JPS62140035A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPS62140035A
JPS62140035A JP28233585A JP28233585A JPS62140035A JP S62140035 A JPS62140035 A JP S62140035A JP 28233585 A JP28233585 A JP 28233585A JP 28233585 A JP28233585 A JP 28233585A JP S62140035 A JPS62140035 A JP S62140035A
Authority
JP
Japan
Prior art keywords
light
wavelength
mirror
measured
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28233585A
Other languages
Japanese (ja)
Other versions
JPH052176B2 (en
Inventor
Masahiro Watari
正博 渡
Kan Fujimoto
敢 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP28233585A priority Critical patent/JPS62140035A/en
Publication of JPS62140035A publication Critical patent/JPS62140035A/en
Publication of JPH052176B2 publication Critical patent/JPH052176B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to realize the highly accurate measurement of temp., by alternately irradiating an object to be measured with two kinds of lights having the same luminous intensity but different in a wavelength at a constant ratio. CONSTITUTION:Two kinds of lights (lambda1, lambda2) having the same luminous intensity but different in a wavelength at a constant ratio are alternately emitted from a light source 4 and divided into two by a half mirror 14 and the lights transmitting through the mirror 14 are reflected by a mirror 8 to irradiate an object 3 to be measured while the lights reflected from the mirror 14 are held to such a state that the wavelengths or intensities thereof or the ratio of the luminous intensities thereof are constant by a feedback circuit 7. Next, the light from the object 3 passes through an objective lens 9 to reach a dichroic mirror 5. As a result, light with a wavelength lambda1 reflects and light with a wavelength lambda2 transmits. The light with the wavelength lambda1 reflected from the mirror 5 and the light with the wavelength lambda2 transmitted through the mirror 5 are respectively inputted to a microprocessor (mup)17 which in turn measures the emissivity ratio of lights different in a wavelength from the rising in the temp. of the object 3 to measure the temp. of the object 3.

Description

【発明の詳細な説明】 て産業上の利用分野〉 本発明は、測定対象物の放射率の影響を受けない放射温
度計に関づる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a radiation thermometer that is not affected by the emissivity of an object to be measured.

〈従来の技術〉 従来、放射率の影響を受けない欣銅温度剖を実用する手
段の1つとして、第3図に示すような方法が用いられて
いる。第3図において、1は/1ilfl瀉tct甜で
あり12は測定対象物、3略よ放射温度計とi71!I
定対象物の間に配置された放射光反射板で。
<Prior Art> Conventionally, a method as shown in FIG. 3 has been used as one of the means for practical use of copper thermometry that is not affected by emissivity. In Figure 3, 1 is /1ilfl>tct, 12 is the object to be measured, 3 is the radiation thermometer, and i71! I
with a radiation reflector placed between the objects.

半球状のボウルの底部に小孔が形成され、内側が高反射
率になるように金めつき等が施されている。
A small hole is formed in the bottom of the hemispherical bowl, and the inside is plated with gold to make it highly reflective.

上記構成において、ボウルの頂点に放OA温麿計を取付
けて放射対像物の表面に近接させ、相互反射を利用して
見掛けの放射率を約1にした上で放射対像物の温度を測
定している。
In the above configuration, an emission OA thermometer is attached to the top of the bowl and brought close to the surface of the radiation object, and the temperature of the radiation object is measured by using mutual reflection to make the apparent emissivity approximately 1. Measuring.

第4図は第3図に示ず構成において、Mffj光反射板
を設置した場合と取外した場合(おける放射温度計の出
力と時間との関係を示ずものである。
FIG. 4 shows the relationship between the output of the radiation thermometer and time in the configuration not shown in FIG. 3 when the Mffj light reflection plate is installed and when it is removed.

図によれば、放射光反射板を設置した場合は放射温度計
の出力は一定の出力まで上背するが、放射光反射板を取
外した場合は出力が低下する。1手って放射光反射板を
設置した状態を故IJJ率約1として測定対象物の温度
および放射率を求めている。
According to the figure, the output of the radiation thermometer increases to a certain level when the radiation reflection plate is installed, but the output decreases when the radiation reflection plate is removed. First, the temperature and emissivity of the object to be measured are determined by assuming that the IJJ ratio is approximately 1 when the radiation reflection plate is installed.

