JP2677584B2 - High current switch - Google Patents

High current switch

Info

Publication number
JP2677584B2
JP2677584B2 JP63035482A JP3548288A JP2677584B2 JP 2677584 B2 JP2677584 B2 JP 2677584B2 JP 63035482 A JP63035482 A JP 63035482A JP 3548288 A JP3548288 A JP 3548288A JP 2677584 B2 JP2677584 B2 JP 2677584B2
Authority
JP
Japan
Prior art keywords
current
output current
switch
current path
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63035482A
Other languages
Japanese (ja)
Other versions
JPS63216225A (en
Inventor
デイーテル・ブラウン
クラウス・フレーリッヒ
Original Assignee
アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト filed Critical アセア・ブラウン・ボベリ・アクチエンゲゼルシヤフト
Publication of JPS63216225A publication Critical patent/JPS63216225A/en
Application granted granted Critical
Publication of JP2677584B2 publication Critical patent/JP2677584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/12Auxiliary contacts on to which the arc is transferred from the main contacts
    • H01H33/121Load break switches
    • H01H33/122Load break switches both breaker and sectionaliser being enclosed, e.g. in SF6-filled container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H2009/0083Details of switching devices, not covered by groups H01H1/00 - H01H7/00 using redundant components, e.g. two pressure tubes for pressure switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/002Very heavy-current switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Description

【発明の詳細な説明】 技術分野 この発明は、少なくとも一つの第一真空切換開閉室を
有し、しかも非磁性金属カプセルで取り囲まれている各
相当たり少なくとも一つの電流通路を備え、前記少なく
とも一つの電流通路が少なくとも一つの第一出力電流通
路とこの少なくとも一つの第一出力電流通路に並列に接
続された公称電流通路とを有し、遮断時、前記少なくと
も一つの第一出力電流通路の中断個所が中断すべき電流
を前記少なくとも一つの第一出力電流通路に切り換えた
後に開く、大電流開閉器に関する。
Description: TECHNICAL FIELD The present invention has at least one first vacuum switching switching chamber, and further comprises at least one current passage for each phase surrounded by a non-magnetic metal capsule. Two current paths having at least one first output current path and a nominal current path connected in parallel to the at least one first output current path, the interrupting of the at least one first output current path upon interruption. A high-current switch whose point opens after switching the current to be interrupted to the at least one first output current path.

従来の技術 ジーメンス社の出版物“The New Generator Switch f
or 8000 A"(8000A発電機用の新しい開閉器)(オーダ
ー番号:E 139/2067−101)により、この種の大電流開閉
器が知られている。構造上金属封止された発電機の送電
接続部に組み込まれるためにある大電流開閉器では、比
較的大きい公称電流8000Aを常に流すので、相あたり三
個の真空切換開閉室を並列接続している。市販の真空切
換開閉室の公称電流負荷特性は、これ等の真空切換開閉
室から出る接続部を介してのみ損失熱が排出されるの
で、制限がある。公称電流負荷特性を向上させるには、
かなり大きく、不経済なコストをかけてのみ可能であ
る。
Conventional Technology Siemens Publication “The New Generator Switch f
or 8000 A "(new switch for 8000 A generator) (order number: E 139 / 2067-101) is known for this kind of high current switch. A large current switch that is installed in the power transmission connection always flows a relatively large nominal current of 8000 A, so three vacuum switching chambers are connected in parallel per phase. The current load characteristics are limited because the loss of heat is dissipated only through the connections emerging from these vacuum switching chambers.
It can only be quite large and uneconomically costly.

発明の課題 この発明の課題は、真空切換開閉室に常時電流を流す
のではなく、ただ遮断と投入の間、短時間電流を流す、
真空切換開閉室を備えた大電流開閉器を提供することに
ある。
Problem to be Solved by the Invention The problem to be solved by the present invention is not to always supply a current to the vacuum switching chamber, but to supply a short-time current between interruption and closing,
It is to provide a high-current switch having a vacuum switching switch chamber.

課題を解決する手段 上記の課題は、この発明により、冒頭に述べた種類の
大電流開閉器にあって、 前記少なくとも一つの第一出力電流通路4の前記中断
個所7に軸方向の磁界が印加していて、 少なくとも一つの第二真空切換開閉室6を前記少なく
とも一つの第一出力電流通路に並列に接続された少なく
とも一つの第二出力電流通路4の中に設け、 前記少なくとも二つの出力電流通路4の各々が主とし
て誘導成分を有する同じインピーダンス値を有する、 ことによって解決されている。
According to the present invention, there is provided a high-current switch of the type described at the outset, wherein an axial magnetic field is applied to the interruption 7 of the at least one first output current path 4. And at least one second vacuum switching chamber 6 is provided in at least one second output current passage 4 connected in parallel to the at least one first output current passage, and the at least two output currents are provided. It is solved by that each of the passages 4 has the same impedance value, which mainly has an inductive component.

この発明による他の有利な構成は、特許請求の範囲の
従属請求項に記載されている。
Other advantageous configurations according to the invention are set out in the dependent claims.

