JPS6214086B2 - - Google Patents

Info

Publication number
JPS6214086B2
JPS6214086B2 JP16431780A JP16431780A JPS6214086B2 JP S6214086 B2 JPS6214086 B2 JP S6214086B2 JP 16431780 A JP16431780 A JP 16431780A JP 16431780 A JP16431780 A JP 16431780A JP S6214086 B2 JPS6214086 B2 JP S6214086B2
Authority
JP
Japan
Prior art keywords
tap
load
contact
current
ltc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16431780A
Other languages
Japanese (ja)
Other versions
JPS5788710A (en
Inventor
Akira Tonegawa
Yasuo Maruyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16431780A priority Critical patent/JPS5788710A/en
Publication of JPS5788710A publication Critical patent/JPS5788710A/en
Publication of JPS6214086B2 publication Critical patent/JPS6214086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • H01F2027/404Protective devices specially adapted for fluid filled transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Description

【発明の詳細な説明】 本発明は真空バルブ(以下VCBとする)を負
荷時タツプ切換器(以下LTCとする)の電流遮
断要素として使用した、いわゆる真空バルブ形負
荷時タツプ切換装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a so-called vacuum valve type on-load tap changer that uses a vacuum valve (hereinafter referred to as VCB) as a current interrupting element of an on-load tap changer (hereinafter referred to as LTC). be.

電流遮断要素にVCBを使用したLTCは、遮断
能力が従来の油中遮断方式に比べて優れているこ
と、長寿命で絶縁油の汚損がなく保守の面でメリ
ツトがあること、大容量のVCBが容易に入手で
きるようになつてきたこと等で近時ますます使用
されるようになつてきた。
LTC, which uses VCB as the current interrupting element, has superior interrupting ability compared to the conventional oil-submerged interrupting method, has a long life, does not contaminate the insulating oil, and has advantages in terms of maintenance, and has a large capacity VCB. Recently, it has become increasingly used as it has become easier to obtain.

LTCの場合、万が一遮断不能や絶縁破壊など
の不具合が発生してもこれが大事故に結びつかな
いようにできるだけ早くこれを検出し、その信号
で遮断器をトリツプさせ変圧器本体も含めて大き
な損傷を防止するための保護継電器が必要であ
る。
In the case of LTC, even if a malfunction such as inability to shut off or insulation breakdown occurs, it is detected as soon as possible to prevent it from leading to a major accident, and the signal is used to trip the circuit breaker, preventing major damage to the transformer itself. A protective relay is required to prevent this.

従来の油中遮断方式のLTCにおいては、遮断
不能や絶縁破壊により絶縁油が分解して発生する
ガスを圧力上昇や油流という形でとらえて検出す
る保護継電器が取付けられているのが一般であ
る。この場合、正常時の切換においても油中アー
ク接点から発生するアークにより多少のガスを発
生する訳であるから、その検出感度に問題があ
る。
Conventional oil-submerged isolation type LTCs are generally equipped with a protective relay that captures and detects gas generated by decomposition of insulating oil due to inability to shut off or dielectric breakdown in the form of pressure rise or oil flow. be. In this case, even during normal switching, some gas is generated due to the arc generated from the arc contact in oil, so there is a problem in the detection sensitivity.

ところでVCB形LTCにおいては、新たにVCB
の真空度の低下による遮断不能という問問に対処
しなければならないが、接点は真空容器内に収納
されているため、遮断不能が発生しても真空容器
外に圧力上昇、油流等の異常を示さないケースが
多く、従つて続いて起こるタツプ間短絡などの大
事故に発展する懸念がある。
By the way, in VCB type LTC, VCB
The problem of failure to shut off due to a drop in the degree of vacuum must be addressed, but since the contacts are housed inside a vacuum container, even if failure to shut off occurs, there will be no abnormality such as pressure rise or oil flow outside the vacuum container. In many cases, this does not occur, and there is a concern that this could lead to major accidents such as subsequent short circuits between taps.

