JPS6214047A - Exhaust gas sensor - Google Patents

Exhaust gas sensor

Info

Publication number
JPS6214047A
JPS6214047A JP15291485A JP15291485A JPS6214047A JP S6214047 A JPS6214047 A JP S6214047A JP 15291485 A JP15291485 A JP 15291485A JP 15291485 A JP15291485 A JP 15291485A JP S6214047 A JPS6214047 A JP S6214047A
Authority
JP
Japan
Prior art keywords
electrode
sensor
exhaust gas
electrodes
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15291485A
Other languages
Japanese (ja)
Other versions
JPH06100561B2 (en
Inventor
Kazuo Okinaga
一夫 翁長
Katsuyuki Tanaka
克之 田中
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Mazda Motor Corp
Original Assignee
Figaro Engineering Inc
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Mazda Motor Corp filed Critical Figaro Engineering Inc
Priority to JP60152914A priority Critical patent/JPH06100561B2/en
Priority to US06/883,130 priority patent/US4816800A/en
Publication of JPS6214047A publication Critical patent/JPS6214047A/en
Publication of JPH06100561B2 publication Critical patent/JPH06100561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the use of a sensor under a severe atmosphere with a higher durability of an electrode, by connecting a Pt electrode with ZrO2 precipitated in a grain boundary to a metal oxide semiconductor containing Sn element to form a sensor. CONSTITUTION:For example, equal mole of BaCO3 and SnO2 are mixed to be made to react in the air at a specified temperature for a specified time to obtain a perovskite compound BaSnO3, which is crushed and a Pt electrode with ZrO2 added thereto is buried thereinto to be formed into a sensor chip 8. The chip thus obtained is heated and sintered in the air at a specified temperature for a specified time. Then, the sensor chip 8 is housed into a recess 6 provided at the end of an insulation substrate 4 made of alumina or the like. Pt electrodes 10 and 12 in which ZrO2 is precipitated on a grain boundary are housed into grooves 14 and 16 provided on the substrate 4 and the ends thereof are connected to base metal external leads 18 and 20. Then, an alumina sheet 22 is stuck on the substrate 4 leaving the perimeter of the chip 8 to protect the electrodes 10 and 11 being separated from the atmosphere.

Description

【発明の詳細な説明】 [発明の利用分野] この発明は、金属酸化物半導体の抵抗値の変化を利用し
た排ガスセンサの改良に関し、とりわけ電極の耐久性の
改善に関する。この発明の排ガスセンサは、自動車エン
ジンやストーブ、あるいはボイラー等の空燃比の検出等
に適している。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an improvement in an exhaust gas sensor that utilizes a change in the resistance value of a metal oxide semiconductor, and particularly to an improvement in the durability of an electrode. The exhaust gas sensor of the present invention is suitable for detecting the air-fuel ratio of automobile engines, stoves, boilers, etc.

[従来技術] 排ガスセンサのPt電極が高温の還元性雰囲気により腐
食されるという問題は、古くから指摘されている。例え
ばU、S、P 4237.722は、腐食の原因が排ガ
ス中の炭素とPtとの反応に有るとし、耐久性の高い電
極としてPt−Rh合金を用いることを堤案じている。
[Prior Art] The problem that Pt electrodes of exhaust gas sensors are corroded by high-temperature reducing atmospheres has been pointed out for a long time. For example, U, S, P 4237.722 states that the cause of corrosion is the reaction between carbon in exhaust gas and Pt, and proposes using a Pt-Rh alloy as a highly durable electrode.