〈発明が解決しようとする問題点〉 しかしながら、上記構成においては放射光反射板の出し
入れのためのスペースが必要で装置も大型となる。また
、放射光反射板は測定対象物のごく近くに置く必散があ
るため設置条件が厳しく一般的に使用場所か限られると
いう欠点があった。
<Problems to be Solved by the Invention> However, in the above configuration, a space is required to take in and take out the emitted light reflecting plate, and the apparatus becomes large. Furthermore, since the radiation light reflecting plate must be placed very close to the object to be measured, the installation conditions are strict and the places where it can be used are generally limited.

本発明は放飼温度31の外部に特別な装置を設けること
なしに枚Q1率の影響を受けず、精度の高い温1.(t
 、1.1+定を実現することを目的とする。
The present invention does not require any special equipment outside the stocking temperature 31, is not affected by the Q1 rate, and has a highly accurate temperature 1. (t
, 1.1+ constant.

〈問が点を解決するための手段〉 前記問題点を解決するため本発明の構成は、同一の光強
度または一定の比をもつ2種類の波長の異なる光を測定
対象物に交互に照射し、前記光による前記測定対象物の
温度上昇から前記波長の異なる光の敢躬率比を測定する
ことにより、前記測定対染物の温度を測定するようにし
たものである。
<Means for solving the problem> In order to solve the above problem, the configuration of the present invention alternately irradiates the measurement target with two types of light having different wavelengths having the same light intensity or a certain ratio. The temperature of the dyed object to be measured is measured by measuring the ratio of the detection rate of the light having different wavelengths based on the temperature rise of the object to be measured due to the light.

〈実施例〉 第1図は本発明による放射温度S1の一実施例を示す構
成図でおる。図において、3は測定対象物であり、4は
同一の強度または一定の比で波長の¥1.なる2種類の
光(λ1.λ2)を交互に発する例えばL E D 、
  L D 、 CO2レー量F、YAGレーザ等の光
源である。この光源4からの光は所定の角度に配置され
たハーフミラ−14で2つに分割され、ハーフミラ−1
4を透過した光は、ミラー8で反射し、対物レンズ9を
通って測定対象物3を照射する(従って測定対象物3が
らはその測定対争物自身の温度と光源から照射されたλ
1またはλ2の波長の光を加えた光が反射する)。ハー
フミラ−5で反射した丸はモニタ用ホトダイオード6に
より光電変換され、フィードバック回路7によりその波
長や強度または光強度の比が一定な状態に保持される。
<Embodiment> FIG. 1 is a block diagram showing an embodiment of the radiation temperature S1 according to the present invention. In the figure, 3 is the object to be measured, and 4 is the same intensity or a certain ratio of the wavelength. For example, L E D which alternately emits two types of light (λ1 and λ2),
LD, CO2 laser amount F, and a light source such as a YAG laser. The light from this light source 4 is split into two by a half mirror 14 arranged at a predetermined angle.
The light transmitted through the object 4 is reflected by the mirror 8, passes through the objective lens 9, and irradiates the object 3 to be measured.
1 or λ2 wavelength is reflected). The circle reflected by the half mirror 5 is photoelectrically converted by a monitoring photodiode 6, and its wavelength, intensity, or ratio of light intensity is maintained constant by a feedback circuit 7.