発明の効果 この発明で得られる利点は、実質上、遮断時に真空切
換開閉室に一様な負荷が加わるので、より良く利用でき
る点にある。投入時にも、突入電流が予備点火直後、一
様に真空切換開閉室内に分布するので、ここでも個々の
真空切換開閉室の過負荷を排除できる。更に、重量な利
点は、比較的低い公称電流にのみ適した真空切換開閉室
を大電流開閉器中に導入でき、前記の欠点を無視でき、
良好な開閉特性を充分利用できることにある。
EFFECTS OF THE INVENTION The advantage obtained by the present invention is that the vacuum switching opening / closing chamber is substantially loaded with a uniform load at the time of shutting off, so that it can be better utilized. Even at the time of turning on, the inrush current is evenly distributed in the vacuum switching switching chamber immediately after the preliminary ignition, so that the overload of each vacuum switching switching chamber can be eliminated here as well. Furthermore, the heavy advantage is that a vacuum switching switch room suitable only for a relatively low nominal current can be introduced in the high current switch, neglecting the aforementioned drawbacks,
This is because good opening and closing characteristics can be fully utilized.

実施例 以下、ただ一つの実施例を示す図面に基づき更にこの
発明を詳しく説明する。
Embodiment Hereinafter, the present invention will be described in more detail with reference to the drawings showing only one embodiment.

第1図には、この発明の大電流開閉器1の原理図が示
してある。この大電流開閉器1は単相または多相に構成
されてもよい。電流通路2は大電流開閉器1に通じ、そ
こで公称電流通路3とこの電流通路3に並列の出力電流
通路4に分配される。公称電流通路3は補助切換開閉個
所5を有し、この補助切換開閉個所5が真空切換開閉室
6に遮断個所7を装備した出力電流通路4により橋絡さ
れる。真空切換開閉室6の前後には遮断個所7に軸方向
の磁界を加えるコイル8,9が接続されている。コイル8,9
は、この図面に示すように、空間的に真空切換開閉室6
の傍に設置してあるのではなく、真空切換開閉室6を遮
断個所7のところで同心状に取り巻き、絶縁ホルダを介
してこの遮断個所7に機械的に連結している。二つのコ
イル8,9は開放している遮断個所7から同じ間隔にして
配設してあり、コイルの長手軸は真空切換開閉室6の長
手軸に等しい。更に、二つのコイル8,9の間の間隔はコ
イルの内径より決して大きくしない。両方のコイル8,9
とも等しい巻数を有し、少なくとも一回で、多くても5
回、主として2回巻きである。コイル8,9は一層または
多層に巻装され、巻数は整数である必要はない。入力端
子10はコイル8の一端に電気接続され、他端は導電性の
接続片を介して真空切換開閉室6に接続されている。他
の接続片を介して真空開閉器室6はコイル9の一端に接
続し、他端は出力端子11に接続する。
FIG. 1 shows a principle diagram of the large current switch 1 of the present invention. The large current switch 1 may be configured as a single phase or a multi phase. The current path 2 leads to a high-current switch 1, where it is divided into a nominal current path 3 and an output current path 4 in parallel with this current path 3. The nominal current passage 3 has an auxiliary switching opening / closing point 5, which is bridged by an output current passage 4 in which a vacuum switching opening / closing chamber 6 is equipped with a breaking point 7. Before and after the vacuum switching opening / closing chamber 6, coils 8 and 9 for applying a magnetic field in the axial direction are connected to a breaking point 7. Coil 8,9
Is, as shown in this drawing, the vacuum switching opening / closing chamber 6 spatially.
The vacuum switching opening / closing chamber 6 is concentrically surrounded at a breaking point 7 and is mechanically connected to this breaking point 7 via an insulating holder. The two coils 8, 9 are arranged at the same distance from the open breaking point 7, the longitudinal axis of the coil being equal to the longitudinal axis of the vacuum switching chamber 6. Furthermore, the spacing between the two coils 8, 9 is never greater than the inner diameter of the coil. Both coils 8,9
Have the same number of turns, at least once and at most 5
It is wound twice, mainly twice. The coils 8 and 9 are wound in one layer or multiple layers, and the number of turns need not be an integer. The input terminal 10 is electrically connected to one end of the coil 8, and the other end is connected to the vacuum switching opening / closing chamber 6 via a conductive connecting piece. The vacuum switchgear chamber 6 is connected to one end of the coil 9 and the other end to the output terminal 11 via another connecting piece.