発明者らの追試によっても、Pt−Rh合金は、T i
 Otを金属酸化物半導体として用いる場合、優れた耐
久性を有することが確認された(表1)。しかし5nO
tやB a S n O1等のSn元素を含有する化合
物では、状況が異なる。これらの化合物にPt−Rh合
金電極を用いると、電極は高温の還元性雰囲気により腐
食される。Pt−Rh合金電極は、T i Otには有
効で有るが、B a S n OsやSnow等には有
効で無い。腐食した電極を元素分析すると、電極中にS
nが固溶していることが判明した。腐食の原因は、炭素
との反応ではなく、PtとSnとの合金の形成で有る。
Further tests by the inventors have shown that the Pt-Rh alloy has Ti
It was confirmed that Ot had excellent durability when used as a metal oxide semiconductor (Table 1). However, 5nO
The situation is different for compounds containing Sn elements such as t and B a S n O1. When Pt-Rh alloy electrodes are used with these compounds, the electrodes are corroded by the high temperature reducing atmosphere. A Pt-Rh alloy electrode is effective for T i Ot, but not for B a S n Os or Snow. Elemental analysis of the corroded electrode revealed that S was present in the electrode.
It was found that n was dissolved in solid solution. The cause of corrosion is not the reaction with carbon, but the formation of an alloy between Pt and Sn.

[発明の課題] この発明の課題は、Sn系の金属酸化物半導体を用いた
排ガスセンサの、電極の腐食を防止することに有る。
[Problem of the Invention] An object of the present invention is to prevent corrosion of the electrodes of an exhaust gas sensor using an Sn-based metal oxide semiconductor.

[発明の構成コ この発明の排ガスセンサは、Sn元素を含有する金属酸
化物半導体と、結晶粒界にZr0tを析出させたpt電
極とを組み合わせたことを特徴とする。
[Structure of the Invention] The exhaust gas sensor of the present invention is characterized by a combination of a metal oxide semiconductor containing the Sn element and a PT electrode in which ZrOt is deposited at the grain boundaries.

このような金属酸化物半導体には、上記の5nOyやB
aSnO3の他に、例えばCa5nOsや5rSnO,
、、あるいはこれらとTidy等の他の金属酸化物半導
体との混合物、さらにこれらの化合物のSn元素の一部
をTi等で置換したもの等が有る。
Such metal oxide semiconductors include the above-mentioned 5nOy and B.
In addition to aSnO3, for example, Ca5nOs, 5rSnO,
, or mixtures of these and other metal oxide semiconductors such as Tidy, and furthermore, compounds in which a part of the Sn element in these compounds is replaced with Ti or the like.

電極は、Ptを主成分とし、その結晶粒界にZr0tを
析出させたものであれば良く、第3成分のRhや、Au
等を添加したものでも良い。
The electrode may be made of Pt as a main component, with ZrOt precipitated at its grain boundaries, and Rh or Au as a third component.
It is also possible to add the following.

[実施例] 排ガスセンサの製造 等モル量のB a COsや5rCOs、CaCO5と
Snowとを混合し、空気中で4時間1200℃で反応
させ、ペロブスカイト化合物Ba5nOs、SrSnO
3,Ca5nOaを得る。得られた化合物の粉砕後に、
市販のZ r O!を添加したPt電極(直径70μ)
を埋設し、第1図、第2図に示すセンサチップに成型す
る。成型後のチップを空気中で4時間1300℃に加熱
し、焼結を行う。なお以下では、Zr0tを結晶粒界に
析出させたPt電極を、pt−ZrCh電極とする。
[Example] Production of exhaust gas sensor Equimolar amounts of B a COs, 5rCOs, CaCO5 and Snow were mixed and reacted in air at 1200°C for 4 hours to form perovskite compounds Ba5nOs and SrSnO.
3. Obtain Ca5nOa. After grinding the obtained compound,
Commercially available Z r O! Pt electrode (diameter 70μ) doped with
is embedded and molded into the sensor chip shown in FIGS. 1 and 2. The molded chip is heated to 1300° C. for 4 hours in air to perform sintering. In the following, a Pt electrode in which Zr0t is precipitated at grain boundaries will be referred to as a pt-ZrCh electrode.