測定対象物3からの光は対物レンズ9を通って所定の角
度に配置されたダイクロイックミラー10に達する。こ
の結果1例えばλ1の波長の光は反射し、λ2の光は透
過する。ダイクロイックミラー10により反射した光λ
、は干渉フィルタ10aを経てホトダイオード11aに
より光電変換され1アンプ15aにより増幅される。こ
のアンプ15aからの出力は光源のオン、オフに同期し
てスイッチ13aによりスイッチングされ、一方は直流
分カットフィルタ12aを経てアンプ15bで増幅され
て積分器16aに入力され、この積分116aからの出
力がマイクロプロセッサ17(以下、μPという)に入
力される。また、スイッチ13aによりアンプ15c側
にスイッチングされた場合は光8!4はオフとなり、測
定対象物のみの枚射光が増幅され、その出力がμ1)1
7に入力される。
Light from the object to be measured 3 passes through an objective lens 9 and reaches a dichroic mirror 10 arranged at a predetermined angle. As a result 1, for example, light with a wavelength of λ1 is reflected, and light with a wavelength of λ2 is transmitted. Light λ reflected by dichroic mirror 10
, passes through an interference filter 10a, is photoelectrically converted by a photodiode 11a, and is amplified by an amplifier 15a. The output from this amplifier 15a is switched by a switch 13a in synchronization with the on/off of the light source, and one side passes through a DC cut filter 12a, is amplified by an amplifier 15b, is input to an integrator 16a, and is output from this integrator 116a. is input to the microprocessor 17 (hereinafter referred to as μP). In addition, when the switch 13a switches to the amplifier 15c side, the light 8!4 is turned off, the light emitted only from the object to be measured is amplified, and its output is μ1)1
7 is input.

一方ダイクロイックミラー5を透過した光は干渉フィル
タ10bを通り、ホトダイオード11bで光電変換され
、アンプ15dにより増幅される。
On the other hand, the light transmitted through the dichroic mirror 5 passes through an interference filter 10b, is photoelectrically converted by a photodiode 11b, and is amplified by an amplifier 15d.

このアンプ15dからの出力は所定時rial fnに
スイッチ13bによりスイッチングされ、一方は直流分
カットフィルタ12bを経てアンプ15fで増幅され、
積分器16bに入力される。この積分器16bの出力は
μP17に入力される。また、スイッチ13bによりア
ンプ15e側にスイッチングされた場合は光源4はオフ
となり、測定対象物のみの/12 QJ光が増幅され、
その出力がμD17に入力される。
The output from this amplifier 15d is switched by the switch 13b at a predetermined time real fn, and one is amplified by the amplifier 15f after passing through the DC component cut filter 12b.
The signal is input to an integrator 16b. The output of this integrator 16b is input to μP17. In addition, when the switch 13b is switched to the amplifier 15e side, the light source 4 is turned off, and the /12 QJ light of only the object to be measured is amplified.
The output is input to μD17.

なお、光源4の波長λ嘗、λ2を有する光のスイッチン
グ1bスイッチ13a、13bのスイッチングはマイク
ロプロセッサ17がらのm5に基づいてン夫定される。
Note that the switching of the light switching 1b switches 13a and 13b of the light having wavelengths λ1 and λ2 of the light source 4 is determined based on m5 of the microprocessor 17.

第2図(イ)〜(ロ)はアンプ15a〜15f’の出ツ
ノの状態をタイムチャートで示すものであるっ〈イ)図
は光源4から例えばλ1の光を照射したときのアンプ1
5aの出力を示すもので、aのレベルは測定対染物から
の光による出力、bのレベルは測定対象物3の表面から
の活反射成分により温度が0激に上昇した状態の出力、
Cのレベルは所定の時間測定対象物を照射したときの測
定対象物の最大出力、dのレベルは光源をオフにした直
後の出力で、このdのレベルから測定対象物の温度はゆ
っくりと下がり元のaの出力レベルに戻る(この曲線の
積分値は測定対染物が吸収したエネルギーに相当する)
。このとき(ニ)図で示すアンプ15dにも測定対象物
からの放射熱により同程度の出力が発生する。
Figure 2 (a) to (b) are time charts showing the state of the output horns of the amplifiers 15a to 15f'.
5a shows the output, where the level a is the output due to light from the object to be measured, the level b is the output when the temperature has sharply increased to 0 due to active reflection components from the surface of the object 3 to be measured,
Level C is the maximum output of the object to be measured when the object is irradiated for a predetermined period of time, level d is the output immediately after the light source is turned off, and the temperature of the object to be measured slowly decreases from level d. Return to the original output level of a (the integral value of this curve corresponds to the energy absorbed by the dyed object)
. At this time, the same level of output is generated in the amplifier 15d shown in FIG.

