JPS62140025A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS62140025A
JPS62140025A JP28233185A JP28233185A JPS62140025A JP S62140025 A JPS62140025 A JP S62140025A JP 28233185 A JP28233185 A JP 28233185A JP 28233185 A JP28233185 A JP 28233185A JP S62140025 A JPS62140025 A JP S62140025A
Authority
JP
Japan
Prior art keywords
pressure
vortex
vortex generator
pipeline
detection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28233185A
Other languages
Japanese (ja)
Inventor
Ichizo Ito
伊藤 一造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP28233185A priority Critical patent/JPS62140025A/en
Publication of JPS62140025A publication Critical patent/JPS62140025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To make it possible to measure a mass flow rate with good accuracy without receiving the effect of the pulsating pressure in a measuring fluid or temp. by utilizing the pressure fluctuation generated between pressure guide tubes, by providing the pressure guide tubes to the pipe wall of a pipeline in the upstream and downstream sides of the vortex generator arranged in the pipeline. CONSTITUTION:The titled flowmeter is constituted of the vortex generator 2 provided to a pipeline 1 through which a measuring fluid flows, the pressure guide tube 11 (11, 13) provided to the pipe wall of the pipeline 1 in the upstream (downstream) side of said vortex generator 2 at one end thereof, the vortex flow speed detection part 3 (pressure detection part 4) connected to the other ends of the pressure guide tubes 12, 13 (11, 12) and a dividing part 5 dividing the output of a detection part 4 by the output of a detection pipe 3. When the measuring fluid flows through the pipeline 1, a vortex is generated in the generator 2 to advance along the pipe wall. Pressure fluctuation proportional to vortex generation frequency is generated in the pressure guide tubes 12, 13 and the flow speed of the fluid is measured by the detection part 3. When the vortex is discharged from the vortex generator 2, pressure difference is generated between the upstream and downstream sides of the vortex generator 2 in the pipeline 1. This pressure difference is measured by the detection part 4 through the pressure guide tubes 11, 12 and the output of the detection part 4 is processed by a dividing part to measure a mass flow amount.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は渦発生体によるカルマン渦の発生による渦発生
周波数及び圧力損失を利用した質量流量計に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mass flowmeter that utilizes the vortex generation frequency and pressure loss caused by the generation of Karman vortices by vortex generators.

<vF、来の技術) 第6図は従来より一般に使用されている従来例の構成説
明図である。
<vF, Next Technique) FIG. 6 is a diagram illustrating the configuration of a conventional example that has been commonly used.

図において、1は測定流体の流れる管路、2は管路に直
交して配置された渦発生体である。
In the figure, 1 is a conduit through which a fluid to be measured flows, and 2 is a vortex generator disposed perpendicular to the conduit.

管路1に測定辱体が矢印FLOWの如く流れると、渦発
生体2には矢印FDで示す如き平均抗力、及び。
When the measuring body flows through the pipe 1 as indicated by the arrow FLOW, the vortex generating body 2 experiences an average drag force as indicated by the arrow FD.

矢印F、で示す如き変動揚力が生じ、渦発生体2の上流
側と下流側との間には圧力損失ΔPが生ずる。
A fluctuating lift force as shown by arrow F is generated, and a pressure loss ΔP is generated between the upstream side and the downstream side of the vortex generator 2.

これらは、いずれも、密度をρ、速度をVとすれば、下
記に示す如く、密度ρと速度Vの二乗の積、即ち、ρv
2に比例する。これを速度に比例する渦周波数(体積流
量)fvで割り算することにより質fl流tを求めるこ
とができる。
If the density is ρ and the velocity is V, then the product of the density ρ and the square of the velocity V, that is, ρv
Proportional to 2. By dividing this by the vortex frequency (volume flow rate) fv which is proportional to the speed, the quality fl flow t can be obtained.