焼結後のチップを用いて、第1図、第2図に示す排ガス
センサ(2)を組み立てる。図において、(4)はアル
ミナ等の絶縁基板で、その端部に設けたくぼみ部(6)
には、前記のセンサチップ(8)を収容する。チップ(
8)の電極(lO)、(12)は、基板(4)に設けた
溝部(14)、(16)に収容し、その端部を卑金属の
外部リード(1,8)、(20)に接続する。次にチッ
プ(8)の周囲を残して、基板(4)にアルミナの薄板
(22)を貼り合わせ、電極(10)、(!2)を雰囲
気から遮断して保護する。
Using the sintered chip, the exhaust gas sensor (2) shown in FIGS. 1 and 2 is assembled. In the figure, (4) is an insulating substrate made of alumina, etc., and a recess (6) is provided at the end of the insulating substrate.
The sensor chip (8) is housed in the sensor chip (8). Chip (
The electrodes (lO) and (12) of 8) are housed in the grooves (14) and (16) provided in the substrate (4), and their ends are connected to the base metal external leads (1, 8) and (20). Connecting. Next, a thin alumina plate (22) is bonded to the substrate (4), leaving the area around the chip (8), to protect the electrodes (10) and (!2) by shielding them from the atmosphere.

なおガスセンサ(2)の構造には、これ以外にも任意の
ものを用いうろことは言うまでもない。
It goes without saying that the structure of the gas sensor (2) may be any other suitable structure.

他の実施例として、1200℃で仮焼した5nO1にP
t Zr0t電極を接続し、1300℃で焼結して、同
様のガスセンサ(2)とする。
As another example, P was added to 5nO1 calcined at 1200°C.
A similar gas sensor (2) is obtained by connecting a Zr0t electrode and sintering at 1300°C.

比較例として以下のセンサ(2)を調製する。The following sensor (2) is prepared as a comparative example.

(a)  Pt  Zr0t電極(10)、(12)を
、直径SOμのp t−rth合金電極(Rh40wt
%または13wt%)に代えたもの(BaSnOs、S
now)。
(a) The Pt Zr0t electrodes (10) and (12) were replaced with a Pt-rth alloy electrode (Rh40wt
% or 13wt%) (BaSnOs, S
now).

(b)  1.0wt%のT i Otを析出させたP
L(直径80μ)を電極としたもの(Sift)。
(b) P with 1.0 wt% of T i Ot precipitated
L (diameter 80μ) as an electrode (Sift).

(c)  5wt%のAuを添加したPt電極(直径7
0μ、CaS no 、)。
(c) Pt electrode doped with 5 wt% Au (diameter 7
0 μ, CaS no,).

(d)  Pt−Rh合金(Rh40vt%)をTi1
tの電極としたもの。
(d) Pt-Rh alloy (Rh40vt%) with Ti1
t electrode.

なおこれらの比較例において、センサ(2)の製造条件
は最初の実施例と同等である。
Note that in these comparative examples, the manufacturing conditions for the sensor (2) are the same as in the first example.

半導体の特性 SnO,は排ガスセンサの材料として周知で有る。Characteristics of semiconductors SnO is well known as a material for exhaust gas sensors.

これに対してBa5nO+、5rSnOs、Ca5nO
,は排ガスセンサには新規なものであり、いずれもペロ
ブスカイト化合物である。BaSnO3はn形で抵抗値
は空燃比とともに増大し、S rS no sやCa−
8nO3はp形とn形とが入り混じった化合物である。
On the other hand, Ba5nO+, 5rSnOs, Ca5nO
, are new to exhaust gas sensors, and both are perovskite compounds. BaSnO3 is n-type, and its resistance value increases with the air-fuel ratio.
8nO3 is a compound in which p-type and n-type are mixed.

これちの中では−RaSn(’)、が冊t1優わ、アい
ス−BaSnOaの酸素感度は、S rS no 、や
Ca5nO。
Among these, -RaSn(') has the highest oxygen sensitivity, and the oxygen sensitivity of -BaSnOa is superior to that of S rS no and Ca5nO.

に比べて高い。Ba5nOsとSnO,との酸素感度は
同程度であるが、高温の還元性雰囲気への耐久性や、排
ガス中の未反応の可燃性ガスによる検出誤差の小ささに
おいて、Ba5nO,が優れている。
high compared to The oxygen sensitivity of Ba5nOs and SnO is comparable, but Ba5nO is superior in terms of durability to high-temperature reducing atmospheres and small detection errors due to unreacted combustible gas in exhaust gas.