本発明は上記事情に鑑みてなされたものであつ
て、真空バルブとタツプ巻線間に正常時は電流を
遮断しない無負荷切換接点を設け、この接点で
VCBが遮断不能を起こした場合のみアーク遮断
を起こすように回路構成し、この時に発生する分
解ガスを検出することによりタツプ間短絡等の大
事故を未然に防ぐことのできる負荷時タツプ切換
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and includes a no-load switching contact that does not interrupt current during normal operation between the vacuum valve and the tap winding.
The circuit is configured to interrupt the arc only when the VCB is unable to interrupt, and by detecting the decomposed gas generated at this time, a tap switching device under load can prevent major accidents such as short circuits between taps. The purpose is to provide.

以下に本発明によるVCB形LTCをリアクトル
式および抵抗式の実施例について説明する。第1
図はリアクトル式のVCB形LTCの回路例であ
り、変圧器の巻線Wの各タツプT1〜T4を切換接
続するタツプ選択器の可動接点1,2、リアクト
ル3,4および通電用主接点5,6の順に直列接
続された2回路が並列になつており、その末端8
で共通接続されている。また両回路のリアクトル
3,4と主接点5,6の間がVCB7を有する回
路で接続されている。第1図はタツプT2を選択
した状態を示している。
Below, embodiments of the VCB type LTC according to the present invention in a reactor type and a resistance type will be described. 1st
The figure shows a circuit example of a reactor-type VCB type LTC, which includes movable contacts 1 and 2 of the tap selector that switch and connect each tap T 1 to T 4 of the winding W of the transformer, reactors 3 and 4, and the energizing main. Two circuits connected in series in the order of contacts 5 and 6 are connected in parallel, and the terminal 8
are commonly connected. Further, the reactors 3 and 4 of both circuits and the main contacts 5 and 6 are connected by a circuit having a VCB 7. FIG. 1 shows the state in which tap T2 is selected.

この回路のLTCの動作シーケンスを第2図に
示すが、これはタツプT2からT3へ切換える場合
である。通常時電流は1→5→8と2→6→8の
2回路に分流されている。切換のはじめは主接点
5が開くことにより電流の回路は1→7→6→8
と2→6→8となるが、この時通電接点5に流れ
ていた電流は並列回路であるVCB7側に流れる
ために通電接点5では電流を遮断しない。次に
VCB7が電流を遮断すると、電流は2→6→8
の1回路だけを流れるようになり、可動接点1は
無負荷の状態となる。この状態で可動接点1はタ
ツプT2からT3へ切換えられる。
The operation sequence of the LTC in this circuit is shown in FIG. 2, which is the case when switching from tap T2 to T3 . Normally, the current is divided into two circuits: 1→5→8 and 2→6→8. At the beginning of switching, the main contact 5 opens and the current circuit changes from 1 → 7 → 6 → 8.
2→6→8, but at this time, the current flowing through the current-carrying contact 5 flows to the parallel circuit VCB7 side, so the current-carrying contact 5 does not interrupt the current. next
When VCB7 interrupts the current, the current changes from 2→6→8
The current flows through only one circuit, and the movable contact 1 is in a no-load state. In this state, the movable contact 1 is switched from tap T2 to T3 .

次に可動接点1,2がタツプT2とT3を橋絡し
た状態でVCB7が投入され、続いて主接点5が
投入される。この時T2とT3間には2→7→1、
続いて2→6→5→1の回路に限流リアクトル
3,4により制限された循環電流が流れる。ここ
までで半分の切換サイクルが完了したことにな
る。次にはもう一方の主接点6がアークを出すこ
となしに開極して電流が1→5→8と2→7→5
→8の回路で流れるようになる。この先は前半の
左側回路のシーケンスと同じ順序で動作し、タツ
プ選択器の可動接点1,2は共にタツプT3に投
入され、電流は左右の2回路に分流され切換を完
了する。
Next, VCB 7 is turned on with movable contacts 1 and 2 bridging taps T 2 and T 3 , and then main contact 5 is turned on. At this time, between T 2 and T 3 , 2 → 7 → 1,
Subsequently, a circulating current limited by the current limiting reactors 3 and 4 flows through the circuit 2→6→5→1. Up to this point, half the switching cycle has been completed. Next, the other main contact 6 opens without producing an arc, and the currents are 1→5→8 and 2→7→5.
→It starts to flow in circuit 8. From this point on, the circuit operates in the same sequence as the left circuit in the first half, and movable contacts 1 and 2 of the tap selector are both applied to tap T3 , and the current is divided into the left and right circuits to complete the switching.