変動揚力pLoc±CL÷ρv2 圧力損失Δpoco斗ρv2 ■ 渦周波数Fv=stT=Kv ここで C9;平均抗力係数 C0;変動揚力係数 C1:圧力損失係数 st;ストロハルス数 d;渦発生体の直径 (発明が解決しようとする問題点) しかしながら、平均抗力F 変動揚力FLを測定する方
式は、セッサが渦発生体に設置されるので、種々の制約
をうけ製作がむつかしい。
Variable lift pLoc±CL÷ρv2 Pressure drop Δpoco dooρv2 ■ Vortex frequency Fv=stT=Kv Here, C9; Average drag coefficient C0; Variable lift coefficient C1: Pressure loss coefficient st; Strohals number d; Diameter of vortex generator (invention However, in the method of measuring the average drag force F and the fluctuating lift force FL, the cessor is installed on the vortex generator, so it is difficult to manufacture due to various restrictions.

本発明は、この問題点を解決するものである。The present invention solves this problem.

本発明の目的は、測定流体中の脈動圧や温度の影響をう
けない、精度の良好な質量流量計を提供するにある。
An object of the present invention is to provide a mass flowmeter with good accuracy that is not affected by pulsating pressure or temperature in a fluid to be measured.

(問題点を解決するための手段) この目的を違反するために、本願は、測定流体の流れる
管路と、核管路に設けられた渦発生体と、該渦発生体の
上流側の前記管路の管壁に一端が設けられた第1の導圧
管と、前記渦発生体の下流側の前記管路の管壁に互いに
対向して一端が設けられた第2.第3の導圧管と、該第
2.第3の導圧管の他端に接続され該第2と第3の導圧
管の間の差圧から渦発生周波数を検出して測定流体の流
速を検出する過流速検出部と、前記第1.第2の導圧管
の他端に接続され該第1と@2の導圧管の圧力より前記
渦発生体に基づく測定流体の圧力損失を検出する圧力検
出部と、該圧力検出部の出力を前記過流速検出部の出力
で割算する割算部とを具備してなる質量流量計を構成し
たものである。
(Means for Solving the Problem) In order to violate this objective, the present application discloses a conduit through which a measurement fluid flows, a vortex generator provided in the core conduit, and a vortex generator provided on the upstream side of the vortex generator. A first pressure impulse pipe having one end provided on the pipe wall of the pipe line, and a second pressure pipe having one end opposite to each other on the pipe wall of the pipe line downstream of the vortex generator. a third impulse pipe; an overflow rate detection section connected to the other end of the third pressure impulse pipe and detecting the vortex generation frequency from the differential pressure between the second and third pressure impulse pipes to detect the flow velocity of the measurement fluid; a pressure detection section connected to the other end of the second pressure impulse tube and detecting the pressure loss of the measurement fluid based on the vortex generator from the pressure of the first and @2 pressure impulse tubes; The mass flowmeter is configured to include a dividing section that divides by the output of the overflow speed detecting section.

(作用) 以上の構成において、管路に測定流体が流れると、渦発
生体の存在により渦が発生し、管壁に涜って進行する。
(Function) In the above configuration, when the measurement fluid flows through the pipe, a vortex is generated due to the presence of the vortex generator and moves against the pipe wall.

渦の中心は負圧で、渦は左右交互に生成されるので、管
壁に設けられた第2と第3の導圧管には、渦発生周波数
に比例した圧力変動が生ずる。これを利用して過流速検
出部において、測定流体の流速を知ることができる。
Since the center of the vortex is a negative pressure and the vortices are generated alternately on the left and right sides, pressure fluctuations proportional to the frequency of vortex generation occur in the second and third pressure guiding tubes provided on the pipe wall. Utilizing this, the flow rate of the measured fluid can be determined in the overflow rate detection section.

一方、渦発生体から渦が放出されると、管路内の圧力分
布は、渦発生体の上流側と下流側とでは、渦発生体によ
る圧力損失により圧力差が生ずる。
On the other hand, when a vortex is released from the vortex generator, a pressure difference occurs in the pressure distribution in the pipe between the upstream side and the downstream side of the vortex generator due to pressure loss due to the vortex generator.

この圧力損失を第1と第2の導圧管を介して圧力検出部
により測定する。
This pressure loss is measured by a pressure detection section via the first and second pressure guiding pipes.

割算部により圧力検出部の出力を過流速検出部の出力で
割算することにより質量流量を測定することができる。
The mass flow rate can be measured by dividing the output of the pressure detection section by the output of the overflow detection section using the division section.

以下、実施例について説明する。Examples will be described below.

(実施例) 第1図は、本発明の一実施例の構成説明図である。(Example) FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention.

