宜選定することにより、
所望の値にすることができる。
nm □-1,8. λ in Figure 2. -602nm, n==1.8
The spectral transmittance characteristics of the multilayer thin film filter 4 with respect to the incident angle θ of light (solid line) and the spectral energy characteristics of the LED light source (dashed line) are shown as models for simplicity. In the figure, a portion where the spectral characteristics of the light source and the multilayer thin film filter intersect (for example, △ABC
) corresponds to the amount of light that passes through the multilayer thin film filter 14 at an incident angle θ (for example, θ = 40°), and this amount of light does not change between θ = 0 and 27°, but decreases when the angle is higher than that. 1/4 at θ=400 compared to when θ=0°
Below, at θ=45°, it is 1/10 or less, and at θ=50°, it is almost O (almost no transmission).
becomes. Therefore, by combining the light source and the multilayer thin film filter, it is possible to prevent the transmission of light greater than the angle of incidence, and the limit of the angle of incidence that can be transmitted is determined by adjusting the spectral characteristics of the light source or filter as appropriate. By selecting
It can be set to any desired value.

なお、入射角が成る大きさ以上の光の透過を阻止するた
めの光源15と干渉フィルタ14との組み合わせは、第
2図に示した黄緑帯に主波長を持つLEDのYG光源と
ローパスフィルタとの組み合わせに限らず、種々変更可
能である。例えば、第3図(a)に示すように、YG光
源を用い、この光源の分光分布特性と同一帯域で、数十
nm程度長波長側に透過波長帯が拡がっているバンドパ
スフィルタとの組み合わせによっても、上記効果が得ら
れる。また、第3図(1))に示す縁帯に主波長を持つ
螢光管によるG光源とバンドパスフィルタとの組み合わ
せ、第3図(e)に示すG光源とローパスフィルタとの
組み合わせによっても、G光源の主波11” ’ 長帯に隣接する長波長側のエネルギーを透過しないよう
にフィルタの波長傾斜幅、透過限界波長を選定すること
により上記効果が得られる。更に、第3図(山の赤帯の
LED光源とバンドパスフィルタとの組み合わせ、第3
図telのR光源とローパスフィルタとの組み合わせに
よっても、上記効果が得られる。要するに、少なくとも
短波長側の成分を有しない分光分布特性の光源と、少な
くとも長波長側の光を透過させない分光透過率特性の干
渉フィルタとの組み合わせにより、干渉フィルタに垂直
及び小さい入射角で入射する光は透過させるが、成る傾
斜角以上に傾斜して入射する光は透過させないようにす
ることができる。
The combination of the light source 15 and the interference filter 14 for blocking the transmission of light exceeding the incident angle is an LED YG light source with a dominant wavelength in the yellow-green band and a low-pass filter as shown in FIG. It is not limited to the combination with , and various changes are possible. For example, as shown in Figure 3(a), a YG light source is used in combination with a bandpass filter whose transmission wavelength band is the same as the spectral distribution characteristic of the light source, but whose transmission wavelength band extends to the longer wavelength side by several tens of nanometers. The above effect can also be obtained. Furthermore, the combination of a G light source using a fluorescent tube with a dominant wavelength in the edge band and a band-pass filter as shown in FIG. 3(1)), and the combination of a G light source and a low-pass filter as shown in FIG. 3(e) can also be used. , the above effect can be obtained by selecting the wavelength inclination width and the transmission limit wavelength of the filter so as not to transmit the energy on the long wavelength side adjacent to the main wave 11'' long band of the G light source.Furthermore, as shown in FIG. Combination of mountain red band LED light source and bandpass filter, 3rd
The above effect can also be obtained by the combination of the R light source and the low-pass filter shown in FIG. In short, by combining a light source with a spectral distribution characteristic that does not include at least a component on the short wavelength side and an interference filter with a spectral transmittance characteristic that does not transmit at least light on the long wavelength side, the light enters the interference filter perpendicularly and at a small incident angle. It is possible to allow light to pass through, but not to allow light that is incident at an angle greater than the inclination angle to pass through.

