JPS62142380A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPS62142380A
JPS62142380A JP60284772A JP28477285A JPS62142380A JP S62142380 A JPS62142380 A JP S62142380A JP 60284772 A JP60284772 A JP 60284772A JP 28477285 A JP28477285 A JP 28477285A JP S62142380 A JPS62142380 A JP S62142380A
Authority
JP
Japan
Prior art keywords
sputtering method
magnetic field
thin film
magnetic
desirable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60284772A
Other languages
Japanese (ja)
Inventor
Ryoji Namikata
量二 南方
Mitsuhiko Yoshikawa
吉川 光彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60284772A priority Critical patent/JPS62142380A/en
Publication of JPS62142380A publication Critical patent/JPS62142380A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate formation and to simplify the structure of a thin film magnetic head and the like, by reducing the effect of the roughness of the surface of a basis on the characteristics of a thin film MR element. CONSTITUTION:Especially, a sputtering method, by which a target voltage and a target current are independently controlled, is used. In such a sputtering method, there are more controllable parameters in comparison with an ordinary RF two-pole sputtering method, and the optimum conditions are obtained. Since a substrate does not become an electrode, the element is not exposed to plasma. The element is less restricted by the configuration of a substrate holder. It is especially desirable to use a DC three-pole sputtering method. It is desirable to apply a magnetic field in the desired direction during the sputtering method is carried out. It is desirable that the direction of the magnetic field is perpendicular to the direction of the detected magnetic field of the MR element to be formed. When the magnetic field is applied, uniaxial anisotropy can be induced in the desired direction.

Description

【発明の詳細な説明】 (fり用分野) 本発明は金属強磁性薄1仄の磁気抵抗効果を用いて磁気
記録媒体に記録された信号の検出を行う再生用薄膜磁気
ヘッドまたは回転角による磁界強度の変化を検出する磁
気ロータリーエンコーダー等に使用される薄膜磁気抵抗
効果素子(以下薄膜MR素子と称す)に関する。
Detailed Description of the Invention (Field of application) The present invention relates to a thin film magnetic head for reproduction that detects signals recorded on a magnetic recording medium using the magnetoresistive effect of a metal ferromagnetic thin film or The present invention relates to a thin film magnetoresistive element (hereinafter referred to as a thin film MR element) used in magnetic rotary encoders and the like that detect changes in magnetic field strength.

(従来の技術) 薄膜MR素子は外部からの信号磁界により薄膜MR素子
内部の磁化方向が変化し、この磁化方向の変化に応じた
薄膜MR素子の電気抵抗の変化を外部出力として取り出
すものである。この薄膜MR素子を再生用磁気ヘッドに
用いろと、半導体の微細加工技術により高集積化及び多
素子化が容易に実現でき、しかも磁気記録媒体の移動速
度に依存しない磁束応答型のヘッドが得られろ。このヘ
ッドは多チャンネルの固定ヘッド型PCM録音機の再生
用磁気ヘッドとして有望視されている。また、磁気ロー
タリーエンコーダーにおいて回転角を検出する素子とし
てすでに実用化されている。
(Prior art) In a thin film MR element, the direction of magnetization inside the thin film MR element changes due to a signal magnetic field from the outside, and the change in electrical resistance of the thin film MR element corresponding to the change in the magnetization direction is extracted as an external output. . If this thin-film MR element is used in a reproducing magnetic head, it will be possible to easily achieve high integration and multi-element technology using semiconductor microfabrication technology, and to create a magnetic flux-responsive head that does not depend on the moving speed of the magnetic recording medium. Let it go. This head is seen as a promising magnetic head for reproduction in multi-channel fixed head type PCM recorders. Moreover, it has already been put into practical use as an element for detecting rotation angle in a magnetic rotary encoder.

この薄膜MR素子はN i F e合金等の金属強磁性
−5V膜と、信号検出用の電流端子とによって摺電され
、前記金属強磁性薄膜を所定の形状にエツチング等で加
工し、その両端部にへ〇等の導体層をば膜、エツチング
して前32電流端子が形成される。
This thin film MR element is electrically powered by a metal ferromagnetic -5V film made of NiFe alloy or the like and a current terminal for signal detection.The metal ferromagnetic thin film is processed into a predetermined shape by etching, etc. The front 32 current terminals are formed by coating and etching a conductive layer such as 〇 on the portion.