このような回路において、VCB7が真空破壊
を起こしその接点間でアークが続くと、次に無負
荷状態で切換えを行なうタツプ選択器の接点1が
電流を遮断することになり、油中アークを出し分
解ガスを発生する。本発明による負荷時タツプ切
換装置はこの分解ガスを検出するようにしたもの
である。すなわち、第5図はリアクトル式LTC
を変圧器に取付けた場合の構成を示したものであ
る。変圧器タンク20の側壁にLTCタンク21
を設けて、その内側の変圧器タンク20との隔壁
部にLTCを取付けてある。このタイプのLTCは
タツプ選択器22と切換開閉器23が同じタンク
24内に収納されている。このLTCの変圧器タ
ンク側には端子が出ており、これら端子は変圧器
タンク20内の変圧器巻線25と限流リアクトル
26に接続されている。一方、LTCタンク21
にはコンサベータ27が設けられてLTCタンク
21の内部は全て絶縁油で満たされるようになつ
ており、またタンク21の上部にはガス検出継電
器28が設置された構造になつている。このよう
な構造であるので、VCBの真空不良はその際に
タツプ選択器24の接点から発生するガスをガス
検出継電器20により検出することにより感知で
きる。
In such a circuit, if VCB7 causes a vacuum breakdown and an arc continues between its contacts, contact 1 of the tap selector, which switches under no-load conditions, will cut off the current, causing an arc in the oil. Generates decomposition gas. The on-load tap switching device according to the present invention is designed to detect this decomposed gas. In other words, Figure 5 shows the reactor type LTC.
This figure shows the configuration when installed on a transformer. LTC tank 21 on the side wall of transformer tank 20
A LTC is installed inside the transformer tank 20 at a partition wall between the transformer tank 20 and the transformer tank 20. In this type of LTC, a tap selector 22 and a switching switch 23 are housed in the same tank 24. Terminals are provided on the transformer tank side of this LTC, and these terminals are connected to a transformer winding 25 and a current limiting reactor 26 in the transformer tank 20. On the other hand, LTC tank 21
A conservator 27 is provided to fill the entire inside of the LTC tank 21 with insulating oil, and a gas detection relay 28 is installed at the top of the tank 21. With this structure, a vacuum failure in the VCB can be detected by detecting gas generated from the contacts of the tap selector 24 using the gas detection relay 20.

次に抵抗式LTCの場合について説明する。抵
抗式LTCの場合は後述するように一般にタツプ
選択器22と切換開閉器23が別々の容器内に納
められているので、リアクトル式LTCのように
タツプ選択器22の接点でアークを出させて検出
するのは好ましくない。これはタツプ選択器22
が変圧器本体と同一タンク20に収納されている
ため、接点の補修が容易でないこととガスを検出
した場合、変圧器本体で異常があるのかLTCで
異常があるのか判別できないことのためである。
Next, the case of resistive LTC will be explained. In the case of a resistance type LTC, as will be described later, the tap selector 22 and the switching switch 23 are generally housed in separate containers, so an arc is generated at the contact of the tap selector 22 like in a reactor type LTC. It is not desirable to detect it. This is the tap selector 22
This is because the contacts are stored in the same tank 20 as the transformer body, so it is not easy to repair the contacts, and when gas is detected, it is not possible to determine whether there is an abnormality in the transformer body or in the LTC. .

第3図は抵抗式LTCの1回路例を示す。変圧
器巻線Wの隣接するタツプT1,T2にタツプ選択
器の2個の可動接線9,10が接続されており、
各々の通電用主接点11,12、VCB13,1
6が直列に接続されたうえ未端19で共通接続さ
れている。また各2回路の通電用主接点11,1
2とVCB13,16の中間から共通接続点19
の間に前記回路と並列に限流抵抗17,18と
VCB14,15の直列回路が挿入されている。
FIG. 3 shows an example of a resistance type LTC circuit. Two movable tangents 9 and 10 of the tap selector are connected to adjacent taps T 1 and T 2 of the transformer winding W,
Each energizing main contact 11, 12, VCB 13, 1
6 are connected in series and are commonly connected at an unterminated end 19. In addition, the main contacts 11, 1 for energization of each two circuits
2 and the common connection point 19 from the middle of VCB13, 16
Current limiting resistors 17 and 18 are connected in parallel with the circuit between
A series circuit of VCB14 and 15 is inserted.