例えば5nOtを900℃で当量比λが0.9〜0゜9
5の雰囲気に長時間(4〜IO時間)さらすと、抵抗値
は不可逆に低下するが、Ba5nO,ではこのようなこ
とは無い。次に5nOtでは排ガス中の未反応成分(主
としてCOとHC)への感度が高く、Ba5no、では
低い。そしてSnO,では未反応成分への感度が酸素へ
の感度に比べ高すぎるため、未反応成分量の変化により
、検出誤差が生ずる。
For example, the equivalence ratio λ of 5nOt at 900°C is 0.9 to 0°9.
When exposed to the atmosphere of Ba5nO for a long time (4 to IO hours), the resistance value decreases irreversibly, but this does not occur with Ba5nO. Next, 5nOt has high sensitivity to unreacted components (mainly CO and HC) in exhaust gas, while Ba5no has low sensitivity. In SnO, the sensitivity to unreacted components is too high compared to the sensitivity to oxygen, so a change in the amount of unreacted components causes a detection error.

Pt  Zr0t電極 Pt  7.rot電極(10)、(12)は、ptの
結晶粒界にZ r Otを析出させたもので有る。Zr
CLの添加量は例えば0.O1〜3.Ovt%が好まし
く、0.01wt%以上とすることにより充分な耐食性
が得られると共に、3.0wt%以下とすることにより
硬度を加工が容易な範囲に抑えることができる。なおこ
の実施例ではZrO+の添加量を06wt%とじたもの
を用いるが、0.3wt%のものや1.0wt%のもの
でも、結果は同等で有った。さらにj”’t  ZrO
2電極には、PtとRhとの合金や、PtとAuとの合
金にZr0zを添加したもの等を用いても良い。
Pt Zr0t electrode Pt 7. The rot electrodes (10) and (12) are made of Z r Ot precipitated at the grain boundaries of PT. Zr
The amount of CL added is, for example, 0. O1-3. Ovt% is preferable, and by setting it to 0.01 wt% or more, sufficient corrosion resistance can be obtained, and by setting it to 3.0 wt% or less, the hardness can be suppressed to a range that is easy to process. In this example, the amount of ZrO+ added was 06 wt%, but the results were the same even if the amount was 0.3 wt% or 1.0 wt%. Further j”'t ZrO
For the two electrodes, an alloy of Pt and Rh or an alloy of Pt and Au to which Zr0z is added may be used.

電極の耐食性 N極の耐久性を評価するため、各材料のガスセンサ(2
)を6個ずつ用い、以下の試験を行った。
Corrosion resistance of the electrode In order to evaluate the durability of the N electrode, gas sensors (2
) were used to conduct the following tests.

センサ(2)に、900℃でλが09の雰囲気と、35
0°Cの空気中とに90秒ずつ、計3分のサイクルを、
20,000サイクル加える。このサイクルの合計時間
は1000時間である。サイクルの途中ではセンサ(2
)の抵抗値から断線の有無を調べ、サイクルの終了後に
は電極の状態を検査する。ここでλが0.9の雰囲気は
、ガスセンサが置かれる雰囲気としては、極めて還元性
の強いものである。また900℃はガスセンサの最高使
用温度に相当する。さらに350℃と900°Cとの温
度サイクルは、センサに大きな熱衝撃を与える。
The sensor (2) is exposed to an atmosphere of 900°C and a lambda of 09, and an atmosphere of 35
A cycle of 90 seconds each in 0°C air for a total of 3 minutes,
Apply 20,000 cycles. The total time for this cycle is 1000 hours. During the cycle, the sensor (2
) Check for disconnection based on the resistance value, and inspect the condition of the electrodes after the cycle is complete. Here, the atmosphere where λ is 0.9 is an extremely reducing atmosphere in which the gas sensor is placed. Further, 900° C. corresponds to the maximum operating temperature of the gas sensor. Furthermore, the temperature cycle between 350°C and 900°C imposes a large thermal shock on the sensor.

従ってこのテストは、雰囲気、最高温度、熱衝撃のいず
れの点でも過酷なしのである。
Therefore, this test is not harsh in terms of atmosphere, maximum temperature, or thermal shock.