図において、1は測定流体の流れる管路、2は管路に直
交して配置された渦発生体である。11は渦発生体2の
上流側の管路1の管壁に一端が設けられた第1の導圧管
である。12.13は渦発生体2の下流側の管路1の管
壁に互いに対向して一端が設けられた第2.第3の導圧
管である。3は第2゜第3の導圧管2,3の他端に接続
され第2と第3の導圧管の間の差圧ΔP2から渦発生周
波数fvを検出して測定流体の流速を検出する過流速検
出部である。4は第1.第29導圧管の圧力より渦発生
体2に基づく測定流体の圧力損失ΔP1を検出する圧力
検出部である。5は圧力検出部4の出力を過流速検出部
3の出力で割算する割算部である。
In the figure, 1 is a conduit through which a fluid to be measured flows, and 2 is a vortex generator disposed perpendicular to the conduit. Reference numeral 11 denotes a first pressure impulse pipe having one end provided on the pipe wall of the pipe line 1 on the upstream side of the vortex generator 2 . Reference numerals 12 and 13 refer to second vortex generators having one ends facing each other on the pipe wall of the pipe line 1 on the downstream side of the vortex generator 2. This is the third impulse pipe. 3 is connected to the other ends of the second and third pressure impulse pipes 2 and 3, and detects the vortex generation frequency fv from the differential pressure ΔP2 between the second and third pressure impulse pipes to detect the flow velocity of the measured fluid. This is a flow velocity detection section. 4 is the first. This is a pressure detection unit that detects the pressure loss ΔP1 of the measurement fluid based on the vortex generator 2 from the pressure of the 29th impulse pipe. 5 is a dividing unit that divides the output of the pressure detecting unit 4 by the output of the overflow rate detecting unit 3.

第2図は信号処理回路の一実施例のブロック図で、検出
センナとして容量形のセンナを使用した例について示す
FIG. 2 is a block diagram of one embodiment of the signal processing circuit, and shows an example in which a capacitive sensor is used as the detection sensor.

図において、コンデンサCで圧力損失ΔP1を、コンデ
ンサC2で差圧ΔP2の変動周波数、即ち、渦発生周波
数fvを測定する。61はローパスフィルタ回路で、コ
ンデンサ01,02の信号を受は直流分の圧力損失ΔP
のほかに、交流分の渦発生周波数fV及び測定流体の脈
動圧ΔPなどの交流分を除去し、直流電圧E61とする
ためのものである。62は直流増幅器で、直流電圧E6
□を増幅し直流電圧”62とする。63はフ、イルタ回
路で、コンデンサ02で検出される信号から低周波ある
いは高周波のノイズを除去し、交流電圧E63とする。
In the figure, the capacitor C measures the pressure loss ΔP1, and the capacitor C2 measures the fluctuation frequency of the differential pressure ΔP2, that is, the vortex generation frequency fv. 61 is a low-pass filter circuit that receives the signals of capacitors 01 and 02 and absorbs the DC component pressure loss ΔP.
In addition to this, alternating current components such as the vortex generation frequency fV of the alternating current component and the pulsating pressure ΔP of the measured fluid are removed to obtain a direct current voltage E61. 62 is a DC amplifier, and DC voltage E6
A filter circuit 63 removes low frequency or high frequency noise from the signal detected by the capacitor 02 to obtain an AC voltage E63.

64はAC増幅器で、交流′底圧E63を増幅し、交流
電圧E64とする。65はシュミットトリガ−回路で、
交流電圧B63を−定レベルのパルス信号P65に変換
する。66けF/Vコンバータで、パルス信号P65を
、その周波数に比例した直流直圧E66に変換する。6
7は割算回路f −F/’V :y 7 バー166と
Do増幅器62の出力E661E6゜の所望の演算を施
し、出力に流体の密度または質量流量に関連した信号B
67を取り出す。68はスイッチ回路で、人C増幅器6
4からの交流信号E64がシュミット回路65の設定ト
リガレベルにまで達しなくなった場合に、コンパレータ
69の信号により、割算回路67の出力を0とする。
64 is an AC amplifier that amplifies the AC' bottom pressure E63 and converts it into an AC voltage E64. 65 is a Schmitt trigger circuit,
The AC voltage B63 is converted into a constant level pulse signal P65. A 66-digit F/V converter converts the pulse signal P65 into a DC voltage E66 proportional to its frequency. 6
7 performs a desired operation on the output E661E6° of the dividing circuit f −F/'V :y7 bar 166 and the Do amplifier 62, and outputs a signal B related to the density or mass flow rate of the fluid.
Take out 67. 68 is a switch circuit, and C amplifier 6
When the AC signal E64 from 4 no longer reaches the set trigger level of the Schmitt circuit 65, the output of the divider circuit 67 is set to 0 by the signal of the comparator 69.

