JPS62140010A - Method for measuring thickness of coated film and member to be coated by ultrasonic wave - Google Patents

Method for measuring thickness of coated film and member to be coated by ultrasonic wave

Info

Publication number
JPS62140010A
JPS62140010A JP28113285A JP28113285A JPS62140010A JP S62140010 A JPS62140010 A JP S62140010A JP 28113285 A JP28113285 A JP 28113285A JP 28113285 A JP28113285 A JP 28113285A JP S62140010 A JPS62140010 A JP S62140010A
Authority
JP
Japan
Prior art keywords
reflected
echo
painted
thickness
reflected wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28113285A
Other languages
Japanese (ja)
Inventor
Norimitsu Sakuma
宣光 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP28113285A priority Critical patent/JPS62140010A/en
Publication of JPS62140010A publication Critical patent/JPS62140010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To make it possible to measure the thicknesses of the titled film and a member, by allowing an ultrasonic wave to be vertically incident upon the coated surface of a painting member and measuring the receiving times of an echo once reflected and an echo twice reflected from a bottom surface. CONSTITUTION:A vertical probe is brought to a contact with the coating surface 3 of a member M and an ultrasonic wave is allowed to be vertically incident upon the surface 3 and the reflected wave is received through the probe and the echo thereof is displayed on a CRT. Whereupon, a first bottom surface echo (B1) of the reflected wave B1, which is obtained by reflecting said ultrasonic wave from the bottom surface 8 of a member 1 through the boundary surface 7 of the member 1 and the film 2 and again passing the reflected wave through the surface 7, is displayed at the position of a receiving time T1 from the origin of an abscissa (time axis). Thereafter, the second bottom surface echo (B2) of a reflected wave B2, which is obtained by reflecting the ultrasonic wave from the surface 8 through the surface 7 to reflect the reflected wave from the surface and again reflecting the reflected wave from the surface 8 to pass the same through the surface, is displayed at a position where a receiving time T2 has elapsed. Then, by performing a predetermined calculation on the basis of the preliminarily measured sound velocities in the member 1 and the film 2 and the times T1, T2, the thicknesses t2, t1 of the film 2 and the member 1 can be simultaneously measured.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波を利用して部材表面に塗装された塗装部
材の塗膜と部材の各厚さを測定する方法に関し、特に塗
装面上から塗膜と部材の各厚さを同時に測定するのに好
適な方法である。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of measuring the coating film of a painted member on the surface of the member and each thickness of the member using ultrasonic waves. This method is suitable for measuring the thickness of a coating film and a member at the same time.

〔発明の背景〕[Background of the invention]

超音波を利用して物体の厚さや、厚さの変化から腐食度
を測定することは従来から広く行われている。すなわち
板内での超音波の共振を利用した超音波厚さ計により測
定する方法、板中のパルスの多重反射の時間間隔から板
厚を知るとともに、多重反射の減衰状況からタンク、パ
イプなどの裏面の腐食状況などを推定するパルス法(例
えば日本学術振興金錫「超音波探傷法J  (,198
4)、日刊工業新聞社、P571〜P 577)がもつ
とも一般的である。しかしこれらの方法で部材の厚さ等
を測定する場合に、その部材が塗装された塗装部材であ
る場合には、塗膜による超音波の減衰が大きく、塗装し
てない部材のときの真の共振や多重反射波間隔が得られ
rいから誤差の大きい測定にならざるを得す、このため
従来は測定位置における塗膜を除去したのち測定してい
る。塗膜の除去は人形のタンクや多くの距離の長いパイ
プライン等の測定においては莫大な作業量となり、測定
上の大きな障害となる。このように従来の超音波を利用
した塗装部材の厚さの測定においては、塗膜を除去した
のちの部材の厚さが測定できるにとどまり、塗膜の厚さ
の測定や、塗膜を除去しない塗装部材のままの状態にお
ける部材の厚さおよび塗膜の厚さを測定することはでき
なかった。
It has been widely used to measure the thickness of an object and the degree of corrosion from changes in thickness using ultrasonic waves. In other words, it is measured using an ultrasonic thickness meter that utilizes the resonance of ultrasonic waves within the board.The thickness of the board can be determined from the time interval of multiple reflections of pulses in the board, and the attenuation of multiple reflections can be used to determine the thickness of tanks, pipes, etc. Pulse method for estimating the corrosion status of the back surface (for example, Japan Society for the Promotion of Science, “Ultrasonic Flaw Detection Method J”, 198
4), Nikkan Kogyo Shimbun, P571-P577) is also common. However, when measuring the thickness of a component using these methods, if the component is a painted component, the attenuation of the ultrasonic waves by the coating is large, and the true Since resonance and multiple reflected wave intervals cannot be obtained, measurements are inevitably made with large errors.For this reason, conventionally, measurements are taken after removing the paint film at the measurement position. Removal of the paint film requires a huge amount of work when measuring doll tanks or many long pipelines, and is a major hindrance to measurements. In this way, when measuring the thickness of painted parts using conventional ultrasonic waves, it is only possible to measure the thickness of the part after the paint film has been removed. It was not possible to measure the thickness of the member and the thickness of the coating film in the unpainted state of the member.

