JPH059725B2 - - Google Patents
Info
- Publication number
- JPH059725B2 JPH059725B2 JP58107566A JP10756683A JPH059725B2 JP H059725 B2 JPH059725 B2 JP H059725B2 JP 58107566 A JP58107566 A JP 58107566A JP 10756683 A JP10756683 A JP 10756683A JP H059725 B2 JPH059725 B2 JP H059725B2
- Authority
- JP
- Japan
- Prior art keywords
- vortex
- communicating
- flow
- communicating tube
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/325—Means for detecting quantities used as proxy variables for swirl
- G01F1/3282—Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
Description
【発明の詳細な説明】
技術分野
本発明は、流体中に配設された渦発生体により
発生されるカルマン渦を利用した渦流量計に関す
る。TECHNICAL FIELD The present invention relates to a vortex flowmeter that utilizes a Karman vortex generated by a vortex generator disposed in a fluid.
従来技術
第1図は、従来の渦流量計の一例を説明するた
めの概略構成図で、図中、1は被測定流体が流れ
る被測定流体流路、2は渦発生体、3は前記被測
定流体流路1の側壁でかつ前記渦発生体2と交差
する壁面に配設された超音波発信器、4は該超音
波発信器3に対向して配設された超音波受信器
で、周知のように、流体流路1中に柱状の渦発生
体2を挿入すると、該渦発生体2の両側面で流れ
が剥離し、該渦発生体の下流側に交互に規則的な
渦すなわちカルマン渦が発生し、矢印方向に流体
変位が生じる。このカルマン渦の発生数は、流体
の流速又は流量に比例しているところから、この
カルマン渦の数を計数することにより、流量を計
測することができる。而して、従来は、このカル
マン渦を計数するために、該カルマン渦を横切つ
て超音波送受信器を配設し、超音波受信器3から
の超音波の周波数変調或いは位相変調を超音波受
信器4にて検出するようにしていたが、外部から
の雑音例えばカルマン渦による超音波の散乱、管
壁における超音波の反射等によつて被測定流体の
流れに乱れが生じ、これが計測誤差の一因ともな
つていた。Prior Art FIG. 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter. In the figure, 1 is a fluid flow path to be measured through which a fluid to be measured flows, 2 is a vortex generator, and 3 is a vortex generator. An ultrasonic transmitter disposed on a side wall of the measurement fluid flow path 1 and intersecting with the vortex generator 2; 4 is an ultrasonic receiver disposed opposite the ultrasonic transmitter 3; As is well known, when a columnar vortex generator 2 is inserted into a fluid flow path 1, the flow separates on both sides of the vortex generator 2, and regular vortices or vortices are created alternately on the downstream side of the vortex generator. A Karman vortex is generated and fluid displacement occurs in the direction of the arrow. Since the number of Karman vortices generated is proportional to the flow velocity or flow rate of the fluid, the flow rate can be measured by counting the number of Karman vortices. Conventionally, in order to count this Karman vortex, an ultrasonic transmitter/receiver is disposed across the Karman vortex, and the frequency modulation or phase modulation of the ultrasonic wave from the ultrasonic receiver 3 is converted into an ultrasonic wave. Although the receiver 4 was used for detection, disturbances in the flow of the fluid to be measured occur due to external noise, such as scattering of ultrasonic waves by Karman vortices, reflection of ultrasonic waves on pipe walls, etc., and this causes measurement errors. It was also a contributing factor.
目 的
本発明は、上述のごとき実情に鑑みてなされた
もので、外部雑音等の影響を受けることなく、正
確にカルマン渦を計測し得るようにした渦流量計
に関する。Purpose The present invention has been made in view of the above-mentioned circumstances, and relates to a vortex flowmeter that can accurately measure Karman vortices without being affected by external noise or the like.
構 成
第2図は、本発明の一実施例を説明するための
断面構成図で、図中、第1図と同様の作用をする
部分には第1図の場合と同一の参照番号が付して
ある。而して、発明は、第2図から明らかなよう
に、被測定流体流路1の側壁に直接超音波送受信
器を設けるようなことはせず、この部分には被測
定流体に開口する導入口5,6を設けるととも
に、これら両導入口5,6を直管状連通路7にて
連通し、該直感状連通路7の流路面積を前記導入
口5,6の流路面積よりも小さくし、かつ、該直
管状連通路7の両端に例えば超音波送受信器3,
4からなる検出器を配設するようにしたものであ
る。なお、この超音波送受信器として、コーン付
超音波検出器を用いると、より精度よくカルマン
渦を計測することができる。Configuration FIG. 2 is a cross-sectional configuration diagram for explaining one embodiment of the present invention, and in the figure, parts that have the same effect as in FIG. 1 are designated by the same reference numbers as in FIG. 1. It has been done. As is clear from FIG. 2, the invention does not provide an ultrasonic transmitter/receiver directly on the side wall of the fluid flow path 1 to be measured. In addition to providing ports 5 and 6, these inlets 5 and 6 are communicated through a straight tubular communication path 7, and the flow path area of the intuitive communication path 7 is smaller than the flow path area of the inlet ports 5 and 6. For example, an ultrasonic transmitter/receiver 3,
4 detectors are arranged. Note that if an ultrasonic detector with a cone is used as the ultrasonic transmitter/receiver, the Karman vortex can be measured with higher accuracy.