この回路における動作シーケンスを第4図に示
すが、これはタツプT1を選択した状態を表わし
ている。この時の電流はタツプT1から9→11→
13→19へと流れている。このタツプT1からタツ
プT2に切換える場合について説明すると、まず
抵抗17を含む回路のVCB14が投入され、続
いてVCB13が開極される。次に無負荷のタツ
プT2側の通電接点12が投入され、これに続い
て同じ側のVCB15が投入される。この結果、
負荷電流はT1→9→11→17→14→19とT2→10→
12→18→15→19の2回路に流れ、またT1―T2
(9→11→17→14→15→18→12→10)に循環電流
が流れるようになる。次にVCB14が開極して
同VCB14を含む回路の負荷電流と循環電流を
遮断しタツプT1側を無負荷状態にする。これに
続いて通電接点11が無負荷で開極を行ない、次
にVCB16が投入された後抵抗18を含む回路
のVCB15が開極してタツプ切換を完了する。
T2→T1への切換時はこの正反対に動作する。
The operating sequence in this circuit is shown in FIG. 4, which shows the state in which tap T1 is selected. The current at this time is from tap T 1 to 9→11→
It flows from 13 to 19. To explain the case of switching from tap T1 to tap T2 , first, VCB 14 of the circuit including resistor 17 is turned on, and then VCB 13 is opened. Next, the current-carrying contact 12 on the unloaded tap T2 side is turned on, followed by the VCB 15 on the same side. As a result,
The load currents are T 1 →9→11→17→14→19 and T 2 →10→
A circulating current flows through two circuits, 12→18→15→19, and also between T 1 and T 2 (9→11→17→14→15→18→12→10). Next, the VCB 14 is opened to cut off the load current and circulating current of the circuit including the VCB 14, leaving the tap T1 side in an unloaded state. Subsequently, the energizing contact 11 is opened with no load, and after the VCB 16 is turned on, the VCB 15 of the circuit including the resistor 18 is opened, completing the tap switching.
When switching from T 2 to T 1 , the operation is exactly the opposite.

上述した如く正常時の切換において、通電接点
11,12は無負荷状態で開極するためにアーク
を出してガスを発生するようなことはない。しか
し13,14,15,16いずれかのVCBにお
いて真空破壊を起こしその接点間でアークが続く
と、次に無負荷状態で開極する通電接点11,1
2が電流を遮断することになり、油中アークを出
し分解ガスを発生する。本発明による負荷時タツ
プ切換装置はこの通電接点から発生するガスを検
出するようにしたものである。
As described above, during normal switching, the current-carrying contacts 11 and 12 open under no load, so they do not arc or generate gas. However, if a vacuum breakdown occurs in any of the VCBs 13, 14, 15, and 16 and an arc continues between the contacts, the current-carrying contacts 11 and 1 open under no load.
2 interrupts the current, causing an arc in the oil and generating decomposition gas. The on-load tap switching device according to the present invention is designed to detect gas generated from this current-carrying contact.

第6図は抵抗式LTCを変圧器に取付けた場合
の1構成例を示したものである。低抗式LTCは
通常タツプ選択器22と切換開閉器23を収納し
た油槽30およびLTCを動作するための駆動力
を外部から取入れるLTC頭部29よりなつてい
る。油槽30は外部と油密を保つ構造になつてお
り、まつたくの別容器となつている。このLTC
は変圧器タンク20の上面より吊下げるように落
し込んで設置する。従つてタツプ選択器22は変
圧器本体と同室となり、変圧器巻線25と直接接
続され、また切換開閉器23は前記の如く変圧器
本体とは別室におかれることになる。一方、油槽
30とLTC頭部29は同室になつており、この
室内にコンサベータ27を接続して室内いつぱい
に絶縁油が満たされる構造になつている。また
LTC頭部29の上部にはガス検出継電器28が
設置されている。このような構造であるので、
VCBの真空不良はその際通電接点から発生する
ガスをガス検出継電器28により検出することに
より感知できる。
FIG. 6 shows an example of a configuration in which a resistive LTC is attached to a transformer. A low-drag LTC normally consists of an oil tank 30 that houses a tap selector 22 and a switching switch 23, and an LTC head 29 that takes in the driving force for operating the LTC from the outside. The oil tank 30 has a structure that maintains oil-tightness from the outside, and serves as a separate container for the tank. This LTC
is installed so as to be suspended from the top surface of the transformer tank 20. Therefore, the tap selector 22 is placed in the same room as the transformer main body and is directly connected to the transformer winding 25, and the switching switch 23 is placed in a separate room from the transformer main body as described above. On the other hand, the oil tank 30 and the LTC head 29 are in the same room, and the conservator 27 is connected to this room so that the room is filled with insulating oil. Also
A gas detection relay 28 is installed at the top of the LTC head 29. Because of this structure,
A vacuum failure in the VCB can be detected by detecting the gas generated from the current-carrying contacts using the gas detection relay 28.