なお塗膜の厚さのみの測定は、交流を流したコイルと被
検査金属との電磁誘導作用を利用した塗膜計で可能であ
るが、被検査金属は鋼材などの磁性体であることが必要
であり、測定値も較正値との比較が必要で精度も十分と
はいえないなどの問題がある。
Measuring only the thickness of the coating film is possible with a coating meter that utilizes the electromagnetic induction effect between a coil through which alternating current is passed and the metal to be inspected, but the metal to be inspected may be a magnetic material such as steel. However, there are problems such as the measurement value needs to be compared with a calibration value and the accuracy is not sufficient.

〔発明の目的〕[Purpose of the invention]

本発明は前記従来技術の問題点を解消するものであって
、塗装部材の塗膜と部材の各厚さを、超音波を利用して
塗膜を除去することなく塗膜上から、部材の材質、底面
の形状およびあらさ等の影響を受けることなく、容易に
、かつ定量的に精度よく、しかもリアルタイムに測定す
ることができる方法を提供することを目的とする。
The present invention solves the problems of the prior art described above, and uses ultrasonic waves to measure the coating film of a painted member and each thickness of the member from above the coating film without removing the coating film. It is an object of the present invention to provide a method that allows measurement to be performed easily, quantitatively, accurately, and in real time without being influenced by the material, shape, roughness, etc. of the bottom surface.

〔発明の概要〕[Summary of the invention]

本発明は、部材表面に塗料を塗布した塗装部材の塗膜と
部材の各厚さを測定する方法であって、塗装部材の塗装
面に対して垂直に超音波を入射させ、その人゛射波が塗
膜と部材の境界面を通過して塗装部材の底面で反射し、
再び前記境界面を通過したのち受信される第1回底面エ
コーと、前記境界面を通過して塗装部材の底面で反射し
た反射波が、前記境界面で反射し、再び塗装部材の底面
で反射して前記境界面と通過したのち受信される第2回
底面エコーとの各受信時間と、塗膜および部材の各音速
とを評価指標として塗装部材の塗膜と部材の各厚さを測
定することにより、塗装部材の塗膜と部材の各厚さを、
塗膜を除去することなく塗膜上から、部材の材質、底面
の形状およびあらさ等の影響を受けることなく、容易に
、かつ定量的にしかもリアルタイムに測定することがで
きるようにした方法である。
The present invention is a method for measuring the coating film of a painted member whose surface is coated with paint and the respective thicknesses of the member. The waves pass through the interface between the coating film and the component and are reflected at the bottom of the coating component.
The first bottom echo received after passing through the boundary surface again, and the reflected wave that passed through the boundary surface and reflected at the bottom surface of the painted member are reflected at the boundary surface and reflected again at the bottom surface of the painted member. The coating film of the painted member and the thickness of the member are measured using each reception time of the second bottom echo received after passing through the boundary surface and the sound velocity of the coating film and the member as evaluation indicators. By this, the coating film of the painted part and the thickness of each part,
This method allows for easy, quantitative, and real-time measurement on the paint film without removing the paint film, without being affected by the material of the component, the shape of the bottom surface, roughness, etc. .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第1図ないし第6図により説明する。 Embodiments of the present invention will be explained with reference to FIGS. 1 to 6.