効 果
以上の説明から明らかなように、本発明による
と、圧力取出口より取り出された圧力は有効に流
速に変換され直管状連通路部分においては、流体
は外部からの雑音等によつて乱されることなく略
層流となつて矢印方向に移動し、しかも、その移
動速度も大きいので、より精度よくカルマン渦の
数を計測することができる。Effects As is clear from the above explanation, according to the present invention, the pressure extracted from the pressure outlet is effectively converted into flow velocity, and the fluid in the straight tubular communication passage is disturbed by noise from the outside. It moves in the direction of the arrow in a substantially laminar flow without being distorted, and its moving speed is high, so the number of Karman vortices can be measured with higher accuracy.
第1図は、従来の渦流量計の一例を説明するた
めの概略構成図、第2図は、本発明による渦流量
計の断面構成図である。
1……被測定流体流路、2……渦発生体、3…
…超音波発信器、4……超音波受信器、5,6…
…導入口、7……直管状連通路。
FIG. 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter, and FIG. 2 is a cross-sectional configuration diagram of a vortex flowmeter according to the present invention. 1... Fluid flow path to be measured, 2... Vortex generator, 3...
...Ultrasonic transmitter, 4...Ultrasonic receiver, 5, 6...
...Introduction port, 7...Straight tubular communication path.
Claims (1)
記流路の渦発生体近傍の両側壁面に開口する導入
管と、該導入管の他端に連通する所定長さの直管
状の連通管と、該連通管の両端部に配設され該連
通管内を流れる渦による交番流れを検知する超音
波送受信器とからなり、前記連通管は両端部近傍
が大口径で、該両端の大口径部から連続して縮小
し、一定断面形状の小口径な直管区間とし、該連
通管内における交番流れの単位時間当りの変動数
から流量を検知することを特徴とする渦流量計。 2 前記検出器はコーン付超音波検出素子である
ことを特徴とする特許請求の範囲第1項に記載の
渦流量計。[Scope of Claims] 1. A vortex generator disposed in a fluid path to be measured, an introduction pipe opening on both side wall surfaces of the flow path near the vortex generator, and a predetermined portion communicating with the other end of the introduction pipe. It consists of a long straight communicating tube, and an ultrasonic transmitter/receiver installed at both ends of the communicating tube to detect alternating flow caused by a vortex flowing inside the communicating tube, and the communicating tube has a large diameter near both ends. The pipe is continuously reduced from the large-diameter portions at both ends to form a small-diameter straight pipe section with a constant cross-sectional shape, and the flow rate is detected from the number of fluctuations per unit time of the alternating flow in the communicating pipe. Vortex flow meter. 2. The vortex flowmeter according to claim 1, wherein the detector is an ultrasonic detection element with a cone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107566A JPS60327A (en) | 1983-06-15 | 1983-06-15 | Vortex flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107566A JPS60327A (en) | 1983-06-15 | 1983-06-15 | Vortex flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60327A JPS60327A (en) | 1985-01-05 |
JPH059725B2 true JPH059725B2 (en) | 1993-02-05 |
Family
ID=14462412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58107566A Granted JPS60327A (en) | 1983-06-15 | 1983-06-15 | Vortex flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60327A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3611681A1 (en) * | 1986-04-08 | 1987-10-15 | Bbc Brown Boveri & Cie | DIGITAL MEASUREMENT METHOD FOR QUASIANALOGUE MEASUREMENT DISPLAY |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4986040A (en) * | 1972-12-21 | 1974-08-17 | ||
JPS5036776A (en) * | 1973-08-02 | 1975-04-07 |
-
1983
- 1983-06-15 JP JP58107566A patent/JPS60327A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4986040A (en) * | 1972-12-21 | 1974-08-17 | ||
JPS5036776A (en) * | 1973-08-02 | 1975-04-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS60327A (en) | 1985-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4365518A (en) | Flow straighteners in axial flowmeters | |
US4154100A (en) | Method and apparatus for stabilizing the flow coefficient for pitot-type flowmeters with a downstream-facing port | |
US4638672A (en) | Fluid flowmeter | |
US8136413B2 (en) | Bi-directional oscillating jet flowmeter | |
GB2161941A (en) | Mass flow meter | |
US3370463A (en) | Mass flow meter | |
US4485679A (en) | Fluid flowmeter | |
JPH06249690A (en) | Ultrasonic flowmeter | |
WO2013157990A1 (en) | Ultrasonic flow meter | |
US3314289A (en) | Swirl flow meter transducer system | |
JP3119782B2 (en) | Flowmeter | |
JPH01321316A (en) | Coupled trap vortex flow rate measuring apparatus and method | |
JPH059725B2 (en) | ||
UA34492C2 (en) | Vortex flow-rate meter for fluid medium | |
JPS58189518A (en) | Mass flowmeter | |
JP3398251B2 (en) | Flowmeter | |
JPS6021771Y2 (en) | vortex flow meter | |
Abu-Mahfouz | Flow Rate Measurements | |
JPS6040914A (en) | Vortex flowmeter | |
US4335617A (en) | Flowmeter | |
JPH059724B2 (en) | ||
KR0133625Y1 (en) | Vibration type flow meter | |
RU32875U1 (en) | Ultrasonic Gas Flow Meter | |
CN116608916A (en) | Ultrasonic flow measurement method for double-layer pipe | |
JPS61253424A (en) | Vortex flowmeter |