(ロ)図のアンプ15bはスイッチ13aがコンデンサ
12a側に切替えられた状態の出力を示すもので(イ)
図で示す出力波形の直流分がカットされd点から次第に
減衰する出力となる。この出力は積分器16aに入力さ
れ平準化されてμp17に入力される。
(B) The amplifier 15b in the figure shows the output when the switch 13a is switched to the capacitor 12a side. (B)
The DC component of the output waveform shown in the figure is cut, resulting in an output that gradually attenuates from point d. This output is input to the integrator 16a, leveled, and input to μp17.

(ハ)図はスイッチ13aをアンプ15C側に切酔え、
光源4からの出力をオフとしたときのアンプ15Cの出
力を示すもので測定対染物のみの出力である。
(c) The figure shows switch 13a set to amplifier 15C side.
This shows the output of the amplifier 15C when the output from the light source 4 is turned off, and is the output of only the object to be measured.

(ニ)図は光源4から例えばλ2の光を照射した状態を
示すもので、アンプ15dからはダイクロイックミラー
5を透過し、充電変換された測定対象物とλ2の波長の
光を合成したものが出力される。(ニ)図に示す出力波
形の各点(a−d)の説明は(イ)図と同様なので省略
する。
(D) The figure shows a state in which light with a wavelength of λ2, for example, is irradiated from the light source 4, and from the amplifier 15d, the light that is transmitted through the dichroic mirror 5 and is combined with the charged and converted measurement object and the light with a wavelength of λ2 is emitted. Output. (d) The explanation of each point (a to d) of the output waveform shown in the figure is the same as that in the figure (a), and will therefore be omitted.

(ホ)図はスイッチ13bがコンデンサ12b側に切替
えられた状態のアンプ15fの出力を示すもので(ニ)
図で示す出力波形の直流分がカットされd点から次第に
減衰する出力となる。この出力は積分器16bに入力さ
れ平準化されてμp17に入力される。
(e) The figure shows the output of the amplifier 15f when the switch 13b is switched to the capacitor 12b side. (d)
The DC component of the output waveform shown in the figure is cut, resulting in an output that gradually attenuates from point d. This output is input to the integrator 16b, leveled, and input to μp17.

(へ)図はスイッチをアンプ15e側に切替え光源4か
らの出力をオフとしたときのアンプ15eの出力を示す
もので測定対象物3のみの出力である。
(v) The figure shows the output of the amplifier 15e when the switch is switched to the amplifier 15e side and the output from the light source 4 is turned off, and is the output of only the object to be measured 3.

上記構成において。In the above configuration.

同一の強度を71する2波長の光源の強さ・・・ΔB 
 (W) 上記光源のそれぞれの波長・・・λ1.λ2 〈m)上
記波長の放射率    ・・・B1.ε2測定対象物の
温度    ・・・T(K)とする。
Intensity of light source with two wavelengths giving the same intensity 71...ΔB
(W) Each wavelength of the light source...λ1. λ2 <m) Emissivity at the above wavelength...B1. ε2 Temperature of the object to be measured...T(K).

光tA4から21の波長で出射された光が測定対象物3
に当たると ε、・ΔBの光が吸収され。
The light emitted from the light tA4 at a wavelength of 21 is measured at the measurement target 3.
When it hits, ε, ・ΔB light is absorbed.

同様にλ2の波長で出射された光は B2・ΔBの光が吸収される。Similarly, the light emitted with a wavelength of λ2 is B2·ΔB light is absorbed.

つまり、B1 ・ΔB(B2 ・ΔB)の光の強度が測
定対染物の温度を局所的に上げることになる。
In other words, the light intensity of B1 .DELTA.B (B2 .DELTA.B) locally increases the temperature of the dye to be measured.

この上昇した測定対象物の温度をΔT1とすると。Let this increased temperature of the measurement object be ΔT1.

ΔT+=81ΔB−K (ΔT1はアンプ15bへの入力となる)同様にλ2の
波長の光が測定対や物を上昇させる温度は ΔT2  =ε2 ΔB−K (ΔT2はアンプ15fへの入力となる)ここで、に=
測定系としての定数。
ΔT+=81ΔB-K (ΔT1 becomes the input to the amplifier 15b) Similarly, the temperature at which the light of wavelength λ2 raises the measurement pair or object is ΔT2 = ε2 ΔB-K (ΔT2 becomes the input to the amplifier 15f) Here, ni=
Constants as a measurement system.