部材1の表面(境界面7になる)に塗料を塗布して塗膜
2を形成した塗装部材Mの塗装面3に、第2図で示すよ
うに垂直探触子(以下探触子という)4を当接し、塗装
面3に対して垂直に超音波を入射させる。5は探触子4
と高周波ケーブルで接続されているパルス反射式超音波
探傷装置、6はそのCRTである。入射した超音波は部
材1と塗膜2との音響インピーダンスの差により、第1
図に示すように各種形態の反射波となる。すなわちAは
厚さtlの部材1と厚さtlの塗膜2の境界面7より反
射した反射波、B口±境界面7を通過して部材1の底面
8で反射し、再び境界面7を通過した反射波、B、Aは
反射波B、が塗装面3で反射したのち境界面7で反射し
た反射波、A B +は反射波Aが塗装面3で反射した
のち反射波層と同じコースをたどる反射波、B2は境界
面7を通過し部材1の底面8で反射したのち境界面7で
反射し、再び部材1の底面8で反射して境界面7を通過
した反射波、B3は反射波B、が塗装面3で反射したの
ち塗装面3と底面8との間をもう一往復した反射波であ
る。各反射波は探触子4を介して受信されるとともに多
重反射して減衰していく。受信された前記各反射波のエ
コーをCRT6上に表示すると、第3図および第4図に
示すようなエコーパターンが得られる。第3図は探触子
3が分割形の場合のもので、横軸(時間軸)の原点近く
に塗装面3より反射した表面反射波のSエコー、原点か
ら受信時間T、のビーム路程X、の位置に反射波B1の
第1回底面エコー03+) 、第1回底面エコー(B1
)より受信時間T2経過したビーム路程x2の位置に反
射波B2の第2回底面エコー(B2)がそれぞれ表示さ
れる。また第4図は探触子3が通常の送受信兼用の場合
のもので、第3図と較べ横軸の原点に送信パルスTが表
示され、各エコー高さくB+) 、 (B2)が多少低
くなるほかはビーム路程x、+ XZは同じである。第
3図および第11図に示すようにCRTS上に表示され
る各反射波のエコーが、第1回底面エコー(B1)およ
び第2回底面エコー(B2)に絞られるのは、(1)、
塗膜2の厚さtlは特別な場合を除き約1mm以下と薄
く、反射波Aのエコーは、Sエコーまたは送信パルスT
と時間軸上の差がほとんどないこと。
As shown in FIG. 2, a vertical probe (hereinafter referred to as a probe) is placed on the painted surface 3 of the painted member M on which paint is applied to the surface of the member 1 (which becomes the boundary surface 7) to form the coating film 2. 4 and make ultrasonic waves perpendicular to the painted surface 3. 5 is probe 4
A pulse reflection type ultrasonic flaw detector is connected to the CRT by a high frequency cable, and 6 is its CRT. The incident ultrasonic wave is caused by the difference in acoustic impedance between the member 1 and the coating film 2.
As shown in the figure, various forms of reflected waves result. That is, A is a reflected wave reflected from the boundary surface 7 between the member 1 having a thickness of tl and the coating film 2 having a thickness tl, B passes through the boundary surface 7, is reflected by the bottom surface 8 of the member 1, and is reflected by the boundary surface 7 again. The reflected wave that passed through B, A is the reflected wave that reflected the reflected wave B on the painted surface 3 and then reflected on the boundary surface 7, A B + is the reflected wave that was reflected on the painted surface 3 and then the reflected wave layer. A reflected wave following the same course, B2, passes through the boundary surface 7, is reflected at the bottom surface 8 of the member 1, is reflected at the boundary surface 7, is reflected again at the bottom surface 8 of the member 1, and has passed through the boundary surface 7. B3 is a reflected wave that has been reflected by the reflected wave B on the painted surface 3 and then made one more round trip between the painted surface 3 and the bottom surface 8. Each reflected wave is received via the probe 4 and is subjected to multiple reflections and is attenuated. When the echoes of the received reflected waves are displayed on the CRT 6, echo patterns as shown in FIGS. 3 and 4 are obtained. Figure 3 shows the case where the probe 3 is a split type, and the horizontal axis (time axis) shows the S echo of the surface reflected wave reflected from the painted surface 3 near the origin, and the beam path X from the origin at the reception time T. , the first bottom echo of the reflected wave B1 (03+), the first bottom echo (B1
), the second bottom echo (B2) of the reflected wave B2 is displayed at the position of the beam path x2 after the reception time T2 has elapsed. Also, Figure 4 shows the case where the probe 3 is used for both normal transmitting and receiving purposes, and compared to Figure 3, the transmitted pulse T is displayed at the origin of the horizontal axis, and the heights of the echoes B+) and (B2) are somewhat lower. Otherwise, the beam path lengths x and +XZ are the same. As shown in Figures 3 and 11, the echoes of each reflected wave displayed on the CRTS are narrowed down to the first back-wall echo (B1) and the second back-wall echo (B2) because (1) ,
The thickness tl of the coating film 2 is as thin as approximately 1 mm or less except in special cases, and the echo of the reflected wave A is an S echo or a transmitted pulse T.
There is almost no difference on the time axis.