ところで、薄膜Mr(素子に使用されろ金属強磁性薄膜
は従来上として磁界中蒸着法で成膜されているが、膜厚
が300〜500人と非常に薄いため、下地層の表面粗
度に大きく影響される。従って、NiFe膜の本来の磁
気特性を得るには表面粗度を5Å以下にする必要がある
。しかしながら、基板表面を5Å以下の粗さに研磨する
ことは非常に困難である。また薄膜磁気ヘッドのように
種々の層を積層する場合には、さらに表面粗度を5Å以
下に維持することは困難となる。このため、従来、Ni
Fe膜の下地としては塗布型S r 02膜等によって
表面粗度を5Å以下にしたものが使用されていた。しか
しながらこのような塗布による手法は工程を複雑化する
ものであり、加工時にクラック等の種々の問題を起こす
By the way, the thin film Mr (metal ferromagnetic thin film used in devices has conventionally been formed by evaporation in a magnetic field), but since the film thickness is very thin (300 to 500 mm), the surface roughness of the underlying layer may be affected. Therefore, in order to obtain the original magnetic properties of the NiFe film, it is necessary to reduce the surface roughness to 5 Å or less. However, it is extremely difficult to polish the substrate surface to a roughness of 5 Å or less. Furthermore, when various layers are laminated as in a thin-film magnetic head, it becomes difficult to maintain the surface roughness below 5 Å.For this reason, conventionally, Ni
As a base for the Fe film, a coated S r 02 film or the like with a surface roughness of 5 Å or less was used. However, such a coating method complicates the process and causes various problems such as cracks during processing.

(目的) 本発明は上記問題点に鑑みてなされたものであり、薄膜
磁気ヘッドあるいは磁気ロータリーエンコーダー等に使
用される薄膜MR素子の磁気特性が下地の表面粗度によ
って受ける影響を少くし、形成が容易な薄膜MR素子を
得ることを目的とす(発明の構成) 即ち、本発明は、不活性ガス雰囲気下でターゲット電圧
とターゲット電流を独立に制御し得るスパッタリング法
により形成された磁気抵抗効果素子を提供する。
(Purpose) The present invention has been made in view of the above problems, and aims to reduce the influence of the surface roughness of the underlying layer on the magnetic properties of thin film MR elements used in thin film magnetic heads, magnetic rotary encoders, etc. An object of the present invention is to obtain a thin film MR element that is easy to control (structure of the invention). Provide an element.

スパッタリング法は一般に希薄不活性ガス雰囲気下で、
グロー放電させ、これにより発生した陽イオンをターゲ
ットに加速衝突させて、ターゲット物質の原子または分
子をはじき出し、これを基板上に付着させる技術である
。この場合、不活性ガスとしてはネオン、アルゴン、ク
リプトン、キセノン等が挙げられるが、アルゴンが好ま
しい。
The sputtering method is generally performed under a dilute inert gas atmosphere.
This is a technique in which the positive ions generated by the glow discharge are accelerated and collided with the target, thereby repelling atoms or molecules of the target material and depositing them on the substrate. In this case, examples of the inert gas include neon, argon, krypton, xenon, etc., but argon is preferable.

グロー放電は通常10−2〜l O−’Torrの希薄
雰囲気中で1000〜2000Vの電圧を印加して行な
われる。
Glow discharge is normally performed in a dilute atmosphere of 10-2 to 1 O-' Torr by applying a voltage of 1000 to 2000V.

本発明では、特にターゲット電圧とターゲット電流を独
立に制御し得るスパッタリング法が用いられる。このよ
うなスパッタリング法は通常のRF2極スパッタ法に比
して制御し得るパラメータが多く、より最適な条件が得
られるとともに、基板が電極とならないためプラズマに
さらされることがなく、かつ、また基板ホルダーの形状
に制限を受けることが少なくなるという利点を有する。
In the present invention, in particular, a sputtering method in which target voltage and target current can be independently controlled is used. This type of sputtering method has more controllable parameters than the normal RF bipolar sputtering method, and more optimal conditions can be obtained, and since the substrate does not serve as an electrode, it is not exposed to plasma. This has the advantage that there are fewer restrictions on the shape of the holder.

本発明では特に直流3極スパツタ法を用いるのが好まし
い。
In the present invention, it is particularly preferable to use the DC three-pole sputtering method.

上記スフ5ツタリング法実施中に、磁界を所望の方向に
印加するのが好ましい。磁界の方向は好ましくは形成さ
れるMR素子の検出磁界方向と直角方向である。磁界を
印加すると所望の方向に一軸異方性を誘起することがで
きる。
It is preferable to apply a magnetic field in a desired direction during implementation of the above-mentioned Sufu-5 Tuttering method. The direction of the magnetic field is preferably perpendicular to the direction of the detected magnetic field of the formed MR element. Uniaxial anisotropy can be induced in a desired direction by applying a magnetic field.