遮断時には、先ず補助開閉位置5が開になり、遮断す
べみ電流を出力電流通路4に切り換える。その後、真空
切換開閉室6が開になり、遮断個所7でアークが燃え
る。遮断すべき電流が同じ寸法で同一構成の二つのコイ
ル8,9を同じ向きに流れ、両方のコイル8,9は遮断個所7
と、遮断時にこの遮断個所中に生じるアークとに作用す
る軸方向の磁界を同じように発生する。遮断個所7のと
ころには、コイル8,9が同じ配置であるため、この磁界
がほぼ一様で、更に電流に比例している、しかもアーク
が50KAないしはそれ以上の電流値の場合でも、拡散して
燃えるため、遮断個所7の接触子の燃焼が抑制可能な限
界内に止まるようにする。この種の電流値は、コイル23
と24の比較的多い巻数により、強力な軸方向磁界のみで
制御や遮断ができる。
At the time of interruption, first, the auxiliary opening / closing position 5 is opened, and the interruption slip current is switched to the output current passage 4. After that, the vacuum switching opening / closing chamber 6 is opened, and the arc burns at the breaking point 7. The current to be interrupted flows through the two coils 8 and 9 of the same size and the same configuration in the same direction, and both coils 8 and 9 are interrupted at the interruption point
And an axial magnetic field acting on the arc generated in the breaking point during breaking. Since the coils 8 and 9 are arranged at the same place at the breaking point 7, this magnetic field is almost uniform and is proportional to the current, and even if the arc has a current value of 50 KA or more, it spreads. Therefore, the contactor at the shutoff point 7 is kept within a limit in which combustion can be suppressed. This kind of current value is
Due to the relatively large number of turns of 24 and 24, it is possible to control and shut off only with a strong axial magnetic field.

第1図には、以下の第2〜5図も同じように、補助切
換開閉個所5とそれに対応する真空切換開閉室6を操作
する機械的な駆動部材を全て図示してない。更に、第1
図では大電流開閉器1の各相を取り巻いている非磁性金
属カプセルも図示してない。
Similarly to FIGS. 2 to 5 below, FIG. 1 does not show all mechanical drive members for operating the auxiliary switching opening / closing point 5 and the vacuum switching opening / closing chamber 6 corresponding thereto. Furthermore, the first
The non-magnetic metal capsule surrounding each phase of the large current switch 1 is also not shown in the figure.

第2図には、別な大電流開閉器1が、図面の上半分に
投入状態で、また下半分に遮断状態で示してある。電流
通路2は円管状に形成され、絶縁体15で同心状に配設さ
れた金属カプセル16に支持されている。この金属カプセ
ル16も円管状に形成され、非磁性金属で構成されてい
る。金属カプセル16に設置した足部17により大電流開閉
器1を基礎に固定できる。金属カプセルと電流通路2の
各前方端部は、単相で金属封止された発電機と周知の送
電接続部の接続可能性を有する。金属カプセルには組立
や検査用の開口があり、丁度同じように機械駆動部材の
貫通部もある。この開口と貫通部は、高出力の大電流開
閉器1の場合、通常加圧封止されている。何故なら、絶
縁体15の汚れを少なくするため、発電機の送電接続部の
全てを僅かに過圧しているからである。この種の発電機
の送電接続部は損失熱の排出を良くするため、しばしば
強制送風も行なわれている。
FIG. 2 shows another large-current switch 1 in the closed state in the upper half of the drawing and in the closed state in the lower half. The current passage 2 is formed in a tubular shape, and is supported by a metal capsule 16 concentrically arranged with an insulator 15. This metal capsule 16 is also formed in a tubular shape and is made of a non-magnetic metal. The large current switch 1 can be fixed to the foundation by the legs 17 installed on the metal capsule 16. The metal capsule and each front end of the current path 2 have the possibility of connecting a single-phase, metal-sealed generator to a known power transmission connection. The metal capsule has openings for assembling and inspection, and just like the penetrations for mechanical drive members. In the case of the high-output large-current switch 1, the opening and the penetrating portion are normally pressure-sealed. This is because all the transmission connections of the generator are slightly overpressurized in order to reduce the contamination of the insulator 15. In order to improve the loss of heat loss, the power transmission connection of this type of generator is often forced to blow air.

公称電流通路3には、大電流遮断器1を投入する時、
補助開閉位置5で橋絡される隙間がある。補助開閉位置
5は、ここではフィンガ接触子で示してあるが、その数
は公称電流の値に応じて選択できる。このフィンガ接触
子の一部は遮断時に残りの接触子に追従するので、切換
アークはこの追従フィンガ接触子の上でのみ形成され
る。従って、残りのフィンガ接触子は損傷がなく、必ず
確実な公称電流の導入を保証する。投入時にはこのフィ
ンガ接触子が、最初に閉じ、同様に切換負荷を引き受け
る。このフィンガ接触子は駆動部により移動するホルダ
(図示せず)の中に嵌まる。公称電流通路3に平行にこ
こではただ二つの並列出力電流通路4が示してある。こ
の出力電流通路4の各々は第1図で説明した出力電流通
路4に合わせて構成されている。二つの出力電流通路4
はここでは中空の公称電流通路3の内部にあり、中心対
称に配設されている。二つの出力電流通路4はそれぞれ
主誘導性成分の等しいインピーダンス値を有する。従っ
て、出力電流通路4に電流が流れると、全ての出力電流
通路4が一様な電流分布となり、真空電流室6の何れも
過負荷にならない。それ故、個々の真空切換開閉室6の
出力開閉能力を完全に、しかも安全性の余裕を設けない
で利用できる。
When the large current breaker 1 is turned on to the nominal current passage 3,
There is a gap bridging at the auxiliary opening / closing position 5. The auxiliary opening / closing positions 5 are shown here as finger contacts, but their number can be selected depending on the value of the nominal current. Since a part of this finger contact follows the rest of the contacts during interruption, the switching arc is formed only on this following finger contact. The remaining finger contacts are therefore undamaged and always ensure a reliable introduction of the nominal current. On closing, the finger contacts first close and likewise take on the switching load. The finger contact fits into a holder (not shown) that is moved by the drive. Parallel to the nominal current path 3, only two parallel output current paths 4 are shown here. Each of the output current passages 4 is configured in accordance with the output current passage 4 described in FIG. Two output current paths 4
Are located here inside the hollow nominal current path 3 and are arranged symmetrically about the center. The two output current paths 4 each have an equal impedance value of the main inductive component. Therefore, when a current flows through the output current passages 4, all the output current passages 4 have a uniform current distribution, and none of the vacuum current chambers 6 is overloaded. Therefore, the output opening / closing capacity of each vacuum switching opening / closing chamber 6 can be used completely without any margin of safety.