(2) 、(1)と同様の理由で反射波B、A、 AB
(2) For the same reason as (1), reflected waves B, A, AB
.

のエコーと第1回底面エコー(B+) 、反射波B3の
エコーと第2回底面エコー(B2)の各時間軸上の差も
ほとんどないこと。(3)、反射波B3のエコーと第2
回底面エコー(B2)の音圧を比較すると、部材1の塗
膜2との音響インピーダンスの差により境界面7におい
て音圧往復通過率が低下することから、境界面7を2回
往復している反射波B3のエコーの方がかなり低くなる
。などの理由による。
There is also almost no difference on the time axis between the echo of the reflected wave B3 and the first bottom echo (B+), and the echo of the reflected wave B3 and the second bottom echo (B2). (3), the echo of reflected wave B3 and the second
Comparing the sound pressure of the bottom surface echo (B2), it is found that the sound pressure round trip rate decreases at the boundary surface 7 due to the difference in acoustic impedance between the member 1 and the coating film 2. The echo of the reflected wave B3 is considerably lower. Due to reasons such as.

部材1および塗膜2の各音速をあらかじめ測定しておき
、部材1の音速をCI+塗膜2の音速を02とすると、
部材1の厚さtlおよび塗膜2の厚さtlは次式により
求められる。
The sound velocities of member 1 and coating film 2 are measured in advance, and if the sound velocity of member 1 is CI + the sound velocity of coating film 2 is 02, then
The thickness tl of the member 1 and the thickness tl of the coating film 2 are determined by the following equations.

tl=c、・T2    ・・・・・・・・・(1)t
 2= Cz (TI−T2)  ・・・・・・・・・
(2)またCRTe上における時間軸を前記第3図また
は第4図のように設定すれば、受信時間T1゜T2はビ
ーム路程x、、x2で表示されるから、前記式(1)、
(2)は しI”X2         ・・・・・・・・・・・
・・・・ (3)tz=cz (XI  X2) /C
I  ・・・・・・(4)に変形することができる。
tl=c,・T2 ・・・・・・・・・(1)t
2=Cz (TI-T2) ・・・・・・・・・
(2) Also, if the time axis on the CRTe is set as shown in FIG.
(2) Chopsticks I”X2 ・・・・・・・・・・・・
... (3) tz=cz (XI X2) /C
I can be transformed into (4).

したがって式(3)、(4)からCRTe上に表示され
たエコーの時間軸上の目盛りを読み、前記の式で簡単な
計算を行うことにより容易に塗装部材の塗膜と部材の各
厚さを同時に測定することができる。またCRTe上に
表示せず、各エコーの受信時間TI、T2のアナログ量
を、通常慣用されている手段によりデジタル化し、式(
1)、(2)により計算させて数値化して表示すること
も可能である。
Therefore, by reading the scale on the time axis of the echo displayed on the CRTe from equations (3) and (4) and performing simple calculations using the above equation, it is easy to calculate the coating film of the painted member and each thickness of the member. can be measured simultaneously. In addition, without displaying it on the CRTe, the analog quantities of the reception times TI and T2 of each echo are digitized by commonly used means, and the equation (
It is also possible to calculate by 1) and (2) and display the numerical value.