更に、第1図において、各光電変換素子8の主走査方向
の開口寸法Wは、前記光源15及びフィルタ14の特性
を考慮し、クロストークを抑圧するように選定している
。即ち、原稿面の画素1人からの反射光12Aは、画素
1人に対向する光電変換素子8Aに以外の光電変換素子
に対して大きい入射角、例えば図示のように54°以上
で入射するように選定している。このため、例えば画素
IAからの反射光12Aは、光電変換素子8Aに隣接す
る光電変換素子に対しては入射角が50゜以上であるの
で、多層薄膜フィルタ14を透過せず反射してしまい、
クロストークを十分に抑圧することが可能となる。第1
図において、図中に示シタ入射角19(7)値は、W”
 P/ 4 = 0.03 wn、 T。
Furthermore, in FIG. 1, the aperture size W of each photoelectric conversion element 8 in the main scanning direction is selected in consideration of the characteristics of the light source 15 and filter 14 so as to suppress crosstalk. That is, the reflected light 12A from one pixel on the document surface is incident on photoelectric conversion elements other than the photoelectric conversion element 8A facing one pixel at a large incident angle, for example, 54 degrees or more as shown in the figure. has been selected. For this reason, for example, the reflected light 12A from the pixel IA has an incident angle of 50° or more with respect to the photoelectric conversion element adjacent to the photoelectric conversion element 8A, so it is reflected without passing through the multilayer thin film filter 14.
It becomes possible to sufficiently suppress crosstalk. 1st
In the figure, the incident angle 19(7) value shown in the figure is W”
P/4 = 0.03 wn, T.

=O408肌の場合のものであり、これに対し、λma
x ” 570 n m、△λ1/2−2−20n λ
= O408 skin, whereas λma
x ” 570 nm, △λ1/2-2-20n λ
.

=602nm、n=1.8とすることにより、クロスト
ークの抑圧された撮像系が実現された。
= 602 nm and n = 1.8, an imaging system with suppressed crosstalk was realized.

なお、第2図に示す特性を有する光源及びフィルタを用
いた場合、光電変換素子の主走査方向の開口寸法Wを更
に大きくすることが可能であり、第4図に示すように、
最大Wm、x=2W(=P/2)=0.06mとしても
クロストークの抑圧が可能となる。また同時に副走査方
向の光電変換素子8の開口寸法W。を拡げることにより
、高感度の光電変換素子出力が得られ、また、光電変換
素子の開口面積が拡がるために、透光スペーサ9面上1
3ペーノ のキズ等によって生じる原稿1からの反射光の乱れによ
る解像度低下と受光量の変動を防止できる。
Note that when a light source and filter having the characteristics shown in FIG. 2 are used, it is possible to further increase the aperture size W of the photoelectric conversion element in the main scanning direction, and as shown in FIG.
Even if the maximum Wm is x=2W (=P/2)=0.06m, crosstalk can be suppressed. At the same time, the aperture size W of the photoelectric conversion element 8 in the sub-scanning direction. By widening the spacer, a highly sensitive photoelectric conversion element output can be obtained, and the aperture area of the photoelectric conversion element is expanded.
It is possible to prevent resolution degradation and fluctuations in the amount of received light due to disturbances in reflected light from the original 1 caused by scratches on the third page.

゛   この時、前記の様に、原稿1の光源からの副走
査方向の照射幅は、不透光層7で制限して読取り幅W1
 と同程度であるため、Wo>Wlとしても副走査方向
の解像度を低下させることはない。
゛ At this time, as described above, the irradiation width of the original 1 from the light source in the sub-scanning direction is limited by the non-transparent layer 7 to the reading width W1.
Therefore, even if Wo>Wl, the resolution in the sub-scanning direction is not reduced.

次に動作を説明する。第1図において、原稿1は固体撮
像装置の透光スペーサ9上を相対的に走行し、従って光
電変換素子8から一定距離り離れた位置を、副走査方向
(Y方向)に走行する。その際、同図(b)に示すよう
に、光源15からの光束10は、透明基板6の背面側か
らスリット開口11を通して原稿1へ入射される。原稿
1からの反射光束の一部12は光電変換素子に受光され
電子的に走査される。この時、反射光束12Aのごとき
斜方入射成分は、前記のように多層薄膜フィルタ14に
よって反射され、クロストークが抑圧され、解像度の高
い良好な読取りが行われる。
Next, the operation will be explained. In FIG. 1, a document 1 relatively travels on a transparent spacer 9 of a solid-state imaging device, and thus travels in a sub-scanning direction (Y direction) at a position a certain distance away from a photoelectric conversion element 8. At this time, as shown in FIG. 2B, the light beam 10 from the light source 15 is incident on the original 1 through the slit opening 11 from the back side of the transparent substrate 6. A portion 12 of the reflected light beam from the original 1 is received by a photoelectric conversion element and electronically scanned. At this time, the obliquely incident component such as the reflected light beam 12A is reflected by the multilayer thin film filter 14 as described above, crosstalk is suppressed, and good reading with high resolution is performed.