大電流開閉器1の動作を簡単に説明する。大電流開閉
器1が公称電流を通す場合、補助切換開閉個所5が閉
じ、全公称電流が電流通路2から公称電流通路3を流れ
る。出力電流通路4は公称電流通路3の内部の磁界のな
い空間にあるため、電流を通さない。操業切換または短
絡遮断に対する遮断命令により、先ず補助切換開閉個所
5が開き、全電流が出力電流通路4に切り換わり、一様
に分布する。その後、真空切換開閉室6が開き、通常、
次の電流零点で電流を遮断する。遮断状態では補助開閉
位置5と真空切換開閉室6は開になっている。投入で
は、先ず真空切換開閉室6が閉じ、投入電流が出力電流
通路4を流れて、一様に分布する。この直後、補助切換
開閉個所5も閉じて、電流が出力電流通路4から公称電
流通路3に切り換わる。二つの切換過程では、真空切換
開閉室6にその都度非常に短時間しか電流が流れないの
で、余り大きな熱負荷が真空切換開閉室に生じない。連
続する短時間の切換サイクルでさえも、真空切換開閉室
6が問題なく耐えている。
The operation of the large current switch 1 will be briefly described. When the high-current switch 1 carries the nominal current, the auxiliary switching switch 5 is closed and the entire nominal current flows from the current path 2 to the nominal current path 3. Since the output current path 4 is in the space without the magnetic field inside the nominal current path 3, it does not pass current. In response to a shutoff command for operation switching or short-circuit shutoff, the auxiliary switching opening / closing point 5 is opened first, and the entire current is switched to the output current passage 4 and distributed evenly. After that, the vacuum switching opening / closing chamber 6 is opened, and normally,
The current is cut off at the next current zero point. In the shut-off state, the auxiliary opening / closing position 5 and the vacuum switching opening / closing chamber 6 are open. In closing, first, the vacuum switching opening / closing chamber 6 is closed, and the closing current flows through the output current passage 4 and is uniformly distributed. Immediately after this, the auxiliary switching opening / closing point 5 is also closed, and the current is switched from the output current passage 4 to the nominal current passage 3. In the two switching processes, the electric current flows through the vacuum switching opening / closing chamber 6 only for a very short time each time, so that an excessively large heat load does not occur in the vacuum switching opening / closing chamber. The vacuum switching chamber 6 withstands even short continuous switching cycles without problems.

多くの利用分野に対しては、出力電流通路4当たり一
つの真空切換開閉室6で充分な耐電圧を保証すべきであ
る。しかし、より高い耐電圧を達成するため、出力電流
通路4当たり二つまたはそれ以上の真空切換開閉室6を
直列にして接続することも難なく行える。
For many applications one vacuum switching switchgear 6 per output current path 4 should ensure sufficient withstand voltage. However, in order to achieve a higher withstand voltage, it is also possible without difficulty to connect two or more vacuum switching switching chambers 6 in series per output current passage 4.

第3図に示しように、出力電流通路4を公称電流通路
3の回りの外側に配設することもできる。同様に同心状
の対称なこの配置には、より多くの出力電流通路4を周
囲に一様に配設できる利点がある。この大電流開閉器1
は第2図の開閉器より大きい公称電流値に対して適して
いる。投入状態では、この大電流開閉器1の場合、電流
排除のため、僅かな電流が出力電流通路4を常に流れ
る。しかし、この僅かな電流は各出力電流通路4のイン
ピーダンスにより無限できる値に制限されるので、各真
空室6の熱負荷を無視できる。
As shown in FIG. 3, the output current path 4 can also be arranged outside the nominal current path 3. This likewise concentric and symmetrical arrangement has the advantage that more output current paths 4 can be arranged evenly around. This large current switch 1
Is suitable for nominal current values greater than the switch of FIG. In the closed state, in the case of the large current switch 1, a small amount of current always flows through the output current path 4 in order to eliminate the current. However, this slight current is limited to an infinite value by the impedance of each output current passage 4, so that the heat load of each vacuum chamber 6 can be ignored.