つぎに本発明を使用して測定した具体例を、第5図およ
び第6図により説明する。第5図は複数の異なる厚さの
鋼板に、塗膜の厚さをほぼ一定にして塗装した場合の各
鋼板の厚さを測定した結果を示すグラフである。鋼板は
その厚さが4,6゜8、10.12 (単位mm)の5
種類で、各鋼板はその片面にエポキシタール系の塗料が
約150μmのほぼ一定の厚さに塗装されている。横軸
を塗装前のマイクロメータで■す定した鋼板の厚さ、縦
軸を本発明の方法により測定した鋼板の厚さとして各測
定値(単位mm)をプロットすると1両者の各測定値は
ほぼ完全に一致し、精度よく測定できることがわかる。
Next, specific examples measured using the present invention will be explained with reference to FIGS. 5 and 6. FIG. 5 is a graph showing the results of measuring the thickness of each steel plate when a plurality of steel plates having different thicknesses were coated with a substantially constant coating thickness. The steel plate has a thickness of 4.6°8.10.12 (unit: mm).
Each steel plate is coated with epoxy tar paint on one side to a uniform thickness of approximately 150 μm. When each measured value (unit: mm) is plotted, the horizontal axis is the thickness of the steel plate determined with a micrometer before painting, and the vertical axis is the thickness of the steel plate measured by the method of the present invention.1 Each measured value of both is It can be seen that there is almost perfect agreement and that measurement can be performed with high accuracy.

また第6図は一定の厚さの鋼板に、塗膜の厚さを変えて
塗装した場合の各塗膜の厚さを111す定したグラフで
ある。厚さが4mmの4枚の鋼板の片面に、エポキシタ
ール系の塗料が約70.150゜300、500 (単
位μm)の異なる厚さにそれぞれ塗装されたものの測定
で、横軸はその切断面を顕微鏡を使用して測定した塗膜
の厚さ、縦軸は本発明の方法によるものである。各測定
値(単位nn)をプロン1〜すると1両者の測定値はよ
く一致し高精度に測定できることが実証された。
FIG. 6 is a graph in which the thickness of each coating film is determined by 111 when coating a steel plate with a constant thickness with varying coating thicknesses. This is a measurement of four steel plates with a thickness of 4 mm each coated with epoxy tar paint on one side at different thicknesses of approximately 70.150°300 and 500 (unit: μm), and the horizontal axis is the cut surface. The thickness of the coating film was measured using a microscope, and the vertical axis is based on the method of the present invention. When each measured value (unit: nn) was measured from 1 to 1, the measured values of the two coincided well, proving that highly accurate measurement could be performed.

本方法は、エコー高さを評価するものではなく。This method does not evaluate echo height.

エコーの受信時間(ビーム路程)を評価指標とするもの
であるから、部材1の底面8の形状が腐食等により変化
したり、あらさがあらくなったりしても、その形状変化
の影響を受けず、また超音波が伝搬し得る物体であれば
、磁性体、非磁性体などを問わず材質による影響を受け
ることはない。
Since the echo reception time (beam path) is used as an evaluation index, even if the shape of the bottom surface 8 of the member 1 changes due to corrosion or becomes rough, it will not be affected by the change in shape. , and as long as the object can propagate ultrasonic waves, it will not be affected by the material, regardless of whether it is magnetic or non-magnetic.

したがって例えば大形のタンクやパイプライン等の塗膜
の厚さ9部材の腐食の程度2分布等が塗装面上から容易
に精度よくかつリアルタイムに測定でき、しかも探触子
を塗装面上を移動させるだけで連続的にalff定する
ことも可能である。
Therefore, for example, the degree of corrosion and the distribution of corrosion on parts with a coating thickness of 9 and 2, such as large tanks and pipelines, can be easily and accurately measured from the painted surface in real time, and the probe can be moved over the painted surface. It is also possible to continuously determine alff simply by