第3図にBaSnO3に付いての結果を示す。試料1〜
6の線径80μのPt−Rh合金0?h40wt%)を
用いたものでは、Rh量が多く、線径が大きいにもかか
わらず、全て断線している。一方試料7〜12の、線径
70μでZrO,fio、6wt%のPt  Zrot
合金では、線径が小さいにもかかわらず、いずれも断線
していない。断線したpt−Rh合金を検査すると、電
極内部にSnが拡散し合金化していることが分かった。
Figure 3 shows the results for BaSnO3. Sample 1~
Pt-Rh alloy 0?6 wire diameter 80μ? In the wires using 40 wt % of Rh, all wires were disconnected despite having a large amount of Rh and a large wire diameter. On the other hand, samples 7 to 12 had a wire diameter of 70μ, ZrO, fio, and 6 wt% Pt Zrot.
In the case of alloys, there was no wire breakage despite the small wire diameter. When the disconnected pt-Rh alloy was inspected, it was found that Sn had diffused into the electrode and formed an alloy.

一方Pt  Zr0t電極では、Snは電極の表面部に
低農度で固溶しているに過ぎず、結晶内部への拡散は粒
界のZ r Otのため阻止されていた。
On the other hand, in the PtZrOt electrode, Sn was only dissolved in solid solution at a low concentration on the surface of the electrode, and diffusion into the interior of the crystal was prevented by ZrOt at the grain boundaries.

第4図に同じ試験に付いての、SnO,での結果を示す
。試料1〜6は上記のPt−Rh合金を用いたもので、
試料7〜12は、Pt  7.rOtを用いたものであ
る。Pt  Zr0tの使用により電極の耐久性が増す
ことは、共通である。
Figure 4 shows the results of the same test for SnO. Samples 1 to 6 used the above Pt-Rh alloy,
Samples 7 to 12 are Pt 7. This uses rOt. It is common that the use of Pt ZrOt increases the durability of the electrode.

テスト結果を整理し、表1に示す。The test results are summarized and shown in Table 1.

表 1 電極の耐久性 半導体    断線個数  断線までのN旦エ 互量掻
    *1    サイクル*21*   Ba5n
()、+      6   6000Pt−Rh  
  (Rh40) 2*   Ba5nOa      6Pt−Rh  
  (Rhl 3) 3    BaSnO30 PL−Zr0゜ 4*   Sn0.       6   4000P
t−[1h    (Rh40) 5    Snow        OPt   Zr
0t 6   5rSn0.     O Pt  Zr0t 7*   CaSnO358000 Pt−Au    (Au5wt%) 8     CaSnO30 Pt  Zr0t 9*    Sn0.       4   1300
0Pt−Trot 10*    TiO*           0Pt
−Rh    (Rh40) *1  いずれも試料6個、 *2  断線したもののみに付いての平均値、*  *
印は比較例。
Table 1 Durability of electrodes Semiconductor Number of disconnections N days until disconnection Alternative amount *1 Cycle *21* Ba5n
(), + 6 6000Pt-Rh
(Rh40) 2* Ba5nOa 6Pt-Rh
(Rhl 3) 3 BaSnO30 PL-Zr0°4* Sn0. 6 4000P
t-[1h (Rh40) 5 Snow OPt Zr
0t 6 5rSn0. O Pt Zr0t 7* CaSnO358000 Pt-Au (Au5wt%) 8 CaSnO30 Pt Zr0t 9* Sn0. 4 1300
0Pt-Trot 10* TiO* 0Pt
-Rh (Rh40) *1 All 6 samples, *2 Average value for only broken wires, * *
The marks are comparative examples.

[発明の効果コ この発明では、排ガスセンサの電極の耐久性を高め、過
酷な雰囲気での排ガスセンサの使用を可能にすることが
できる。
[Effects of the Invention] According to the present invention, the durability of the electrodes of the exhaust gas sensor can be increased and the exhaust gas sensor can be used in harsh atmospheres.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の排ガスセンサの斜視図、第2図は実施
例の排ガスセンサの分解状聾を示す平面図、第3図、第
4図は実施例の特性図である。 図において、 (2)ガスセンサ、 (8)センサチップ(lO)、(
12)電極。 Sample N。 第4図 Sample N。
FIG. 1 is a perspective view of the exhaust gas sensor of the embodiment, FIG. 2 is a plan view showing the exhaust gas sensor of the embodiment in an exploded state, and FIGS. 3 and 4 are characteristic diagrams of the embodiment. In the figure, (2) gas sensor, (8) sensor chip (lO), (
12) Electrode. Sample N. Figure 4 Sample N.