第4図には、特に高電流に適した第2図と第3図に相
当する装置の組み合わせが示してある。この大電流開閉
器1で注意すべきことは、公称電流通路3の内部にある
出力電流通路4のインピーダンスと外部にある出力電流
通路4のインピーダンスとが同じである必要があること
にある。
FIG. 4 shows a combination of devices corresponding to FIGS. 2 and 3 which is particularly suitable for high currents. It should be noted that the large current switch 1 needs to have the same impedance of the output current path 4 inside the nominal current path 3 and the impedance of the output current path 4 outside.

大電流開閉器1に対して特に狭い空間的な組込状況で
あれば、絶縁体15を加圧封止した円板絶縁体として形成
し、電流通路2も大電流開閉器1の両側で内側で加圧封
止した状態で遮断することもできる。このような空間
に、絶縁媒体、例えば圧搾空気またはSF6ガスを満た
す。こうして、絶縁間隔、従って開閉器の寸法を低減で
き、更に出力電流通路4や付属する真空切換開閉室6も
互いに密に配設できる。第5図には、第3図に相当する
実施例に似た大電流開閉器1の改良された他の実施例が
示してある。しかし、この実施例は全て残りの実施例で
も同じように可能である。出力電流通路の各々は、更に
Isリミタ20とこのリミタに直列にセンサ21が組み込まれ
ている。検出器21で検出された信号を評価ユニット22中
で監視して、演算処理する。評価ユニット22は、点線の
作用線23で暗示するように、全てのIsリミタ20の全体に
同時に作用し、これを同時に作動させる。しかし、評価
ユニット22が一定のIsリミタ20だけを作動させるように
も構成できる。この時、出力電流通路4が遮断される。
この種の重複した開閉能力は、大電流開閉器1の遮断時
の信頼性を高める。例えば、真空切換開閉室6が遮断し
ないなら、誤動作する当該出力電流通路4のセンサ21が
これを表示する。評価ユニット22では、例えば初めに消
弧した相の出力電流通路4の一つの中で未だ電流、つま
り遮断すべき全電流が流れることを確認するので、評価
ユニット22は瞬間的に全Isリミタ20を作動させる。三相
群の大電流開閉器1では、全てのIsリミタ20が三相全て
で作動させる。全部の出力電流通路4でIsリミタ20を作
動させる原因を調べる必要がないために、作動させるセ
ンサ21,および誤動作する出力電流通路4も識別できる
装置を評価ユニット22に設ける。作動後、Isリミタ20を
手動で検査する必要がある。しかし、このコストは、発
電機やそれ以外の設備部品のどんな損害が防止されるか
を考えると、充分容認される。
In the case of a space installation condition that is particularly narrow with respect to the large current switch 1, the insulator 15 is formed as a pressure-sealed disk insulator, and the current passages 2 are also formed on both sides of the large current switch 1 inside. It is also possible to shut off in the state of being pressure-sealed. Such spaces are filled with an insulating medium such as compressed air or SF 6 gas. In this way, it is possible to reduce the insulation distance, and thus the size of the switch, and also to arrange the output current passage 4 and the vacuum switching switch chamber 6 attached thereto closely. FIG. 5 shows another improved embodiment of the high-current switch 1, which is similar to the embodiment corresponding to FIG. However, all this embodiment is equally possible for the remaining embodiments. Each of the output current paths is
Sensor 21 in series with the limiter and I s limiter 20 is incorporated. The signal detected by the detector 21 is monitored in the evaluation unit 22 and processed. The evaluation unit 22 acts on all I s limiters 20 simultaneously and activates them simultaneously, as implied by the dotted action line 23. However, it also configured evaluation unit 22 actuates only constant I s limiter 20. At this time, the output current passage 4 is cut off.
This type of overlapping switching capability enhances the reliability of the large current switch 1 when shutting off. For example, if the vacuum switching opening / closing chamber 6 is not shut off, the sensor 21 in the output current passage 4 that malfunctions displays this. In the evaluation unit 22, still current example in a single output current path 4 of extinguishing the phase at the beginning, that is so to make sure that all the current to be interrupted flows, the evaluation unit 22 is instantaneously all I s Limiter Activate 20. In high-current switch 1 of a three-phase group, all I s limiter 20 is operated at all three phases. Since there is no need to investigate the cause for actuating the I s limiter 20 in total output current path 4 is provided with the output current path 4 may identify devices that sensor 21, and malfunction is operated to the evaluation unit 22. After operation, it is necessary to check the I s limiter 20 manually. However, this cost is well tolerated given what damage to the generator and other equipment components is prevented.