なお実施例においては探触子を塗装面に当接する直接接
触法について説明したが、液浸法においても同様の作用
・効果を奏することはもちろんである。
In the embodiments, a direct contact method in which the probe is brought into contact with the painted surface has been described, but it goes without saying that the immersion method can also produce similar effects and effects.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、塗装部材の塗装面に対し
て垂直に超音波を入射させ、その入射波が部材の底面で
反射し受信される第1回底面エコーと1部材の底面で2
回反射して受信される第2回底面エコーの各受信時間と
、塗膜と部材の各音速とを評価指標として塗装部材の塗
膜と部材の各厚さを測定するようにしたから、前記各厚
さを、塗膜上から部材の材質、底面の形状等の影響を受
けることなく、容易にかつ定量的に、しかもリアルタイ
ムに測定することができる実用上価れた効果を奏する。
As explained above, the present invention allows ultrasonic waves to be incident perpendicularly to the painted surface of a painted member, and the incident wave is reflected and received by the bottom surface of the member, which is the first bottom echo, and the bottom surface of the member receives two echoes.
Since each thickness of the coating film of the painted member and each member is measured using each reception time of the second bottom echo that is reflected and received twice and each sound velocity of the coating film and member as evaluation indicators, the above-mentioned This has a practical effect of being able to easily and quantitatively measure each thickness from the coating film, without being affected by the material of the member, the shape of the bottom surface, etc., and in real time.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の詳細な説明図で、第1図は塗装部材に超
音波が入射された場合における各種形態の反射波の発生
状況を示す図、第2図は測定方法の全体説明図、第3図
は背割形垂直探触子を使用した場合におけるCRT上の
エコーパターンの一例を示す図、第4図は送受信兼用の
垂直探触子を使用した場合におけるCRT上のエコーパ
ターンの一例を示す図、第5図は塗装部材の部材の厚さ
の具体的な測定結果のグラフ例、第6図は塗装部材の塗
膜の厚さの具体的な測定結果のグラフ例である。 1・・・部材、2・・・塗膜、3・・・塗装面、4・・
・垂直探触子、6・・・CRT、7・・・境界面、8・
・・底面、(B+)・・第1回底面エコー、(B2)・
・・第2回底面エコー、T I + T 2・・・受信
時間、M・・・塗装部材。
The figures are detailed explanatory diagrams of the present invention, Fig. 1 is a diagram showing the generation of various forms of reflected waves when ultrasonic waves are incident on a painted member, Fig. 2 is an overall explanatory diagram of the measurement method, Figure 3 is a diagram showing an example of an echo pattern on a CRT when a split vertical probe is used, and Figure 4 is an example of an echo pattern on a CRT when a vertical probe for transmitting and receiving purposes is used. FIG. 5 is a graph example of a specific measurement result of the thickness of a coated member, and FIG. 6 is a graph example of a specific measurement result of the thickness of a coating film of a coated member. 1... Member, 2... Paint film, 3... Painted surface, 4...
・Vertical probe, 6... CRT, 7... Boundary surface, 8.
・・Bottom surface, (B+)・・1st bottom surface echo, (B2)・
...Second bottom echo, T I + T 2...Reception time, M...Painted parts.

Claims (1)

【特許請求の範囲】[Claims] 1、部材表面に塗料を塗布した塗装部材の塗膜と部材の
各厚さを測定する方法であって、塗装部材の塗装面に対
して垂直に超音波を入射させ、その入射波が塗膜と部材
の境界面を通過して塗装部材の底面で反射し、再び前記
境界面を通過したのち受信される第1回底面エコーと、
前記境界面を通過して塗装部材の底面で反射した反射波
が、前記境界面で反射し、再び塗装部材の底面で反射し
て前記境界面を通過したのち受信される第2回底面エコ
ーとの各受信時間と、塗膜および部材の各音速とを評価
指標として塗装部材の塗膜と部材の各厚さを測定する方
法。
1. A method of measuring the coating film of a painted part with paint applied to the part surface and each thickness of the part, in which ultrasonic waves are incident perpendicularly to the painted surface of the painted part, and the incident waves are used to measure the thickness of the painted part. and a first bottom echo that is received after passing through the boundary surface of the painted member, being reflected at the bottom surface of the painted member, and passing through the boundary surface again;
A reflected wave that passes through the boundary surface and is reflected on the bottom surface of the painted member is reflected on the boundary surface, is reflected again on the bottom surface of the painted member, and is received after passing through the boundary surface and is a second bottom echo. A method of measuring the thickness of the coating film of a painted member and each member using the respective reception times of and the sound velocities of the coating film and the member as evaluation indicators.
JP28113285A 1985-12-16 1985-12-16 Method for measuring thickness of coated film and member to be coated by ultrasonic wave Pending JPS62140010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28113285A JPS62140010A (en) 1985-12-16 1985-12-16 Method for measuring thickness of coated film and member to be coated by ultrasonic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28113285A JPS62140010A (en) 1985-12-16 1985-12-16 Method for measuring thickness of coated film and member to be coated by ultrasonic wave