なお、光源4から光を照射していないときの波長λ嘗に
おける測定対象物からの放射輝度B、はウィーンの式か
ら B+=E+C+/λ15eXl)(C2/λ+T)・・
・(1) 同じくλ2における測定対象物からの放射11度B2は B2  = 62  CI  /λ2  ”3XI) 
 (C2/λ2T)・・・(2) ここで、CI 、C2=定数 また、光源4からのそれぞれの波長の光が照射されたと
きの放射輝度(B+−、B2−)は次ノようになる。
In addition, the radiance B from the object to be measured at the wavelength λ when no light is irradiated from the light source 4 is calculated from the Wien equation as B+=E+C+/λ15eXl)(C2/λ+T)...
・(1) Similarly, the radiation 11 degrees B2 from the measurement object at λ2 is B2 = 62 CI /λ2 ''3XI)
(C2/λ2T)...(2) Here, CI, C2=constant Also, the radiance (B+-, B2-) when irradiated with light of each wavelength from the light source 4 is as follows. Become.

B 1  ′  −ε +C+/  λ 、’−exp
(、C2/λ、  (T+ΔT+ ))  ・・・(3
)B2 ’ =82 CI /λ2’−exp(C2/
λ2  (T+ΔT2)) ・・・(4) (3) 。
B 1 ′ −ε +C+/λ ,′−exp
(, C2/λ, (T+ΔT+))...(3
)B2' = 82 CI/λ2'-exp(C2/
λ2 (T+ΔT2)) ... (4) (3).

(4)式にd3いて ^T+、 ΔT2(T  とすれば次のような近似式と
することが出来る。
If d3 is ^T+ and ΔT2(T in equation (4), then the following approximate equation can be obtained.

81  ′  = ε +C+/  λ 、   5 
−exp(C2/λ、T(1−ΔT、/T)) =εIC+/λ+ 5eXl)  (C2/λ+T>・
<1+C2/λ1T・ΔT+)  ・・・(5)82′
=ε2C1/λ2s−exp (−C2/λ2T(1−ΔT2./T>)= B2 C
2/’λ25eXI)  (−02/λ2T)(1+0
2/22丁・ΔT2 )  ・・・(6)(+) 、 
(2) 、 (5) 、 (f;)式より(B+ ’ 
 −8+ )/B+ =C2ΔT + /” <λ+T2)   ・・・(7
)(B2 ’  −82> / B2 −=C2ΔT2/(λ2T2)  ・・・(8)(7)
式を(8)式で除すると。
81' = ε +C+/λ, 5
-exp(C2/λ, T(1-ΔT,/T)) =εIC+/λ+ 5eXl) (C2/λ+T>・
<1+C2/λ1T・ΔT+) ...(5)82'
=ε2C1/λ2s-exp (-C2/λ2T(1-ΔT2./T>)=B2 C
2/'λ25eXI) (-02/λ2T) (1+0
2/22 teeth・ΔT2)...(6)(+),
From equations (2), (5), and (f;), (B+'
−8+ )/B+ = C2ΔT + /” <λ+T2) ... (7
) (B2 '-82> / B2 -=C2ΔT2/(λ2T2) ... (8) (7)
Dividing the equation by the equation (8).

((B+ ’  B+ )/’B+ )/ f (B2
’   B2 )/B2 )−ΔTl/’ΔT2 ・ 
λ27/λ、  ・・・(9)ここで、6T1−ε+a
B−K。
((B+ 'B+)/'B+)/f (B2
'B2)/B2)-ΔTl/'ΔT2・
λ27/λ, ...(9) Here, 6T1-ε+a
B-K.