形成される磁気抵抗効果素子はNiFe合金、NiCo
合金、NiFeCo合金等であるが、好ましくはNiF
e合金である。
The formed magnetoresistive element is made of NiFe alloy, NiCo
alloy, NiFeCo alloy, etc., but preferably NiF
It is an e-alloy.

本発明の磁気抵抗効果素子をスパッタする基板は種々の
目的に応じていがなるものを用いて乙よい。例えば、ガ
ラス基板、フェライト基板あるいは種々の基板上にSi
Ox、siN、AQ、、o2等ノ絶縁層を形成したもの
等が一般に用いられる。
The substrate on which the magnetoresistive element of the present invention is sputtered may be of various types depending on various purposes. For example, Si on a glass substrate, ferrite substrate, or various substrates.
A material having an insulating layer formed of Ox, SiN, AQ, O2, etc. is generally used.

本発明を実施例により更に詳細に説明する。The present invention will be explained in more detail with reference to Examples.

(実施例) 実施例I ターゲット電圧とターゲット電流を各々独立に制御する
ことのできるスパッタリング法として直流3極スパツタ
法を用い、かつ不活性ガスとしてアルゴンガスを流して
、ガス圧を4〜5 mT orr。
(Example) Example I A DC three-electrode sputtering method was used as a sputtering method in which the target voltage and target current could be controlled independently, and argon gas was flowed as an inert gas to maintain a gas pressure of 4 to 5 mT. orr.

ターゲット電圧を300V、ターゲット電流を05人に
設定してガラス基板上にNiFe膜を形成した。表−1
はターゲット電圧とターゲット電流を独立に制御するこ
とのできるスパッタリング法を用いて得られるN i 
F e膜の磁気特性の表面用度による変化を示す。
A NiFe film was formed on a glass substrate by setting the target voltage to 300V and the target current to 0.5V. Table-1
is obtained using a sputtering method in which target voltage and target current can be controlled independently.
Figure 2 shows changes in the magnetic properties of the Fe film depending on the surface usage.

表−■ 表−■から明らかなようにN1ce膜を磁場中蒸着法で
形成する場合に比べて、下地の表面t■度が100〜1
50人と悪化してムN1ce膜の磁気特性への影響は非
常に小さいことがわかる。また、RF2極スパッタ法等
の池のスパック法でNil”’e膜を形成した場合、磁
場中蒸着法に比して固有抵抗がかなり増加するため磁気
抵抗効果の抵抗変化率が低下するという欠点があったが
、本発明によれば磁場中蒸着法とほぼ同等の固有抵抗が
得られるため、抵抗変化率が低下することはない。さら
にまた磁場中蒸着法と同様NiFe膜形成時に基板に磁
界を印加することによって所望の方向に一袖異カ性を誘
起ずろことができろ。
Table - ■ As is clear from Table - ■, the surface temperature of the base is 100 to 1
It can be seen that the influence on the magnetic properties of the N1ce film is very small. In addition, when a Nil'''e film is formed by Ike's spattering method such as RF bipolar sputtering method, the resistivity increases considerably compared to the magnetic field deposition method, so the rate of change in resistance due to the magnetoresistive effect decreases. However, according to the present invention, it is possible to obtain a specific resistance almost equivalent to that of the magnetic field evaporation method, so the rate of change in resistance does not decrease.Furthermore, like the magnetic field evaporation method, a magnetic field is applied to the substrate when forming the NiFe film. It is possible to induce anisotropy in the desired direction by applying .

比較例1 従来の磁界中蒸着法により種々の表面粗度(人)の基板
上に350人のNiFe膜を形成した。蒸着条件は以下
の通りであった; 堰板温度は250°C1組成は82.5Ni−17,5
Fe(wt%)、蒸着時の真空度は1.5×10−’T
orr以下、印加磁界の強さは800eて抵抗加熱法で
形成した。
Comparative Example 1 350 NiFe films were formed on substrates with various surface roughnesses by conventional magnetic field deposition. The deposition conditions were as follows: Weir plate temperature was 250°C, composition was 82.5Ni-17,5
Fe (wt%), vacuum degree during evaporation was 1.5×10-'T
The strength of the applied magnetic field was 800 e and the resistance heating method was used.

得られたNiFe膜の表面粗度による磁気特性の変化を
以下の表−2に示す。
Table 2 below shows changes in magnetic properties depending on the surface roughness of the obtained NiFe film.