以上の構成において、管路1に測定流体が流れると、渦
発生体2の存在により渦が発生し、管壁に清って進行す
る。渦の中心は負圧で、渦は左右交互に生成されるので
、管壁に設けられた第2と第3の導圧孔には、渦発生周
波数fvに比例した差圧変動が発生する。この差圧ΔP
2の変動を利用して渦流速検出部3において、測定流体
の流速を知ることができる。
In the above configuration, when the measurement fluid flows through the pipe line 1, a vortex is generated due to the presence of the vortex generator 2, and the fluid flows along the pipe wall. Since the center of the vortex is negative pressure and the vortices are generated alternately on the left and right sides, a differential pressure fluctuation proportional to the vortex generation frequency fv occurs in the second and third pressure guiding holes provided in the tube wall. This differential pressure ΔP
2, the flow velocity of the fluid to be measured can be determined in the eddy flow velocity detecting section 3.

一方、渦発生体2から渦が放出されると、管路1内の圧
力分布は、第3図に示す如く渦発生体の上流側と下流側
とでは、渦発生体2の存在による圧力損失ΔP工により
、圧力差が生ずる。この圧力損失ΔP1を、第1と第2
の導圧管11.12を介して圧力検出部4により測定す
る。この圧力損失ΔP1は次式で示される。
On the other hand, when a vortex is released from the vortex generator 2, the pressure distribution in the pipe line 1 is such that, as shown in FIG. A pressure difference occurs due to the ΔP process. This pressure loss ΔP1 is
The pressure is measured by the pressure detecting section 4 via the pressure guiding pipes 11 and 12 of the . This pressure loss ΔP1 is expressed by the following equation.

0、の値は、寸法、形状によって決まる定数で、渦を生
成しない断面流線形状では非常圧小さい値となる。第4
図に、断面台形の渦発生体での流速Vに対する圧力損失
ΔPsの実験値を示す。
The value 0 is a constant determined by the size and shape, and in a streamlined cross-sectional shape that does not generate a vortex, the pressure becomes an extremely small value. Fourth
The figure shows experimental values of pressure loss ΔPs versus flow velocity V in a vortex generator with a trapezoidal cross section.

さて、測定流体中には通常、第5図に示す如く、脈動圧
ΔPnが存在し、測定流体の駆動源が、往復運動、回転
運動をするポンプなどの場合では、かなり大きなものと
なる。この脈動圧ΔPnは管路1内を、はぼ一様に伝播
する。
Now, as shown in FIG. 5, a pulsating pressure ΔPn normally exists in the fluid to be measured, which becomes quite large if the driving source of the fluid to be measured is a pump that makes reciprocating or rotating motion. This pulsating pressure ΔPn propagates within the conduit 1 almost uniformly.

しかしながら、第2.@3の導圧管12.13には、同
相に入るので、差圧ΔP2の測定では、キャンセルされ
て問題とはならない。
However, the second. Since the signals enter the pressure impulse pipes 12 and 13 of @3 in the same phase, they are canceled and do not pose a problem in the measurement of the differential pressure ΔP2.

而して、第2図に示す信号処理回路において、コンデン
サ0で圧力損失ΔPIを、コンデンサ0で差圧ΔPの変
動周波数、即ち、渦発生周波数fvを測定する。コンデ
ンサ0、で検出された圧力損失ΔP1の信号は、ローパ
スフィルタ61を通り、Do増幅器62で増幅される。
In the signal processing circuit shown in FIG. 2, the pressure loss ΔPI is measured at the capacitor 0, and the fluctuation frequency of the differential pressure ΔP, that is, the vortex generation frequency fv is measured at the capacitor 0. A signal of pressure loss ΔP1 detected by capacitor 0 passes through a low-pass filter 61 and is amplified by a Do amplifier 62.