AT2=82 Δ B−K を(9)式に代入すると <8+ ’   B+ )/ (B2 ’  −82>
・ (82/Bl) = (λ 2 / λ 鵞  )  ・  (ε I 
 / ε 2  ) ・・・(10)(lO)式より (ε1/ε2)=(λ2/λ1 ) ・ (81’   Bl)/(B2’   B2)・(
B2 /81 >  ・・・(11)(1)式を(2)
式で除すると。
Substituting AT2=82 Δ B-K into equation (9) gives <8+ 'B+ )/(B2 '-82>
・ (82/Bl) = (λ 2 / λ goose) ・ (ε I
/ ε 2 ) ... (10) From the (lO) formula, (ε1/ε2) = (λ2/λ1 ) ・ (81' Bl) / (B2' B2) ・(
B2 /81 > ...(11) Expression (1) becomes (2)
When divided by Eq.

B+/B2−(ε1/ε2) (λ2/λ1)5・ e
X p  (02/T(1/ λ I −1/λ 2 
) )・・・(12) 測定対象物の温度下は11 、12  式より次のよう
に求めることができる。
B+/B2-(ε1/ε2) (λ2/λ1)5・e
X p (02/T(1/λ I −1/λ 2
))...(12) The temperature of the object to be measured can be determined from equations 11 and 12 as follows.

T=02 (1/λ、−1/λ2)/ 1n(B+/B2)2・(B2’  B2)/(B+’
  B+)・(λI/λ2)4)・・・(13)上記(
13)式により放射率の影響を受Gノない放射温度計を
実現することが出来る。
T=02 (1/λ, -1/λ2)/1n(B+/B2)2・(B2'B2)/(B+'
B+)・(λI/λ2)4)・・・(13) Above (
Equation 13) makes it possible to realize a radiation thermometer that is not affected by emissivity.

なお、前り己の百1算はすべてμp17によりiテわせ
ることが出来る。また、(13)式によって得jうれた
真温度Tと(1)J3よび(2)式から放射率ε1.ε
2を求めることが可能である。この放射率は、半導体プ
ロセスにおけるウェハーの物性評価に有用であり、この
放射率に注目することによって本発明の放射温度計は、
半導体プロセス評価装置としても用いることが出来る。
In addition, all the 101 arithmetic calculations can be done using μp17. Also, from the true temperature T obtained from equation (13) and equations (1) and (2), emissivity ε1. ε
It is possible to obtain 2. This emissivity is useful for evaluating the physical properties of wafers in semiconductor processes, and by focusing on this emissivity, the radiation thermometer of the present invention can
It can also be used as a semiconductor process evaluation device.

また、光源、ハーフミラ−、ミラー、ダイクロイックミ
ラーなどの部品の配置は本例に限らず各種変型が可能で
ある。
Furthermore, the arrangement of parts such as the light source, half mirror, mirror, dichroic mirror, etc. is not limited to this example, and various modifications are possible.

〈発明の効果〉 以上実施例とともに具体的に説明したように。<Effect of the invention> As specifically explained above along with the embodiments.

本発明によれば。According to the invention.

(1)外部に放射光反射板等を設けることなく、放射率
の影響のない精度の高い測温を行うことが出来る。
(1) Highly accurate temperature measurement without the influence of emissivity can be performed without providing an external radiation reflector or the like.

(2)大気中の灰色減光(波長に関係なく一様に光が弱
くなる)に強い。。
(2) Resistant to gray attenuation in the atmosphere (uniform weakening of light regardless of wavelength). .

(3)従来の放射温度計と同様の大きさで製作可能で、
さらにハンディタイプのものも製作可能である。
(3) Can be manufactured in the same size as a conventional radiation thermometer,
Furthermore, it is also possible to manufacture a handy type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による放射温度計の〜実施例を示す構成
図、第2図(イ)〜(へ)はアンプ15a〜15fの出
力の状態をタイムチャートで示す説明図、第3凶は従来
例を示す構成図、第4図は第3図に示す構成において、
放射光反射板を設置した場合と取外した場合における放
射温度計の出力と時間との関係を示す図である。 3・・・測定対象物、4・・・光源、5・・・ダイクロ
イックミラー、6・・・モニタ用ホトダイオード、7・
・・フィードバック回路、8・・・ミラー、9・・・対
物レンズ。 10a、10b−・・干渉フィルタ、11a、11b・
・・ホトダイオード、12a、12b・・・コンデンサ
。 13a、13b・・・スイッチ、14・・・ハーフミラ
−115a〜15「・・・アンプ、16a、16b−・
・積分器、17・・・マイクロプロセッサ。
FIG. 1 is a configuration diagram showing an embodiment of a radiation thermometer according to the present invention, FIGS. FIG. 4 is a configuration diagram showing a conventional example, in the configuration shown in FIG. 3,
It is a figure which shows the relationship between the output of a radiation thermometer and time when the radiation light reflection plate is installed and removed. 3...Measurement object, 4...Light source, 5...Dichroic mirror, 6...Monitoring photodiode, 7.
...Feedback circuit, 8...Mirror, 9...Objective lens. 10a, 10b--interference filter, 11a, 11b-
...Photodiode, 12a, 12b...Capacitor. 13a, 13b...Switch, 14...Half mirror-115a-15"...Amplifier, 16a, 16b-...
・Integrator, 17...Microprocessor.