表−2から明らかなように、表面粗度が5人を越えると
磁気特性が大きく劣化する。
As is clear from Table 2, when the surface roughness exceeds 5, the magnetic properties deteriorate significantly.

(発明の効果) 本発明によれば、薄膜MR素子の特性が下地の表面粗度
に受ける影響を小さくすることかできろため、形成が容
易となり薄膜磁気ヘッド等の構造が簡単化される。
(Effects of the Invention) According to the present invention, the influence of the characteristics of the thin film MR element on the surface roughness of the underlying layer can be reduced, which facilitates formation and simplifies the structure of thin film magnetic heads and the like.

Claims (1)

【特許請求の範囲】 1、不活性ガス雰囲気下でターゲット電圧とターゲット
電流を独立に制御し得るスパッタリング法により形成さ
れた磁気抵抗効果素子。 2、不活性ガスがアルゴンガスである第1項記載の磁気
抵抗効果素子。 3、磁気抵抗効果素子がニッケル−鉄合金膜である第1
項記載の磁気抵抗効果素子。 4、成膜中に磁界を印加する第1項記載の磁気抵抗効果
素子。
[Claims] 1. A magnetoresistive element formed by a sputtering method in which target voltage and target current can be independently controlled in an inert gas atmosphere. 2. The magnetoresistive element according to item 1, wherein the inert gas is argon gas. 3. The first device in which the magnetoresistive element is a nickel-iron alloy film
The magnetoresistance effect element described in . 4. The magnetoresistive element according to item 1, wherein a magnetic field is applied during film formation.
JP60284772A 1985-12-17 1985-12-17 Magnetoresistance effect element Pending JPS62142380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284772A JPS62142380A (en) 1985-12-17 1985-12-17 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284772A JPS62142380A (en) 1985-12-17 1985-12-17 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPS62142380A true JPS62142380A (en) 1987-06-25

Family

ID=17682813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284772A Pending JPS62142380A (en) 1985-12-17 1985-12-17 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS62142380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485129B2 (en) 1990-11-01 2004-08-25 Kabushiki Kaisha Toshiba Method of making a GMR device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0485129B2 (en) 1990-11-01 2004-08-25 Kabushiki Kaisha Toshiba Method of making a GMR device

Similar Documents

Publication Publication Date Title
US6724581B2 (en) High moment iron nitride based magnetic head layers resistant to hard axis annealing
KR100931818B1 (en) A novel buffer(seed) layer for making a high-performance magnetic tunneling junction MRAM
US7239489B2 (en) Tunneling magnetoresistive (TMR) sensor having a magnesium oxide barrier layer formed by a multi-layer process
EP1640472B1 (en) Method for reactive sputter deposition of a magnesium oxide film on an iron-containing film
EP1630247B1 (en) Method for reactive sputter deposition of an ultra-thin metal oxide film
JPH10172118A (en) Thin-film magnetic structure and its formation
JPH0223924B2 (en)
US6359760B2 (en) Thin film conductor layer, magnetoresistive element using the same and method of producing thin film conductor layer
KR100376744B1 (en) METHOD OF MAKING LOW STRESS AND LOW RESISTANCE RHODIUM(Rh) LEADS
US6398924B1 (en) Spin valve sensor with improved pinning field between nickel oxide (NiO) pinning layer and pinned layer
JPS62142380A (en) Magnetoresistance effect element
JP3946404B2 (en) Magnetoresistive head and magnetic recording / reproducing apparatus using the same
JP3309922B2 (en) Magnetic thin film for magnetoresistive element and method for manufacturing the same
JP2000276716A (en) Magnetoresistance effect type head, its manufacture and magnetic storage device
JPH1036963A (en) Sputtering device and formation of soft magnetic coating using the same
JPH03283111A (en) Production of magnetic recording medium
US6787004B2 (en) Method for manufacturing a spin valve film and a method of manufacturing a magnetoresistance-effect type magnetic head
JP2001077443A (en) Laminate film film-forming device, manufacture of magnetoresistance sensor using the same, and the magnetoresistance sensor
JP2007115745A (en) Tunnel magnetoresistance effect element and method of manufacturing same
JP2000353307A (en) Magnetic head
JPH0798835A (en) Magnetic recording medium and its production
JP2000231706A (en) Magnetic recording and reproducing head and magnetic storage device using the same as well as its production
US6301086B1 (en) Thin-film magnetic head supporting structure and method for manufacturing the same
JP2003208708A (en) Magnetic head and magnetic storage device using the same
JP2000077744A (en) Manufacture of ferromagnetic tunnel junction magnetoresistance effect element