一方、コンデンサ02で検出された渦発生周波数fvは
、フィルタ回路63を通り、人0M1a器63で増幅さ
れ、シーミツトトリガ回路で、一定レベルのハルス信号
ニ変換すれ、F/vコンバータでパルス信号をその周波
数に比例した直流電圧に変換される。
On the other hand, the vortex generation frequency fv detected by the capacitor 02 passes through the filter circuit 63, is amplified by the 0M1a device 63, is converted into a Hals signal of a constant level by the seamit trigger circuit, and is converted into a pulse signal by the F/v converter. is converted into a DC voltage proportional to its frequency.

割算回路67において、DO増幅器62で増幅嘔れた信
号を、F/’Vコンバータ66で変換1れ信号で、割算
する。
In the division circuit 67, the signal amplified by the DO amplifier 62 is divided by the signal converted by the F/'V converter 66.

この結果、測定流体の質量流量を測定することができる
As a result, the mass flow rate of the measurement fluid can be measured.

この場合、本願装置においては、センナ部が、渦発生体
2中になく、管路1外に存在するので、測定流体の影響
を直接うけず温度特性等において信頼性の高いものが得
られる。また、渦発生体2中にないので、渦発生体2に
よる寸法の制約がないため製作が容易であり安価に作る
ことができる。
In this case, in the device of the present application, the senna portion is not in the vortex generator 2 but is located outside the conduit 1, so that it is not directly affected by the fluid to be measured and provides highly reliable temperature characteristics and the like. Moreover, since it is not in the vortex generator 2, there is no dimensional restriction due to the vortex generator 2, so it is easy to manufacture and can be manufactured at low cost.

さらに、脈動圧の影響を受けない等の利点を有する。脈
動圧をP=λsinωt(ω=2πf)とすると、渦発
生体2の抗力方向に加わる脈動圧ノイズの最大値は2π
x)1x−Lx人となる。ここで、hは第1図に示す如
く、渦発生体2の管路1の軸方向の長さである。
Furthermore, it has advantages such as not being affected by pulsating pressure. If the pulsating pressure is P=λsinωt (ω=2πf), the maximum value of the pulsating pressure noise applied in the direction of the drag of the vortex generator 2 is 2π
x) There will be 1x-Lx people. Here, h is the length of the pipe line 1 of the vortex generator 2 in the axial direction, as shown in FIG.

また、差圧検出部分は管路l外にあるため、シリング液
などが使用できるので、高温流体に対しても測定が可能
となる。圧力損失ΔP1は絶対値を測定する必要がある
が、直流分で測定するので、シーリング液によるダンピ
ングは問題とならない。
Further, since the differential pressure detection part is located outside the pipe line 1, Schilling liquid or the like can be used, so that measurement can be performed even on high-temperature fluids. Although it is necessary to measure the absolute value of the pressure loss ΔP1, since it is measured as a direct current component, damping due to the sealing liquid does not pose a problem.

また、差圧ΔP2は、絶対値でなく、渦周波数を検出す
ればよいので、ダンピングによる絶対値の低下はあまり
問題とならない。また、差圧検出部分は耐熱性があり、
かつ、温度特性が悪い場合には、圧力損失ΔP1測定側
のみシーリング液を使用すればよい。
Moreover, since the differential pressure ΔP2 need only detect the vortex frequency rather than the absolute value, a decrease in the absolute value due to damping does not pose much of a problem. In addition, the differential pressure detection part is heat resistant.
In addition, if the temperature characteristics are poor, it is sufficient to use sealing liquid only on the pressure loss ΔP1 measurement side.

なお、前述の実施例においては、差圧検出部分に容量形
センサを使用したものについて説明したが、容量形セン
ナに限ることはなく、要するに差圧が検出できるセンサ
であればよいことは勿論である。
In the above embodiment, a capacitive sensor was used in the differential pressure detection part, but the sensor is not limited to a capacitive sensor, and of course any sensor that can detect differential pressure may be used. be.