以上説明した通り、本発明によれば電流遮断要
素として真空バルブを使用した負荷時タツプ切換
装置において、前記真空バルブとタツプ巻線間に
無負荷切換接点を接続し、かつ前記真空バルブが
遮断不能を起こした場合に前記無負荷切換接点の
アークにより発生する分解ガスを検出するガス検
出継電器を設けるようにしたので、VCBの真空
破壊による不具合を検出し、その検出信号で回路
を遮断して大事故を未然に防止することが可能と
なる。
As explained above, according to the present invention, in a load tap switching device using a vacuum valve as a current interrupting element, a no-load switching contact is connected between the vacuum valve and the tap winding, and the vacuum valve is unable to shut off. We installed a gas detection relay that detects the decomposed gas generated by the arc of the no-load switching contact when a fault occurs, so it detects a failure due to vacuum breakdown of the VCB, and uses the detection signal to shut off the circuit to prevent a major problem. This makes it possible to prevent accidents.

尚、本発明は発生ガスを検出するため、急激な
分解ガスを伴なう真空破壊からくる遮断不能を検
出するだけでなく、従来の油中遮断接点の場合に
は不可能であつた徐々にガスを発生する通電接触
部の不良なども検出できる効果も有する。
In addition, since the present invention detects generated gas, it not only detects failure to shut off due to vacuum breakdown accompanied by sudden decomposition gas, but also detects gradual shutoff, which was impossible with conventional oil-submerged shutoff contacts. It also has the effect of detecting defects in current-carrying contacts that generate gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3図は本発明のリアクトル式お
よび抵抗式LTCを示す回路図、第2図と第4図
は各々第1図および第3図の回路例における動作
シーケンス図、第5図、第6図は本発明の実施例
をリアクトル式および抵抗式について示す構成図
である。 1……タツプ選択器可動接点、2……タツプ選
択器可動接点、3……限流リアクトル、4……限
流リアクトル、5……主接点、6……主接点、7
……VCB、8……共通接続点、9……タツプ選
択器可動接点、10……タツプ選択器可動接点、
11……通電接点、12……通電接点、13……
VCB、14……VCB、15……VCB、16……
VCB、17……限流抵抗、18……限流抵抗、
19……共通接続点、28……ガス検出継電器、
27……コンサベーター、22……タツプ選択
器、20……変圧器タンク、23……切換開閉
器、26……限流リアクトル、30……油槽、2
9……LTC頭部、25……変圧器巻線、21…
…LTCタンク。
1 and 3 are circuit diagrams showing the reactor type and resistance type LTC of the present invention, FIGS. 2 and 4 are operation sequence diagrams in the circuit examples of FIGS. 1 and 3, respectively, and FIG. FIG. 6 is a configuration diagram showing an embodiment of the present invention for a reactor type and a resistance type. 1... Tap selector movable contact, 2... Tap selector movable contact, 3... Current limiting reactor, 4... Current limiting reactor, 5... Main contact, 6... Main contact, 7
...VCB, 8...Common connection point, 9...Tap selector movable contact, 10...Tap selector movable contact,
11... Current-carrying contact, 12... Current-carrying contact, 13...
VCB, 14...VCB, 15...VCB, 16...
VCB, 17...Current limiting resistor, 18...Current limiting resistor,
19... Common connection point, 28... Gas detection relay,
27...Conservator, 22...Tap selector, 20...Transformer tank, 23...Switching switch, 26...Current limiting reactor, 30...Oil tank, 2
9...LTC head, 25...Transformer winding, 21...
...LTC tank.