なお、以上の実施例では透明基板6と光電変換素子列と
の間に不透光層7を設け、原稿からの反14ヘーン 射光のみが光電変換素子に入射する形式のものを示した
が、本発明はこの形式のものに限定されず、原稿照明用
の光束が光電変換素子8を通り抜けて原稿面を照射し、
原稿からの反射光を受光するように構成した固体撮像装
置にも適用可能である。
In the above embodiments, the non-light-transmitting layer 7 is provided between the transparent substrate 6 and the photoelectric conversion element array, and only the incident light from the original is incident on the photoelectric conversion elements. The present invention is not limited to this type, and the light beam for illuminating the original passes through the photoelectric conversion element 8 and illuminates the original surface,
The present invention can also be applied to a solid-state imaging device configured to receive reflected light from a document.

更に上記実施例では、透明基板上に形成した薄膜型の光
電変換素子列を用いた場合について詳しく説明したが、
本発明はこの場合に限定されず、CCD型イメージセン
サやα−8i系素子を用いることも可能であることは言
うまでもない。特にCCD型イメージセンサの場合、ク
ロストークを抑圧しつつ、主走査方向の開口寸法を拡げ
ることが可能となるため、信号/雑音比(S/N比)の
向上も可能である。
Furthermore, in the above embodiment, the case in which a thin film type photoelectric conversion element array formed on a transparent substrate was used was explained in detail.
It goes without saying that the present invention is not limited to this case, and that it is also possible to use a CCD type image sensor or an α-8i type element. Particularly in the case of a CCD type image sensor, it is possible to increase the aperture size in the main scanning direction while suppressing crosstalk, so it is also possible to improve the signal/noise ratio (S/N ratio).

発明の効果 以上の説明から明らかなように、本発明は、干渉フィル
タが持つ、光の入射角によシ透過波長帯が変化する特性
と、照明光源の分光エネルギー分布特性を組み合わせ、
原稿面と光電変換素子との間に前記干渉フィルタを設け
ることにより、原稿15′・−・ 面からの反射光のうち垂直若しくは垂直に近い入射角の
ものを前記干渉フィルタを通して光電変換素子に入射さ
せ、入射角の大きいものを反射させて光電変換素子への
入射を阻止することができ、クロストークの抑圧によシ
開ロ感度分布の改善が可能となり、解像度の高い良好な
読取シが可能になるという効果を有する。
Effects of the Invention As is clear from the above description, the present invention combines the property of an interference filter that the transmission wavelength band changes depending on the incident angle of light and the spectral energy distribution property of the illumination light source.
By providing the interference filter between the document surface and the photoelectric conversion element, among the reflected light from the document surface 15', the incident angle that is vertical or near vertical is incident on the photoelectric conversion element through the interference filter. It is possible to reflect objects with a large angle of incidence and prevent them from entering the photoelectric conversion element, and by suppressing crosstalk, it is possible to improve the front and back sensitivity distribution, allowing for good reading with high resolution. It has the effect of becoming

また、クロストークを抑圧しつつ、光電変換素子列の列
方向の開口幅を光電変換素子間隔(P)の約1/2まで
拡げることが可能となり、高感度な光電変換素子出力が
得られる。
Further, while suppressing crosstalk, it is possible to increase the aperture width in the column direction of the photoelectric conversion element array to approximately 1/2 of the photoelectric conversion element spacing (P), and highly sensitive photoelectric conversion element output can be obtained.