Claims (1)

【特許請求の範囲】[Claims] (1)ガスにより抵抗値が変化する金属酸化物半導体に
、少なくとも一対の電極を接続した排ガスセンサにおい
て、 上記金属酸化物半導体はSn元素を含有し、かつ前記電
極の主成分はPtであり、その結晶粒界にはZrO_2
を折出させてある、ことを特徴とする排ガスセンサ。
(1) In an exhaust gas sensor in which at least one pair of electrodes is connected to a metal oxide semiconductor whose resistance value changes depending on gas, the metal oxide semiconductor contains Sn element, and the main component of the electrode is Pt, At the grain boundaries, ZrO_2
An exhaust gas sensor characterized by having:
JP60152914A 1985-07-11 1985-07-11 Exhaust gas sensor Expired - Fee Related JPH06100561B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60152914A JPH06100561B2 (en) 1985-07-11 1985-07-11 Exhaust gas sensor
US06/883,130 US4816800A (en) 1985-07-11 1986-07-08 Exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60152914A JPH06100561B2 (en) 1985-07-11 1985-07-11 Exhaust gas sensor

Publications (2)

Publication Number Publication Date
JPS6214047A true JPS6214047A (en) 1987-01-22
JPH06100561B2 JPH06100561B2 (en) 1994-12-12

Family

ID=15550903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60152914A Expired - Fee Related JPH06100561B2 (en) 1985-07-11 1985-07-11 Exhaust gas sensor

Country Status (1)

Country Link
JP (1) JPH06100561B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148243A (en) * 2010-02-04 2011-08-10 罗伯特.博世有限公司 Electronic device for high temperature

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124059A (en) * 1979-03-07 1980-09-24 Bosch Gmbh Robert Resistance measuring sensor for detecting oxygen content of gas and method of making said sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55124059A (en) * 1979-03-07 1980-09-24 Bosch Gmbh Robert Resistance measuring sensor for detecting oxygen content of gas and method of making said sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148243A (en) * 2010-02-04 2011-08-10 罗伯特.博世有限公司 Electronic device for high temperature

Also Published As

Publication number Publication date
JPH06100561B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US4816800A (en) Exhaust gas sensor
US4387359A (en) Titania oxygen sensor with chrome oxide compensator
CA1038034A (en) Measuring cell for determining oxygen concentrations in a gas mixture
GB1488733A (en) Hydrocarbon concentration sensor for use in engine exhaust gas
EP0197629B1 (en) Alcohol selective gas sensor
US4225559A (en) Ceramic element sensor
US4346585A (en) Gas detector
JPS6123790Y2 (en)
JP3845741B2 (en) Nitrogen oxide detection method and sensor element for nitrogen oxide detection
US4575441A (en) Exhaust gas sensor and process for producing same
JPS6214047A (en) Exhaust gas sensor
US4162631A (en) Rare earth or yttrium, transition metal oxide thermistors
JPH0443233B2 (en)
JPS62195551A (en) Exhaust gas sensor
JPS6214049A (en) Exhaust gas sensor
US4231254A (en) Rare earth or yttrium, transition metal oxide thermistors
JP3415677B2 (en) Gas sensor
CA1088626A (en) Resistance-type ceramic sensor element and sensor for combustion gas sensing device
JPH08226909A (en) Contact-combustion-type carbon monoxide gas sensor
JPH0110590Y2 (en)
CN1160848A (en) Alcohol-sensitive tin dioxide element and its preparation
KR900003930B1 (en) Gas detector
JPS6214050A (en) Exhaust gas sensor
US4232441A (en) Method for preparing rare earth or yttrium, transition metal oxide thermistors
KR900003929B1 (en) Gas detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees