JPH059725B2 - - Google Patents

Info

Publication number
JPH059725B2
JPH059725B2 JP58107566A JP10756683A JPH059725B2 JP H059725 B2 JPH059725 B2 JP H059725B2 JP 58107566 A JP58107566 A JP 58107566A JP 10756683 A JP10756683 A JP 10756683A JP H059725 B2 JPH059725 B2 JP H059725B2
Authority
JP
Japan
Prior art keywords
vortex
communicating
flow
communicating tube
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58107566A
Other languages
Japanese (ja)
Other versions
JPS60327A (en
Inventor
Katsuo Misumi
Masahiro Kanayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP58107566A priority Critical patent/JPS60327A/en
Publication of JPS60327A publication Critical patent/JPS60327A/en
Publication of JPH059725B2 publication Critical patent/JPH059725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3282Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、流体中に配設された渦発生体により
発生されるカルマン渦を利用した渦流量計に関す
る。
TECHNICAL FIELD The present invention relates to a vortex flowmeter that utilizes a Karman vortex generated by a vortex generator disposed in a fluid.

従来技術 第1図は、従来の渦流量計の一例を説明するた
めの概略構成図で、図中、1は被測定流体が流れ
る被測定流体流路、2は渦発生体、3は前記被測
定流体流路1の側壁でかつ前記渦発生体2と交差
する壁面に配設された超音波発信器、4は該超音
波発信器3に対向して配設された超音波受信器
で、周知のように、流体流路1中に柱状の渦発生
体2を挿入すると、該渦発生体2の両側面で流れ
が剥離し、該渦発生体の下流側に交互に規則的な
渦すなわちカルマン渦が発生し、矢印方向に流体
変位が生じる。このカルマン渦の発生数は、流体
の流速又は流量に比例しているところから、この
カルマン渦の数を計数することにより、流量を計
測することができる。而して、従来は、このカル
マン渦を計数するために、該カルマン渦を横切つ
て超音波送受信器を配設し、超音波受信器3から
の超音波の周波数変調或いは位相変調を超音波受
信器4にて検出するようにしていたが、外部から
の雑音例えばカルマン渦による超音波の散乱、管
壁における超音波の反射等によつて被測定流体の
流れに乱れが生じ、これが計測誤差の一因ともな
つていた。
Prior Art FIG. 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter. In the figure, 1 is a fluid flow path to be measured through which a fluid to be measured flows, 2 is a vortex generator, and 3 is a vortex generator. An ultrasonic transmitter disposed on a side wall of the measurement fluid flow path 1 and intersecting with the vortex generator 2; 4 is an ultrasonic receiver disposed opposite the ultrasonic transmitter 3; As is well known, when a columnar vortex generator 2 is inserted into a fluid flow path 1, the flow separates on both sides of the vortex generator 2, and regular vortices or vortices are created alternately on the downstream side of the vortex generator. A Karman vortex is generated and fluid displacement occurs in the direction of the arrow. Since the number of Karman vortices generated is proportional to the flow velocity or flow rate of the fluid, the flow rate can be measured by counting the number of Karman vortices. Conventionally, in order to count this Karman vortex, an ultrasonic transmitter/receiver is disposed across the Karman vortex, and the frequency modulation or phase modulation of the ultrasonic wave from the ultrasonic receiver 3 is converted into an ultrasonic wave. Although the receiver 4 was used for detection, disturbances in the flow of the fluid to be measured occur due to external noise, such as scattering of ultrasonic waves by Karman vortices, reflection of ultrasonic waves on pipe walls, etc., and this causes measurement errors. It was also a contributing factor.

目 的 本発明は、上述のごとき実情に鑑みてなされた
もので、外部雑音等の影響を受けることなく、正
確にカルマン渦を計測し得るようにした渦流量計
に関する。
Purpose The present invention has been made in view of the above-mentioned circumstances, and relates to a vortex flowmeter that can accurately measure Karman vortices without being affected by external noise or the like.

構 成 第2図は、本発明の一実施例を説明するための
断面構成図で、図中、第1図と同様の作用をする
部分には第1図の場合と同一の参照番号が付して
ある。而して、発明は、第2図から明らかなよう
に、被測定流体流路1の側壁に直接超音波送受信
器を設けるようなことはせず、この部分には被測
定流体に開口する導入口5,6を設けるととも
に、これら両導入口5,6を直管状連通路7にて
連通し、該直感状連通路7の流路面積を前記導入
口5,6の流路面積よりも小さくし、かつ、該直
管状連通路7の両端に例えば超音波送受信器3,
4からなる検出器を配設するようにしたものであ
る。なお、この超音波送受信器として、コーン付
超音波検出器を用いると、より精度よくカルマン
渦を計測することができる。
Configuration FIG. 2 is a cross-sectional configuration diagram for explaining one embodiment of the present invention, and in the figure, parts that have the same effect as in FIG. 1 are designated by the same reference numbers as in FIG. 1. It has been done. As is clear from FIG. 2, the invention does not provide an ultrasonic transmitter/receiver directly on the side wall of the fluid flow path 1 to be measured. In addition to providing ports 5 and 6, these inlets 5 and 6 are communicated through a straight tubular communication path 7, and the flow path area of the intuitive communication path 7 is smaller than the flow path area of the inlet ports 5 and 6. For example, an ultrasonic transmitter/receiver 3,
4 detectors are arranged. Note that if an ultrasonic detector with a cone is used as the ultrasonic transmitter/receiver, the Karman vortex can be measured with higher accuracy.

効 果 以上の説明から明らかなように、本発明による
と、圧力取出口より取り出された圧力は有効に流
速に変換され直管状連通路部分においては、流体
は外部からの雑音等によつて乱されることなく略
層流となつて矢印方向に移動し、しかも、その移
動速度も大きいので、より精度よくカルマン渦の
数を計測することができる。
Effects As is clear from the above explanation, according to the present invention, the pressure extracted from the pressure outlet is effectively converted into flow velocity, and the fluid in the straight tubular communication passage is disturbed by noise from the outside. It moves in the direction of the arrow in a substantially laminar flow without being distorted, and its moving speed is high, so the number of Karman vortices can be measured with higher accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の渦流量計の一例を説明するた
めの概略構成図、第2図は、本発明による渦流量
計の断面構成図である。 1……被測定流体流路、2……渦発生体、3…
…超音波発信器、4……超音波受信器、5,6…
…導入口、7……直管状連通路。
FIG. 1 is a schematic configuration diagram for explaining an example of a conventional vortex flowmeter, and FIG. 2 is a cross-sectional configuration diagram of a vortex flowmeter according to the present invention. 1... Fluid flow path to be measured, 2... Vortex generator, 3...
...Ultrasonic transmitter, 4...Ultrasonic receiver, 5, 6...
...Introduction port, 7...Straight tubular communication path.

Claims (1)

【特許請求の範囲】 1 被測定流体路中に配設された渦発生体と、前
記流路の渦発生体近傍の両側壁面に開口する導入
管と、該導入管の他端に連通する所定長さの直管
状の連通管と、該連通管の両端部に配設され該連
通管内を流れる渦による交番流れを検知する超音
波送受信器とからなり、前記連通管は両端部近傍
が大口径で、該両端の大口径部から連続して縮小
し、一定断面形状の小口径な直管区間とし、該連
通管内における交番流れの単位時間当りの変動数
から流量を検知することを特徴とする渦流量計。 2 前記検出器はコーン付超音波検出素子である
ことを特徴とする特許請求の範囲第1項に記載の
渦流量計。
[Scope of Claims] 1. A vortex generator disposed in a fluid path to be measured, an introduction pipe opening on both side wall surfaces of the flow path near the vortex generator, and a predetermined portion communicating with the other end of the introduction pipe. It consists of a long straight communicating tube, and an ultrasonic transmitter/receiver installed at both ends of the communicating tube to detect alternating flow caused by a vortex flowing inside the communicating tube, and the communicating tube has a large diameter near both ends. The pipe is continuously reduced from the large-diameter portions at both ends to form a small-diameter straight pipe section with a constant cross-sectional shape, and the flow rate is detected from the number of fluctuations per unit time of the alternating flow in the communicating pipe. Vortex flow meter. 2. The vortex flowmeter according to claim 1, wherein the detector is an ultrasonic detection element with a cone.
JP58107566A 1983-06-15 1983-06-15 Vortex flow meter Granted JPS60327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107566A JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107566A JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Publications (2)

Publication Number Publication Date
JPS60327A JPS60327A (en) 1985-01-05
JPH059725B2 true JPH059725B2 (en) 1993-02-05

Family

ID=14462412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107566A Granted JPS60327A (en) 1983-06-15 1983-06-15 Vortex flow meter

Country Status (1)

Country Link
JP (1) JPS60327A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611681A1 (en) * 1986-04-08 1987-10-15 Bbc Brown Boveri & Cie DIGITAL MEASUREMENT METHOD FOR QUASIANALOGUE MEASUREMENT DISPLAY

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986040A (en) * 1972-12-21 1974-08-17
JPS5036776A (en) * 1973-08-02 1975-04-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4986040A (en) * 1972-12-21 1974-08-17
JPS5036776A (en) * 1973-08-02 1975-04-07

Also Published As

Publication number Publication date
JPS60327A (en) 1985-01-05

Similar Documents

Publication Publication Date Title
US4365518A (en) Flow straighteners in axial flowmeters
US4154100A (en) Method and apparatus for stabilizing the flow coefficient for pitot-type flowmeters with a downstream-facing port
US4638672A (en) Fluid flowmeter
US8136413B2 (en) Bi-directional oscillating jet flowmeter
GB2161941A (en) Mass flow meter
US3370463A (en) Mass flow meter
US4485679A (en) Fluid flowmeter
JPH06249690A (en) Ultrasonic flowmeter
WO2013157990A1 (en) Ultrasonic flow meter
US3314289A (en) Swirl flow meter transducer system
JP3119782B2 (en) Flowmeter
JPH01321316A (en) Coupled trap vortex flow rate measuring apparatus and method
JPH059725B2 (en)
UA34492C2 (en) Vortex flow-rate meter for fluid medium
JPS58189518A (en) Mass flowmeter
JP3398251B2 (en) Flowmeter
JPS6021771Y2 (en) vortex flow meter
Abu-Mahfouz Flow Rate Measurements
JPS6040914A (en) Vortex flowmeter
US4335617A (en) Flowmeter
JPH059724B2 (en)
KR0133625Y1 (en) Vibration type flow meter
RU32875U1 (en) Ultrasonic Gas Flow Meter
CN116608916A (en) Ultrasonic flow measurement method for double-layer pipe
JPS61253424A (en) Vortex flowmeter