更に、干渉フィルタ自体で入射角度選択特性を有するの
で、特別の配置位置精度を必要とせず、容易に所望の効
果を実現でき、信頼性の高い撮像装置を提供することが
できる。
Furthermore, since the interference filter itself has an incident angle selection characteristic, a desired effect can be easily achieved without requiring special positional accuracy, and a highly reliable imaging device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すもので、(a)は主走
査方向の断面図、(b)は副走査方向の断面図、第2図
は上記実施例で用いた多層薄膜フィルタ及び光源の分光
特性を示すグラフ、 第311.L〜e  は本発明に使用可能な多層薄膜フ
ィルタと光源の分光特性を示すグラフ、第4図は本発明
の他の実施例を示す主走査方向の断面図、 第5図は従来の密着イメージセンサの概略斜視図、 第6図は従来の固体撮像装置の一例を示すもので、(a
)は主走査方向の断面図、(1))は副走査方向の断面
図、 第7図は第6図に示す装置の問題点を解決しうるものと
して考えられる固体撮像装置の主走査方向の断面図であ
る。 】・・・原稿 5・・・固体撮像装置 6・・・透明基
板7・・・不透光層 8・・・光電変換素子9・・・透
光スペーサ 14・・・多層薄膜フィルタ15・・・光
源 代理人の氏名 弁理士 中尾敏男 ほか1名て、′C1
[2 f 康塙 5 固籐峰肩基1 (b)8・、九電沃捩豪5 言 3 図 :、’:s図 ’Pc)(J      500      600 
    700第4図 第5図 A 第 6 図 (a) Cb)
FIG. 1 shows an embodiment of the present invention, in which (a) is a cross-sectional view in the main scanning direction, (b) is a cross-sectional view in the sub-scanning direction, and FIG. 2 is a multilayer thin film filter used in the above embodiment. and a graph showing the spectral characteristics of the light source, No. 311. L to e are graphs showing the spectral characteristics of the multilayer thin film filter and light source that can be used in the present invention, Figure 4 is a cross-sectional view in the main scanning direction showing another embodiment of the present invention, and Figure 5 is a conventional close-up image. A schematic perspective view of the sensor, FIG. 6 shows an example of a conventional solid-state imaging device, and (a
) is a cross-sectional view in the main scanning direction, (1)) is a cross-sectional view in the sub-scanning direction, and Figure 7 is a cross-sectional view in the main scanning direction of a solid-state imaging device that is considered to be able to solve the problems of the device shown in Figure 6. FIG. ]...Original 5...Solid-state imaging device 6...Transparent substrate 7...Non-transparent layer 8...Photoelectric conversion element 9...Transparent spacer 14...Multilayer thin film filter 15...・Name of Hikaru Gen's agent Patent attorney Toshio Nakao and one other person, 'C1
[2 f Kangana 5 Gotomine shoulder base 1 (b) 8・、Kyudenwoshugo 5 Word 3 Figure:,':sFigure'Pc) (J 500 600
700 Figure 4 Figure 5 A Figure 6 (a) Cb)

Claims (1)

【特許請求の範囲】[Claims]  原稿面を照明する所定の分光分布特性を持った光源と
、前記原稿面に近接して主走査方向に対向配置される光
電変換素子列と、この光電変換素子列と原稿面との間に
介在し、所定の分光透過率特性を有する干渉フィルタと
を有し、前記光源の分光分布特性と干渉フィルタの分光
透過率特性とは、前記干渉フィルタが、原稿面からの反
射光のうち、主として入射角の小さいものを透過させる
ように選定されていることを特徴とする固体撮像装置。
A light source having a predetermined spectral distribution characteristic that illuminates the document surface, a photoelectric conversion element array disposed close to the document surface and facing each other in the main scanning direction, and intervening between the photoelectric conversion element array and the document surface. and an interference filter having predetermined spectral transmittance characteristics, and the spectral distribution characteristics of the light source and the spectral transmittance characteristics of the interference filter are such that the interference filter mainly absorbs the incident light from the reflected light from the document surface. A solid-state imaging device characterized in that it is selected to transmit objects with small corners.
JP60283628A 1985-12-17 1985-12-17 Solid-state image pickup device Pending JPS62142460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283628A JPS62142460A (en) 1985-12-17 1985-12-17 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283628A JPS62142460A (en) 1985-12-17 1985-12-17 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS62142460A true JPS62142460A (en) 1987-06-25

Family

ID=17667974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283628A Pending JPS62142460A (en) 1985-12-17 1985-12-17 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS62142460A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245354A (en) * 1984-05-21 1985-12-05 Nippon Kogaku Kk <Nikon> Contact type image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245354A (en) * 1984-05-21 1985-12-05 Nippon Kogaku Kk <Nikon> Contact type image sensor

Similar Documents

Publication Publication Date Title
US8228566B2 (en) Image reading apparatus
TWI388885B (en) Photographic filters
JP2815130B2 (en) Lens array and contact image sensor using the same
JP5435996B2 (en) Proximity imaging device and imaging filter
US20130182155A1 (en) Solid state imaging device
US20130181113A1 (en) Solid-state imaging equipment
WO1999040729A1 (en) Multilinear array sensor with an infrared line
JP3044734B2 (en) Solid-state imaging device
JPH03249870A (en) Pad for optical reader
JP3622391B2 (en) Color separation optical device
JP2006344709A (en) Imaging device
JPS62142460A (en) Solid-state image pickup device
JPS5846181B2 (en) Close-contact image sensor
JPS6224984B2 (en)
JPS5943869B2 (en) Mechanism for document illumination and imaging for sensor device
JPS62142461A (en) Solid-state image pickup device
JPS61154283A (en) Solid image pick-up element
JPS6266755A (en) Image reader
JPS62256562A (en) Solid-state image pickup device
JPH02105773A (en) Picture reader
JPS6362941B2 (en)
JPS60245354A (en) Contact type image sensor
JPS6133298B2 (en)
JPH02107054A (en) Picture reader
JPS60139063A (en) Photoelectric conversion device