前記の誤動作は、最初に消弧した相のIsリミタ20のみ
を作動させるか、あるいは誤動作している出力電流通路
4のIsリミタ20のみおよび三相の他の二つの相を通常に
遮断することも考えられる。しかし、この切換には非常
に速く動作する電子評価ユニット22が必要である。誤動
作が第二番目に消弧した相に初めて生じた場合、誤動作
のあるIsリミタ20のみを作動させる、または誤動作のあ
る出力電流通路4のIsリミタ20のみ作動させると効果的
である。何故なら、それによってIsリミタ20を検査する
時間や作業のコストが低減できるからである。評価ユニ
ット22は、Isリミタ20を作動させた後、大電流開閉器1
を投入する毎にこの開閉器が検査され、再び完全に運転
準備されるまで阻止する必要がある。評価ユニット22
は、Isリミタ20の最適的な使用をその都度保証するよう
に必ず設計されている必要がある。これには、投入時に
Isリミタ20を誤った作動が行われないことを確認する必
要がある。
The above-mentioned malfunction is caused by activating only the I s limiter 20 of the first extinguished phase, or normally shutting off only the I s limiter 20 of the malfunctioning output current path 4 and the other two phases of the three phases. It is also possible to do it. However, this switching requires an electronic evaluation unit 22 which operates very fast. If a malfunction occurs the first time the phases were extinguished to a second, actuating only the I s limiter 20 with a malfunction, or when only actuating I s limiter 20 the output current path 4 with a malfunction effectively. This is because is because, thereby reducing the cost of time and work to examine the I s limiter 20. Evaluation unit 22, after actuation of the I s limiter 20, a large current switch 1
This switch must be inspected each time the switch is turned on and blocked until it is fully operational again. Evaluation unit 22
Needs to be always designed to ensure in each case the optimum use of I s limiter 20. This includes the
It is necessary to confirm that the operation of the wrong I s limiter 20 is not performed.

真空切換開閉室6を備えたこの種の大電流開閉器1
は、真空切換開閉室6の検査が極度に少ないので、特に
切換回数の非常に多い発電機の開閉器を設計する必要の
あるポンプ供給発電所に適する。
High-current switch 1 of this kind having a vacuum switching switch chamber 6
Since the inspection of the vacuum switching opening / closing chamber 6 is extremely small, is particularly suitable for a pump supply power plant in which it is necessary to design a switch of a generator with a large number of switching times.

例えば大電流開閉器の場合のように、遮断能力に関す
る要求の少ない大電流開閉器1には、ただ一つの出力電
流通路4にコイル8と9を用いることなく、少なくとも
一つの真空切換開閉室6を設けるだけで充分である。負
荷電流を遮断するため、この遮断能力は、接触子が比較
的弱い軸方向磁界を発生するように構成された少なくと
も一つの真空切換開閉室6の遮断能力で充分である。
For example, as in the case of a large current switch, a large current switch 1 which has less demands on the breaking capability does not use the coils 8 and 9 in only one output current passage 4 and at least one vacuum switching switch chamber 6 It is enough to provide. In order to interrupt the load current, this breaking capacity is sufficient with the breaking capacity of at least one vacuum switching switching chamber 6 in which the contacts are arranged to generate a relatively weak axial magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

第1図、この発明による大電流開閉器の原理図、 第2図、この発明による大電流開閉器の第一実施例、 第3図、この発明による大電流開閉器の第二実施例、 第4図、この発明による大電流開閉器の第三実施例、 第5図、この発明による大電流開閉器の第四実施例。 図中引用記号: 1……大電流開閉器 2……電流通路 3……公称電流通路 4……出力電流通路 5……補助切換開閉個所 6……真空切換開閉室 7……遮断個所 8,9……コイル 10……入力端子 11……出力端子 15……絶縁体 16……金属カプセル 17……足部 20……Is1リミタ 21……センサ 22……評価装置 23……動作導線1, a principle diagram of a large current switch according to the present invention, FIG. 2, a first embodiment of a large current switch according to the present invention, FIG. 3, a second embodiment of a large current switch according to the present invention, 4 is a third embodiment of the large current switch according to the present invention, FIG. 5 is a fourth embodiment of the large current switch according to the present invention. Reference symbols in the figure: 1 …… Large current switch 2 …… Current passage 3 …… Nominal current passage 4 …… Output current passage 5 …… Auxiliary switching opening / closing location 6 …… Vacuum switching opening / closing chamber 7 …… Breaking location 8, 9 …… coil 10 …… input terminal 11 …… output terminal 15 …… insulator 16 …… metal capsule 17 …… foot 20 …… Is1 limiter 21 …… sensor 22 …… evaluation device 23 …… operating conductor