(発明の効果) 以上説明したように、本願は、測定流体の流れる管路と
、該管路に設けられた渦発生体と、該渦発生体の上流側
の前記管路の管壁に一端が設けられた第1の導圧管と、
前記渦発生体の下流側の前記管路の管壁に互いに対向し
て一端が設けられた@2.第3の導圧管と、該第2.第
3の導圧管の他端に接続され該第2と第3の導圧管の間
の差圧°・・ら渦発生周波数を検出して測定流体の流速
を検出する渦流速検出部と、前記第1.第2の導圧管の
他端に接続されだ該第1と第2の導圧管の圧力より前記
渦発生体に基づく測定流体の圧力損失を検出する圧力検
出部と、該圧力検出部の出力を前記渦流速検出部の出力
で割算する割算部とを具備してなる質量流量計を構成し
たので、センナ部が、渦発生体中になく、管路外に存在
するので、測定流体の温度等の影響を直接うけず、温度
特性等において偏傾性の高いものが得られる。また、渦
発生体てよる寸法の制約を受けず製作が容易であり安価
に作ることができる。さらに、脈動圧の影響を受けない
ものが得られる。また、シーリング液等を使用すれば、
更に、高温の測定流体をも測定可能となる。
(Effects of the Invention) As explained above, the present application includes a pipe line through which a measurement fluid flows, a vortex generator provided in the pipe line, and one end on the pipe wall of the pipe line on the upstream side of the vortex generator. a first impulse pipe provided with;
@2. One ends are provided opposite to each other on the pipe wall of the pipe line on the downstream side of the vortex generator. a third impulse pipe; a vortex flow velocity detection section connected to the other end of the third impulse tube and configured to detect the vortex generation frequency from the differential pressure between the second and third impulse tubes to detect the flow velocity of the measurement fluid; 1st. a pressure detection section that is connected to the other end of the second impulse tube and detects the pressure loss of the measurement fluid based on the vortex generator from the pressure of the first and second impulse tubes; Since the mass flowmeter is configured to include a dividing section that divides by the output of the vortex flow velocity detection section, the senna section is not inside the vortex generator but outside the pipe, so that the measurement fluid is It is not directly affected by temperature, etc., and can have highly eccentric temperature characteristics. Furthermore, it is easy to manufacture and can be manufactured at low cost without being subject to size restrictions due to the vortex generator. Furthermore, it is obtained that is not affected by pulsating pressure. Also, if you use sealing liquid etc.
Furthermore, it becomes possible to measure high-temperature measurement fluids as well.

したがって、本発明によれば、測定流体中の脈動圧や温
度の影響をうけない、精度良好な質量流量計を実現する
ことができる。
Therefore, according to the present invention, it is possible to realize a mass flowmeter with good accuracy that is not affected by pulsating pressure or temperature in the fluid to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成説明図、第2図は第1
図の電気回路図、第3図〜第5図は第1図の動作説明図
、第6図は従来より一般に使用されている従来例の構成
説明図である。 1・・・管路、11・・・第1の導圧管、12・・・第
2の導圧管、13・・・第3の導圧管、2・・・渦発体
、3・・・渦流量検出部、4・・・圧力検出部、5・・
・割算部、61・・・ローパスフィルタ、62・・・D
o増幅器、63・・・フィルタ回路、64・・・AC増
幅器、65・・・シ瓢ミツトトリガー回路、66・・・
F、/’Vコンバータ、67・・・割算器、68・・・
スイッチ回路、69・・・コンパレータ、ΔP1・・・
圧力損失、ΔP2・・・差圧、fv・・・渦発生周波数
。 第5図 第  6 図 箪3図 第4図 →Vrrvc。
FIG. 1 is an explanatory diagram of the configuration of one embodiment of the present invention, and FIG.
3 to 5 are diagrams illustrating the operation of FIG. 1, and FIG. 6 is a diagram illustrating the configuration of a conventional example that has been generally used. DESCRIPTION OF SYMBOLS 1...Pipe line, 11...1st pressure impulse pipe, 12...2nd pressure impulse pipe, 13...3rd pressure impulse pipe, 2...vortex generator, 3...vortex Flow rate detection section, 4... Pressure detection section, 5...
- Divide unit, 61...Low pass filter, 62...D
o amplifier, 63... filter circuit, 64... AC amplifier, 65... trigger circuit, 66...
F, /'V converter, 67... divider, 68...
Switch circuit, 69... Comparator, ΔP1...
Pressure loss, ΔP2...differential pressure, fv...vortex generation frequency. Figure 5 Figure 6 Figure 3 Figure 4 → Vrrvc.