Claims (1)

【特許請求の範囲】 1 電流遮断要素として真空バルブを使用した負
荷時タツプ切換装置において、前記真空バルブと
タツプ巻線間に無負荷切換接点を接続し、かつ前
記真空バルブが遮断不能を起こした場合に前記無
負荷切換接点のアークにより発生する分解ガスを
検出するガス検出継電器を設けたことを特徴とす
る負荷時タツプ切換装置。 2 無負荷切換接点がタツプ選択器の接点である
ことを特徴とする特許請求の範囲第1項記載の負
荷時タツプ切換装置。 3 無負荷切換接点がタツプ選択器の接点と真空
バルブとの間に接続された通電用接点であること
を特徴とする特許請求の範囲第1項記載の負荷時
タツプ切換装置。
[Scope of Claims] 1. In a load tap switching device using a vacuum valve as a current interrupting element, a no-load switching contact is connected between the vacuum valve and the tap winding, and the vacuum valve is unable to shut off. A tap switching device on load, characterized in that it is provided with a gas detection relay for detecting decomposition gas generated by arcing of the no-load switching contact. 2. The on-load tap switching device according to claim 1, wherein the no-load switching contact is a contact of a tap selector. 3. The on-load tap switching device according to claim 1, wherein the no-load switching contact is an energizing contact connected between the contact of the tap selector and the vacuum valve.
JP16431780A 1980-11-21 1980-11-21 On-load tap changer Granted JPS5788710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16431780A JPS5788710A (en) 1980-11-21 1980-11-21 On-load tap changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16431780A JPS5788710A (en) 1980-11-21 1980-11-21 On-load tap changer

Publications (2)

Publication Number Publication Date
JPS5788710A JPS5788710A (en) 1982-06-02
JPS6214086B2 true JPS6214086B2 (en) 1987-03-31

Family

ID=15790846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16431780A Granted JPS5788710A (en) 1980-11-21 1980-11-21 On-load tap changer

Country Status (1)

Country Link
JP (1) JPS5788710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533305A (en) * 2016-09-16 2019-11-14 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Load tap changer, adjustment transformer with load tap changer, and method for switching load tap changer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209581B2 (en) * 2009-08-27 2013-06-12 北芝電機株式会社 Transformer
EP2899728B2 (en) * 2014-01-22 2019-11-13 ABB Schweiz AG A device comprising a high voltage apparatus including a fluid and equipment for detecting one or more physical properties of the fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019533305A (en) * 2016-09-16 2019-11-14 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Load tap changer, adjustment transformer with load tap changer, and method for switching load tap changer

Also Published As

Publication number Publication date
JPS5788710A (en) 1982-06-02

Similar Documents

Publication Publication Date Title
WO2002048729A1 (en) Tap changer monitoring
US3934174A (en) Surge voltage protection for transfer switches for load-tap changers
US4791520A (en) Fault protection for a medium voltage transformer branch
EP2264729A1 (en) Method and device for detecting failure of a vacuum interrupter of an on load tap changer
US11574776B2 (en) Pressure pulse diagnostics of an on-load tap changer
US3622867A (en) Load tap changer system including protective apparatus for monitoring the operation thereof
US4061963A (en) Load tap changer system
JPS6214086B2 (en)
JP2023523184A (en) Equipment for limiting short-circuit current in on-load tap-changers and on-load tap-changers having such equipment
JPS59125418A (en) On-load tap changer
JPS6041534B2 (en) Opening/closing time monitoring device for on-load tap changer with anti-parallel connected thyristors
JPH0439764B2 (en)
JPS6216004B2 (en)
JP2677584B2 (en) High current switch
US2875399A (en) Means for protecting transition impedances
JPS6349074Y2 (en)
JPH0434459Y2 (en)
JPH0195506A (en) On-load tap changer
JPS6115569B2 (en)
JPS5854723B2 (en) On-load tap changer protection device
JPH0224008B2 (en)
JPH0438127B2 (en)
JP2690504B2 (en) Abnormality monitoring device for tap changer under load
JPS63104411A (en) On-load tap changer
JP2680040B2 (en) Abnormality detection device for tap changer under load