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも一つの第一真空切換開閉室
(6)を有し、しかも非磁性金属カプセル(16)で取り
囲まれている各相当たり少なくとも一つの電流通路
(2)を備え、前記少なくとも一つの電流通路(2)が
少なくとも一つの第一出力電流通路(4)とこの少なく
とも一つの第一出力電流通路に並列に接続された公称電
流通路(3)とを有し、遮断時、前記少なくとも一つの
第一出力電流通路(4)の中断個所(7)が中断すべき
電流を前記少なくとも一つの第一出力電流通路(4)に
切り換えた後に開く、大電流開閉器(1)において、 前記少なくとも一つの第一出力電流通路(4)の前記中
断個所(7)に軸方向の磁界が印加していて、 少なくとも一つの第二真空切換開閉室(6)を前記少な
くとも一つの第一出力電流通路に並列に接続された少な
くとも一つの第二出力電流通路(4)の中に設け、 前記少なくとも二つの出力電流通路(4)の各々が主と
して誘導成分を有する同じインピーダンス値を有する、 ことを特徴とする大電流開閉器。
1. At least one first vacuum switching chamber (6) and at least one current passage (2) for each phase surrounded by a non-magnetic metal capsule (16). One current path (2) has at least one first output current path (4) and a nominal current path (3) connected in parallel to this at least one first output current path, and when shut off, said A high current switch (1), which is opened after the interruption point (7) of the at least one first output current path (4) switches the current to be interrupted to the at least one first output current path (4), An axial magnetic field is applied to the interruption point (7) of the at least one first output current passage (4), and at least one second vacuum switching switching chamber (6) is connected to the at least one first output. Parallel to current path Is provided in at least one second output current path (4) connected to, and each of the at least two output current paths (4) has the same impedance value mainly having an inductive component. Current switch.
【請求項2】前記の少なくとも一つの公称電流通路
(3)が中空に形成してあり、前記の少なくとも二つの
出力電流通路(4)が前記少なくとも一つの公称電流通
路(3)の中に配設されていることを特徴とする特許請
求の範囲第1項に記載の大電流開閉器。
2. The at least one nominal current passage (3) is hollow and the at least two output current passages (4) are arranged in the at least one nominal current passage (3). The large current switch according to claim 1, wherein the large current switch is provided.
【請求項3】前記の少なくとも一つの公称電流通路
(3)は中空に形成してあり、前記少なくとも一つの第
一出力電流通路(4)が前記少なくとも一つの公称電流
通路(3)の中に、また前記少なくとも一つの第二出力
電流通路(4)が前記少なくとも一つの公称電流通路
(3)の外に配設されていることを特徴とする特許請求
の範囲第1項に記載の大電流開閉器。
3. The at least one nominal current passage (3) is hollow and the at least one first output current passage (4) is in the at least one nominal current passage (3). High current according to claim 1, characterized in that the at least one second output current path (4) is arranged outside the at least one nominal current path (3). Switch.
【請求項4】少なくとも二つの真空切換開閉室(6)の
各々には、同じ寸法で同じ向きに流れる少なくとも二つ
のコイル(8,9)があり、各コイルの前後にそれぞれ一
つの真空切換開閉室(6)が接続されていることを特徴
とする特許請求の範囲第1項に記載の大電流開閉器。
4. At least two vacuum switching opening / closing chambers (6) each having at least two coils (8, 9) of the same size and flowing in the same direction, and one vacuum switching opening / closing switch before and after each coil. High current switch according to claim 1, characterized in that the chamber (6) is connected.
【請求項5】両方のコイル(8,9)は中断個所のところ
で各真空切換開閉室(6)を同心状に取り囲み、 コイル(8,9)の各々は開いた中断個所から同じ間隔の
ところに配設されていて、 コイル(8,9)の各々は少なくとも一つか、高々五つ、
主に二つの巻線を有し、 両方のコイル(8,9)はコイルの内径より必ず広い間隔
に設置されていないことを特徴とする特許請求の範囲第
4項に記載の大電流開閉器。
5. Both coils (8,9) concentrically surround each vacuum switching chamber (6) at the point of interruption, each coil (8,9) being at the same distance from the open point of interruption. And each of the coils (8, 9) has at least one, or at most five,
5. A large current switch according to claim 4, characterized in that it mainly has two windings, and that both coils (8, 9) are not always installed at intervals wider than the inner diameter of the coil. .
【請求項6】少なくとも二つの出力電流通路(4)の各
々には、一つのIsリミタ(20)と一つのセンサ(21)が
設けてあり、 センサ(21)の全体が一つの評価ユニット(22)に接続
し、この評価ユニット(22)が同時にIsリミタ(20)全
体に、あるいは選択的に所定のIsリミタ(20)に作用を
及ぼすことを特徴とする特許請求の範囲第1〜3項の何
れか1項に記載の大電流開閉器。
6. Each of the at least two output current path (4), one of I s limiter (20) and a sensor (21) is provided with entirely one evaluation unit of the sensor (21) Claim 22, characterized in that it is connected to (22) and that this evaluation unit (22) acts on the entire I s limiter (20) at the same time or selectively on a given I s limiter (20). The high current switch according to any one of 1 to 3.
【請求項7】評価ユニット(22)には信号を発生するセ
ンサ(21)室(6)を識別する装置が設けてあることを
特徴とする特許請求の範囲第6項に記載の大電流開閉
器。
7. The high-current switching device according to claim 6, wherein the evaluation unit (22) is provided with a device for identifying the sensor (21) chamber (6) for generating a signal. vessel.
JP63035482A 1987-02-23 1988-02-19 High current switch Expired - Fee Related JP2677584B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873705719 DE3705719A1 (en) 1987-02-23 1987-02-23 Heavy-current switch
DE3705719.7 1987-02-23

Publications (2)

Publication Number Publication Date
JPS63216225A JPS63216225A (en) 1988-09-08
JP2677584B2 true JP2677584B2 (en) 1997-11-17