Publications (1)

Publication Number Publication Date
JPS62140010A true JPS62140010A (en) 1987-06-23

Family

ID=17634810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28113285A Pending JPS62140010A (en) 1985-12-16 1985-12-16 Method for measuring thickness of coated film and member to be coated by ultrasonic wave

Country Status (1)

Country Link
JP (1) JPS62140010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629586A1 (en) * 1988-03-30 1989-10-06 Cezus Co Europ Zirconium METHOD FOR ULTRASONICALLY MONITORING THE PLASTIC THICKNESS OF A METAL TUBE, CORRESPONDING DEVICE AND APPLICATION TO ALLOY TUBES OF PLATE ZR
CN112284310A (en) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 Nondestructive testing method for thickness of adhesive film of honeycomb sandwich structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125513A (en) * 1983-12-09 1985-07-04 Hitachi Ltd Device for measuring plate thickness from above coated film by ultrasonic wave

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125513A (en) * 1983-12-09 1985-07-04 Hitachi Ltd Device for measuring plate thickness from above coated film by ultrasonic wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629586A1 (en) * 1988-03-30 1989-10-06 Cezus Co Europ Zirconium METHOD FOR ULTRASONICALLY MONITORING THE PLASTIC THICKNESS OF A METAL TUBE, CORRESPONDING DEVICE AND APPLICATION TO ALLOY TUBES OF PLATE ZR
EP0335808B1 (en) * 1988-03-30 1991-11-13 CEZUS Compagnie Européenne du Zirconium Ultrasonic control method of the plating thickness of a metallic pipe, device therefor and application to plated zr alloy tubes
CN112284310A (en) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 Nondestructive testing method for thickness of adhesive film of honeycomb sandwich structure

Similar Documents

Publication Publication Date Title
JP3638812B2 (en) Method and apparatus for measuring the thickness of a coated material
Simonetti et al. A guided wave technique for the characterization of highly attenuative viscoelastic materials
EP0716301B1 (en) High resolution measurement of a thickness using ultrasound
US3844163A (en) Ultrasonic velocity meter
Brown Materials testing by ultrasonic spectroscopy
Silk Changes in ultrasonic defect location and sizing
JPS62140010A (en) Method for measuring thickness of coated film and member to be coated by ultrasonic wave
RU2231753C1 (en) Procedure measuring thickness of article with use of ultrasonic pulses
JPH0454447A (en) Fatigue damage measuring method
JP3510137B2 (en) Ultrasonic thickness measurement method and device
Rose et al. Acoustic double‐reflection and transmission at a rough water–solid interface
Pant et al. Paint thickness measurement using acoustic interference
CN113108731B (en) Method for measuring edge thickness of workpiece by utilizing ultrasonic surface wave
JP2001004353A (en) Method for measuring diameter of reinforcing bar ultrasonically
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
Giaquinto et al. Separation of overlapping reflected signals in stepped-frequency waveform reflectometry
JPS58150856A (en) Measurement of impurity in metal material
JP2866964B2 (en) Coating film thickness measurement method
Korkh et al. Laser detection of ultrasonic waves with concave portions of the wave fronts
Gu et al. The uncertainties induced by internal pipe wall roughness on the measurements of clamp-on ultrasonic flow meters
SU1132221A1 (en) Method of measuring time of ultrasonic propagation in article
Kushibiki et al. Precise velocity measurements for thin specimens by line-focus-beam acoustic microscopy
JPH04242109A (en) Method for measuring film thickness with ultrasonic wave
JPS613008A (en) Measurement of width
RU2442106C2 (en) Method for ultrasonic thickness gauging