Claims (1)

【特許請求の範囲】[Claims] 同一または一定の比を持つ光強度で波長の異なる2種類
の光を測定対象物に交互に照射し、前記光による前記測
定対象物の温度上昇から前記波長の異なる光の放射率比
を測定することにより、前記測定対象物の温度を測定す
るようにしたことを特徴とする放射温度計。
Alternately irradiating the object to be measured with two types of light having the same or constant light intensity and different wavelengths, and measuring the emissivity ratio of the lights of different wavelengths based on the temperature rise of the object due to the light. A radiation thermometer characterized in that the temperature of the object to be measured is measured.
JP28233585A 1985-12-16 1985-12-16 Radiation thermometer Granted JPS62140035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28233585A JPS62140035A (en) 1985-12-16 1985-12-16 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28233585A JPS62140035A (en) 1985-12-16 1985-12-16 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPS62140035A true JPS62140035A (en) 1987-06-23
JPH052176B2 JPH052176B2 (en) 1993-01-11

Family

ID=17651072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28233585A Granted JPS62140035A (en) 1985-12-16 1985-12-16 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPS62140035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368550B1 (en) * 1998-12-18 2003-05-09 주식회사 포스코 Alloying furnace for plated steel sheet with multi-wavelength measurement system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368550B1 (en) * 1998-12-18 2003-05-09 주식회사 포스코 Alloying furnace for plated steel sheet with multi-wavelength measurement system

Also Published As

Publication number Publication date
JPH052176B2 (en) 1993-01-11

Similar Documents

Publication Publication Date Title
US7864311B2 (en) Method and device for producing and detecting a Raman spectrum
KR100778197B1 (en) Gas detection method and gas detector device
ATE153135T1 (en) METHOD AND DEVICE FOR MONITORING GLUCOSE CONCENTRATION
CN103776382A (en) Method for measuring layer thickness of multilayer ceramic
US4470710A (en) I. R. Radiation pyrometer
CA2383834A1 (en) Method and apparatus for spectrometric analysis of turbid, pharmaceutical samples
ATE293821T1 (en) FIRE ALARM
CA2649455A1 (en) Apparatus for use in operator training with, and the testing and evaluation of, infrared sensors which are for missile detection
US4818102A (en) Active optical pyrometer
ES2054378T3 (en) COLOR SURVEILLANCE.
JPS62140035A (en) Radiation thermometer
US20180340835A1 (en) Pulsed radiation sources for transmission pyrometry
Humphries et al. A simple photoacoustic method for the in situ study of soot distribution in flames
RU2638381C1 (en) Device for visualization of infrared and terahetz radiations
RU2685548C1 (en) Method of measuring spectral coefficient of radiation of body
JP2755418B2 (en) Optical sensor spectral sensitivity measurement method
JP2703326B2 (en) How to measure the transmittance of a substance
US4985858A (en) Method and apparatus for temperature determination
JP2020041831A (en) Inspection device and inspection method
JP2581016B2 (en) Microscopic infrared spectrophotometer
JPH02268252A (en) Method for measuring reflectivity of material
JP4124389B2 (en) Temperature measuring method and temperature measuring device
JPS62219939A (en) Measuring method for thickness of semiconductor layer and apparatus employed therefor
JPH0412879B2 (en)
RU2599919C1 (en) Thermal imaging flaw-detective system