Claims (1)

【特許請求の範囲】[Claims] 測定流体の流れる管路と、該管路に設けられた渦発生体
と、該渦発生体の上流側の前記管路の管壁に一端が設け
られた第1の導圧管と、前記渦発生体の下流側の前記管
路の管壁に互いに対向して一端が設けられた第2、第3
の導圧管と、該第2、第3の導圧管の他端に接続され該
第2と第3の導圧管の間の差圧から渦発生周波数を検出
して測定流体の流速を検出する渦流速検出部と、前記第
1、第2の導圧管の他端に接続され該第1と第2の導圧
管の圧力より前記渦発生体に基づく測定流体の圧力損失
を検出する圧力検出部と、該圧力検出部の出力を前記渦
流速検出部の出力で割算する割算部とを具備してなる質
量流量計。
a conduit through which a measurement fluid flows, a vortex generator provided in the conduit, a first impulse tube having one end provided on a pipe wall of the conduit upstream of the vortex generator, and the vortex generator. second and third ends facing each other on the tube wall of the conduit on the downstream side of the body;
and a vortex which is connected to the other ends of the second and third impulse tubes and detects the vortex generation frequency from the differential pressure between the second and third impulse tubes to detect the flow velocity of the measurement fluid. a flow velocity detecting section; a pressure detecting section connected to the other ends of the first and second impulse tubes and detecting a pressure loss of the measurement fluid based on the vortex generator based on the pressure of the first and second impulse tubes; , a dividing section that divides the output of the pressure detecting section by the output of the vortex velocity detecting section.
JP28233185A 1985-12-16 1985-12-16 Mass flowmeter Pending JPS62140025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28233185A JPS62140025A (en) 1985-12-16 1985-12-16 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28233185A JPS62140025A (en) 1985-12-16 1985-12-16 Mass flowmeter

Publications (1)

Publication Number Publication Date
JPS62140025A true JPS62140025A (en) 1987-06-23

Family

ID=17651025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28233185A Pending JPS62140025A (en) 1985-12-16 1985-12-16 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS62140025A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530951A (en) * 2004-03-25 2007-11-01 ローズマウント インコーポレイテッド Simplified fluid property measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007530951A (en) * 2004-03-25 2007-11-01 ローズマウント インコーポレイテッド Simplified fluid property measurement method

Similar Documents

Publication Publication Date Title
Norberg et al. Turbulence and Reynolds number effects on the flow and fluid forces on a single cylinder in cross flow
US3732731A (en) Bluff body flowmeter with internal sensor
US5808209A (en) Vortex fluid meter including a profiled pipe
JP6104918B2 (en) Pulsating flow meter
KR19990077354A (en) Bypass type Coriolis effect flowmeter
CN101881640A (en) Vortex mass flow meter
CN108351239B (en) Flow measuring device based on eddy current flow measuring principle
US20110270541A1 (en) Air flow rate sensor
CN201508201U (en) Differential pressure detection type vortex street flowmeter for measuring differential pressure on one-sided pipe wall
JPH0682281A (en) Vortex flowmeter
JP3100926B2 (en) Eddy current sensor with turbulent grid
JPS62140025A (en) Mass flowmeter
US3314289A (en) Swirl flow meter transducer system
Mujumdar et al. Vortex shedding from slender cylinders of various cross sections
JP2001194193A (en) Flow meter
Patterson et al. Hot‐film anemometry measurements of turbulence in pipe flow: Organic solvents
CN112654842A (en) Non-invasive sensor for vortex flowmeter
KR970062657A (en) Karman Vortex Flowmeter
JPS6047975B2 (en) Measuring device using Karman vortices
Agui et al. Near wall vorticity flux dynamics in a three dimensional boundary layer with separation
JPH059725B2 (en)
RU35428U1 (en) Device for measuring fluid flow
JPH09196721A (en) Non-high-water flowmeter
Bailey et al. The irregular vortex shedding regime for a square cylinder wake near a wall
JPS6040914A (en) Vortex flowmeter