Family

ID=6321555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63035482A Expired - Fee Related JP2677584B2 (en) 1987-02-23 1988-02-19 High current switch

Country Status (5)

Country Link
JP (1) JP2677584B2 (en)
CH (1) CH675321A5 (en)
DE (1) DE3705719A1 (en)
FR (1) FR2611310B1 (en)
SU (1) SU1542428A3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2682807B1 (en) * 1991-10-17 1997-01-24 Merlin Gerin ELECTRIC CIRCUIT BREAKER WITH TWO VACUUM CARTRIDGES IN SERIES.
DE4405206A1 (en) * 1994-02-18 1995-08-24 Abb Research Ltd Switching device
DE19701827A1 (en) * 1997-01-21 1998-07-23 Abb Patent Gmbh Generator switch of 50 kA rating
DE19846435A1 (en) * 1998-10-08 2000-04-13 Abb Patent Gmbh Contact arrangement for vacuum chamber, has second contact point in parallel with coil opening first contact for switch-off, in which current flows in coil and first contact point to generate axial magnetic field
DE102005032709A1 (en) 2005-07-07 2007-01-11 Siemens Ag Electrical switching device and method for operating an electrical switching device
FR2946180B1 (en) * 2009-05-26 2012-12-14 Areva T & D Sa INTERNAL LATCHING AND INTERLOCKING DEVICE AT A SWITCH OR A CIRCUIT BREAKER.
DE102017216275A1 (en) 2017-09-14 2019-03-14 Siemens Aktiengesellschaft Arrangement and method for switching high currents in high, medium and / or low voltage technology

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1126362A (en) * 1965-07-06 1968-09-05 Ass Elect Ind Improvements in and relating to electric circuit breakers
DE1265815B (en) * 1965-11-30 1968-04-11 Siemens Ag Switching device for high voltage
GB1143889A (en) * 1967-01-12
US3701866A (en) * 1971-08-09 1972-10-31 Gen Electric Disconnecting switch for force-cooled isolated phase bus
GB1442460A (en) * 1972-08-18 1976-07-14 Westinghouse Electric Corp Current limiting variable resistance device
US3824359A (en) * 1972-10-06 1974-07-16 Mc Graw Edison Co Vacuum loadbreak switch
DE2522525A1 (en) * 1975-05-21 1976-12-02 Driescher Eltech Werk Load disconnector with arc quenching in vacuum chamber - appropriate for operation in medium voltage range
NL162238C (en) * 1976-02-19 1980-04-15 Hazemeijer Bv VACUUM SWITCH WITH COAXIAL MAGNETIC COIL.
JPS54113838A (en) * 1978-02-24 1979-09-05 Toshiba Corp Enclosed type switching device
JPS5531210U (en) * 1978-08-21 1980-02-28
JPS58181218A (en) * 1982-04-19 1983-10-22 株式会社日立製作所 Composite vacuum breaker
JPS58207802A (en) * 1982-05-27 1983-12-03 株式会社東芝 Hybrid breaker
JPS6155829A (en) * 1984-08-28 1986-03-20 株式会社東芝 Breaker

Also Published As

Publication number Publication date
DE3705719A1 (en) 1988-09-01
DE3705719C2 (en) 1989-11-30
JPS63216225A (en) 1988-09-08
FR2611310B1 (en) 1994-05-06
SU1542428A3 (en) 1990-02-07
CH675321A5 (en) 1990-09-14
FR2611310A1 (en) 1988-08-26

Similar Documents

Publication Publication Date Title
US4550356A (en) Circuit breaker
US6689980B2 (en) Circuit breaker having hybrid arc extinguishing function
JPH07111855B2 (en) Tank type circuit breaker
JP2677584B2 (en) High current switch
US6181125B1 (en) Combination apparatus of a distribution transformer and switches
CA2275616A1 (en) Device and method relating to protection of an object against over-currents comprising over-current reduction
JPH06335125A (en) Switching device
US4061963A (en) Load tap changer system
US5576523A (en) Independent pole operation linkage
KR101841859B1 (en) A circuit breaker unit with electromagnetic drive
US5617281A (en) Low cost circuit controller
US4286301A (en) H.V. current cut-out circuit
CA2310619C (en) Arcing fault protection system for a switchgear enclosure
EP0074186B1 (en) Current limiting device
JPH0581973A (en) Dc circuit breaker
US3842225A (en) High voltage circuit breaker utilizing insertion of a fixed resistance during opening and closing
JPH0474813B2 (en)
US3454831A (en) Quick-opening,low cost,current limiting circuit breaker
JPH1031924A (en) Compound switching device
TW201830815A (en) Fault current limiter, current protection device and method for limiting fault current
US11817695B2 (en) Phase-selective interruption for three-phase AC circuits with Thomson coil actuated switches and breakers
JPH0520984A (en) Resistance interrupting type circuit breaker
JPH0434459Y2 (en)
KR20230130430A (en) High Speed Closing Switch And Controlling Method Of The Same
JPH01159921A (en) Vacuum opening/closing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees