JPS62139994A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS62139994A
JPS62139994A JP28133885A JP28133885A JPS62139994A JP S62139994 A JPS62139994 A JP S62139994A JP 28133885 A JP28133885 A JP 28133885A JP 28133885 A JP28133885 A JP 28133885A JP S62139994 A JPS62139994 A JP S62139994A
Authority
JP
Japan
Prior art keywords
thermal expansion
bearing
rotor
cylinder
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28133885A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28133885A priority Critical patent/JPS62139994A/en
Publication of JPS62139994A publication Critical patent/JPS62139994A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a rotor and cylinder from being subjected to abnormal wear due to contact with each other by disposing an intermediate member having the coefficient of thermal expansion larger than that of a side plate on a portion of the outer periphery of a bearing to absorb a difference between the thermal expansion amounts of the bearing and side plate with said member. CONSTITUTION:Intermediate members 20 made of synthetic resin having the coefficient of thermal expansion larger than that of aluminum alloy side plates 6, 7 having the coefficient of thermal expansion larger than that of iron system bearings 8, 9 are disposed on at least a portion of the bearings 8, 9, and side plates 6, 7. Thus, a difference between the thermal expansion amounts of the bearings 8, 9 and side plates 6, 7 will be absorbed by the intermediate members 20. As a result, in temperature rise, a rotor 3 will not contact a cylinder 1 and further a top gap 2 between the rotor 3 and cylinder 1 can be initially set small to provide a rotary compressor with few leakage, high efficiency and reliability and light weight.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車用冷房装置などに供されるロータリコン
プレッサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in a cooling device for an automobile or the like.

従来の技術 自動車の冷房装置に使われるコンプレッサは、狭いエン
ジンルームに装着され、エンジンによりベルト駆動され
る特殊性から、より小型で軽量、静粛なこと、さらには
高速回転に耐えることなど、要求項目が多い。近年では
、特に小型で静粛なロータリコンプレッサが従来のレシ
プロ式に替り採用されつつある。
Conventional technology Compressors used in automobile cooling systems are installed in narrow engine compartments and driven by a belt by the engine, so they have to meet requirements such as being smaller, lighter, quieter, and able to withstand high speed rotation. There are many. In recent years, rotary compressors, which are particularly small and quiet, have been increasingly adopted in place of conventional reciprocating compressors.

しかしながら、ロータリコンプレッサは前述した過酷な
運転条件のだめに、軽量化という点では従来のレシプロ
式に比べ遅れている。その難点の一つには、回転部材と
固定部材間の隙間の管理がある。即ち、回転式では、レ
シプロ式に比し、前記隙間を小さくしなければならず、
その隙間の確保のために、部材の剛性、特に圧力や熱に
よる歪管理の難かしさかある。例えば、第5図において
、1は内壁を有するシリンダで、トップ隙間2を設はロ
ータ3が前記シリンダ1内に配設されている。
However, due to the harsh operating conditions mentioned above, rotary compressors lag behind conventional reciprocating compressors in terms of weight reduction. One of the difficulties is managing the gap between the rotating member and the stationary member. That is, in the rotary type, the gap must be made smaller than in the reciprocating type.
In order to secure this gap, it is difficult to maintain the rigidity of the members, especially the strain control caused by pressure and heat. For example, in FIG. 5, 1 is a cylinder having an inner wall, a top gap 2 is provided, and a rotor 3 is disposed within the cylinder 1.

ロータ3内には複数の放射状スリットがあり、その中を
ベーン5が滑動する。6,7はシリンダ1を前後から閉
塞する前側板、後側版で、前記ロータ3を前軸受8.後
軸受9によりシャツ)10を介し支持している。
There are a plurality of radial slits within the rotor 3, through which the vanes 5 slide. Reference numerals 6 and 7 are front and rear plates that close the cylinder 1 from the front and back, and the rotor 3 is connected to the front bearing 8. It is supported by a rear bearing 9 via a shirt 10.

ここで、前記シリンダ1とロータ3はトップ隙間2を設
定し組立てられるが、このトップ隙間2は、広すぎると
、コンプレッサの性能を著しく害する。また狭すぎると
前記ロータ3が前記シリンダ1に当り、異常摩耗を引き
おこし、コンプレッサの焼付等の問題を引起こす。
Here, the cylinder 1 and rotor 3 are assembled with a top gap 2 set, but if this top gap 2 is too wide, it will significantly impair the performance of the compressor. If it is too narrow, the rotor 3 will hit the cylinder 1, causing abnormal wear and problems such as seizure of the compressor.

発明が解決しようとする問題点 ところで、前後の側板6,7をアルミ合金にした場合、
前述した現象はより厳しい状況となる。
Problems to be Solved by the Invention By the way, when the front and rear side plates 6 and 7 are made of aluminum alloy,
The above-mentioned phenomenon becomes even more severe.

即ち、前記軸受8.9が針状ころ軸受などの鉄系軸受で
あり、軸受ブロックである前側板6.後側板7がアルミ
合金の場合、両者の間に熱膨張係数は約2倍の差がある
。その結果、コンプレッサの温度が上昇すると、軸受8
と側板6,7の嵌合シロは減少し、更には両者間に隙間
が発生する。その為、前記ロータ3は回転運転中、遊び
シロが出来、前記シリンダ1とのトップ隙間2の方向に
移動することもあり、より前記シリンダ1に尚シやすく
なる。
That is, the bearings 8.9 are iron-based bearings such as needle roller bearings, and the front plate 6.9 is a bearing block. When the rear plate 7 is made of an aluminum alloy, there is a difference of approximately twice the coefficient of thermal expansion between the two. As a result, when the compressor temperature increases, bearing 8
The fitting margin between the side plates 6 and 7 is reduced, and a gap is created between the two. Therefore, during rotation, the rotor 3 may have some play and may move in the direction of the top clearance 2 with respect to the cylinder 1, making it more likely that the rotor 3 will be attached to the cylinder 1.

この為、側板6,7をアルミ合金にするためには、前記
トップ隙間2は鉄係金属の側板の場合よりやや広めに設
定する必要があった。
Therefore, in order to make the side plates 6 and 7 made of aluminum alloy, the top gap 2 had to be set slightly wider than in the case of side plates made of ferrous metal.

本発明は上記欠点にかんがみ、部材の温度が上昇しても
、ロータとシリンダの接触による異常摩耗が発生するこ
とがなく、かつ、ロータとシリンダの隙間が小さく設定
することができる構成で軽量ノロータリコンプレッサを
提供せんとするものである。
In view of the above-mentioned drawbacks, the present invention has been developed to provide a lightweight lightweight construction that does not cause abnormal wear due to contact between the rotor and cylinder even when the temperature of the members increases, and allows the gap between the rotor and cylinder to be set small. The purpose is to provide a rotary compressor.

問題点を解決するための手段 本発明では、前述した問題点に対し、次の様な構成によ
り対処している。即ち、軸受よりも熱膨張係数が大なる
側板に対し、更に熱膨張係数の犬なる材料からなる中間
部材を前記軸受の外周の少なくとも一部に配置した構成
としている。
Means for Solving the Problems In the present invention, the above-mentioned problems are addressed by the following configuration. That is, the side plate has a larger coefficient of thermal expansion than the bearing, and an intermediate member made of a material with a coefficient of thermal expansion smaller than that of the bearing is disposed on at least a portion of the outer periphery of the bearing.

作   用 従来の構成においては、各部材が一様に温度上昇した時
、例えばアルミ合金製の側板(軸受ブロック)は熱膨張
係数が約19 X 1 d−6で、鉄系の軸受の熱膨張
係数約11X 10=よりも大きいため、従来の構成で
はある温度以上では圧入シロ(通常は常温で20μm程
度)が消滅し、逆に隙間が発生する。本発明の構成では
、アルミ合金よりも犬なる熱膨張係数の中間部材を軸受
と側板(軸受ブロック)の間に配置しているので、軸受
と側板(軸受ブロック)の熱膨張量の差は中間部材が吸
収する。
Function In the conventional configuration, when the temperature of each member rises uniformly, for example, the thermal expansion coefficient of the aluminum alloy side plate (bearing block) is approximately 19 x 1 d-6, and the thermal expansion coefficient of the iron-based bearing is approximately 19 x 1 d-6. Since the coefficient is larger than approximately 11×10=, in the conventional configuration, the press-fit margin (usually about 20 μm at room temperature) disappears at a temperature above a certain level, and conversely, a gap occurs. In the configuration of the present invention, an intermediate member with a thermal expansion coefficient lower than that of aluminum alloy is placed between the bearing and the side plate (bearing block), so the difference in thermal expansion between the bearing and the side plate (bearing block) is The component absorbs.

この結果、従来のような圧入シロの消滅、隙間の発生が
なくなり、温度上昇時のロータとシリンダの接触がなく
なるばかりでなく、ロータとシリンダ間のトップ隙間を
小さく初期設定することができるため、洩れの少ない高
効率で信頼性の高い軽量のロータリコンプレッサにする
ことができる。
As a result, the press-fit margins and gaps that occur in the past are eliminated, and the contact between the rotor and cylinder when the temperature rises is eliminated, and the top gap between the rotor and cylinder can be initially set small. It is possible to create a lightweight rotary compressor with low leakage, high efficiency, and high reliability.

実施例 第1図は本発明の一実施例であるロータリコンプレッサ
の縦断面図、第2図は第1図のA−A断面図である。1
は円筒状内壁を有するシリンダでその内部に前記シリン
ダ1とトップ隙間2をへだてロータ3が偏心して配設さ
れている。前記ロータ3内には複数の放射状スリット4
があり、その中をベーン5が出没自在に挿入されている
。6は前側板、7は後側板で、アルミ合金製である。2
゜は前側板6.後側板7の夫々に圧入された合成樹脂製
(フッ素系樹脂が好適である。)の中間部材で、さらに
、各々の中間部材20.20内には鉄系材料からなる前
軸受8、後軸受9が同芯状に圧入されている。
Embodiment FIG. 1 is a longitudinal sectional view of a rotary compressor which is an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. 1
1 is a cylinder having a cylindrical inner wall, and a rotor 3 is eccentrically disposed inside the cylinder 1 with a top gap 2 separating the cylinder 1 and the top gap 2. A plurality of radial slits 4 are provided in the rotor 3.
There is a vane 5 inserted therein so as to be freely retractable. 6 is a front side plate, and 7 is a rear side plate, both of which are made of aluminum alloy. 2
゜ is the front plate 6. An intermediate member made of synthetic resin (preferably fluororesin) is press-fitted into each of the rear side plates 7, and each intermediate member 20.20 further includes a front bearing 8 and a rear bearing made of iron-based material. 9 are press-fitted concentrically.

そして、各軸受8,9は前記ロータ3と一体となってい
るシャフト1oを軸受支持している。
Each of the bearings 8 and 9 supports a shaft 1o that is integral with the rotor 3.

上記構成において、コンプレッサが温度上昇し 。In the above configuration, the temperature of the compressor increases.

た時の前側板6、中間部材20、軸受8の熱膨張につい
て考察する。各々の熱膨張係数をαB、αR9αJ、前
側板6の工大穴内径を21B 、中間部材の厚みをtl
、軸受外輪径を211とすると、軸受8と前側板6の熱
膨張量差を中間部材2oが吸収するためには tX4H=RBX(ZB−RJX(Z JRB=RJ十
tであるから t 拳(ZH:(RJ+t )(ZB−RJ IIJ=
R,(αB−αJ)+taaB (119X106.a工=11X10−6.R1=12
.55B。
Thermal expansion of the front side plate 6, the intermediate member 20, and the bearing 8 will be considered. The coefficient of thermal expansion of each is αB, αR9αJ, the inner diameter of the large engineering hole in the front plate 6 is 21B, and the thickness of the intermediate member is tl.
, assuming that the outer ring diameter of the bearing is 211, in order for the intermediate member 2o to absorb the difference in thermal expansion between the bearing 8 and the front plate 6, t ZH: (RJ+t) (ZB-RJ IIJ=
R, (αB-αJ)+taaB (119X106.a engineering=11X10-6.R1=12
.. 55B.

B− t−2鵡とすれば αR=619X1゜ とな9、熱膨張係数から樹脂系が好ましい。B- If it is t-2 parrot αR=619X1゜ 9. Resin-based materials are preferred from the viewpoint of thermal expansion coefficient.

第3図は本発明の第2の実施例を示している。FIG. 3 shows a second embodiment of the invention.

この実施例では、前述した中間部材20は軸受8と偏心
しており、中間部材2oの厚肉部21は前述シたロータ
3とシリンダ1のトップ隙間2の方向にある。
In this embodiment, the aforementioned intermediate member 20 is eccentric to the bearing 8, and the thick wall portion 21 of the intermediate member 2o is located in the direction of the aforementioned top gap 2 between the rotor 3 and the cylinder 1.

本構成の目的は、従来例で述べた軸受外輪と軸受ブロッ
ク間の隙間の発生によるロータ3とシリンダ1の接触の
他に、ロータ3が高速回転すると、軸受部の発熱のため
にロータ3の温度が、シリンダ1の温度よりも高くなる
ことによるトップ隙間2の減少又は消滅を防止せんとし
たものである。
The purpose of this configuration is that in addition to the contact between the rotor 3 and the cylinder 1 due to the generation of a gap between the bearing outer ring and the bearing block as described in the conventional example, when the rotor 3 rotates at high speed, the bearing section generates heat. This is intended to prevent the top gap 2 from decreasing or disappearing due to the temperature becoming higher than the temperature of the cylinder 1.

即ち、中間部材2oと軸受8を偏心した構成にすること
により、温度上昇時には、中間部材2oの厚肉部21の
方が熱膨張量が大きくなるため、軸受8の中心は前記ト
ップ隙間2を拡大する方向に移動する。この結果、トッ
プ隙間2は前述したロータ3のシリンダ1に対する熱膨
張量差と相殺され、一定に保たれるため、ロータ3とシ
リンダ1の接触による異常摩耗は防止できる。
That is, by configuring the intermediate member 2o and the bearing 8 to be eccentric, when the temperature rises, the thick portion 21 of the intermediate member 2o has a larger amount of thermal expansion. Move in the direction of enlargement. As a result, the top gap 2 is offset by the above-described difference in thermal expansion between the rotor 3 and the cylinder 1 and is kept constant, so that abnormal wear due to contact between the rotor 3 and the cylinder 1 can be prevented.

第4図は本発明の第3の実施例を示しており、側板6よ
り熱膨張係数が大なる中間部材2oを軸受8と軸受ブロ
ックである前側板6の間で前記トップ隙間2側に部分的
に圧入している。
FIG. 4 shows a third embodiment of the present invention, in which an intermediate member 2o having a larger coefficient of thermal expansion than the side plate 6 is positioned between the bearing 8 and the front plate 6, which is a bearing block, on the side of the top gap 2. It is press-fitted.

以上述べた実施例では側板6,7をアルミ合金製とし、
中間部材20を合成樹脂としたが、両者ともアルミ合金
とし、成分を異ならせて中間部材2oの方の熱膨張係数
が大であるようにすれば同様の効果が得られることは明
白である。
In the embodiment described above, the side plates 6 and 7 are made of aluminum alloy,
Although the intermediate member 20 is made of synthetic resin, it is clear that the same effect can be obtained if both are made of aluminum alloy and the components are made to be different so that the intermediate member 2o has a larger coefficient of thermal expansion.

発明の効果 以上、述べてきたように、本発明によれば、軸受の外側
に側板より熱膨張係数の大なる中間部材を配置するだけ
で、きわめて耐久性に優れかつ性能の良いロータリコン
プレッサを提供することができる。
Effects of the Invention As described above, according to the present invention, a rotary compressor with extremely excellent durability and high performance can be provided by simply arranging an intermediate member having a larger coefficient of thermal expansion than the side plate on the outside of the bearing. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるロータリコンプレッ
サの縦断面図、第2図は第1図のA−A断面図、第3図
及び第4図は夫々本発明の他の実施例を示す横断面図、
第6図は従来のロータリコンプレッサを示す圧縮部の縦
断面図である。 1・・・・・・シリンダ、2・・・・・・トップ隙間、
3°・・・・・ロータ、6.7・・・・・・側板、8.
9・・・・・・軸受、20・・・・・・中間部材、21
・・・・・・厚肉部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
FIG. 1 is a longitudinal sectional view of a rotary compressor according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIGS. 3 and 4 each show other embodiments of the present invention. cross section,
FIG. 6 is a longitudinal sectional view of a compression section of a conventional rotary compressor. 1...Cylinder, 2...Top clearance,
3°...rotor, 6.7...side plate, 8.
9...Bearing, 20...Intermediate member, 21
・・・・・・Thick part. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
figure

Claims (2)

【特許請求の範囲】[Claims] (1) シリンダ内をトップ隙間を形成し運転するロー
タと、前記ロータを軸受支持する軸受を受ち、かつ前記
シリンダを閉塞する前記軸受より熱膨張係数の大なる側
板を備えたロータリコンプレッサにおいて、前記軸受の
外周の少なくとも一部に前記側板よりも熱膨張係数の大
なる中間部材を配置したロータリコンプレッサ。
(1) A rotary compressor comprising a rotor that operates with a top gap formed inside a cylinder, and a side plate that receives a bearing that supports the rotor and has a larger coefficient of thermal expansion than the bearing that closes the cylinder, A rotary compressor, wherein an intermediate member having a larger coefficient of thermal expansion than the side plate is disposed on at least a part of the outer periphery of the bearing.
(2) 中間部材は前記軸受の中心に対し、前記トップ
隙間の方向に厚肉であるか、前記トップ隙間の方向のみ
に圧入されたものである特許請求の範囲第1項記載のロ
ータリコンプレッサ。
(2) The rotary compressor according to claim 1, wherein the intermediate member is thick in the direction of the top gap or is press-fitted only in the direction of the top gap with respect to the center of the bearing.
JP28133885A 1985-12-13 1985-12-13 Rotary compressor Pending JPS62139994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28133885A JPS62139994A (en) 1985-12-13 1985-12-13 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28133885A JPS62139994A (en) 1985-12-13 1985-12-13 Rotary compressor

Publications (1)

Publication Number Publication Date
JPS62139994A true JPS62139994A (en) 1987-06-23

Family

ID=17637712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28133885A Pending JPS62139994A (en) 1985-12-13 1985-12-13 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS62139994A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205290A (en) * 2015-04-24 2016-12-08 株式会社ニッキ Internal gear pump
JP2020176569A (en) * 2019-04-19 2020-10-29 三菱重工サーマルシステムズ株式会社 Rotary compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022087A (en) * 1983-07-16 1985-02-04 Nippon Piston Ring Co Ltd Vane type rotary pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022087A (en) * 1983-07-16 1985-02-04 Nippon Piston Ring Co Ltd Vane type rotary pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016205290A (en) * 2015-04-24 2016-12-08 株式会社ニッキ Internal gear pump
JP2020176569A (en) * 2019-04-19 2020-10-29 三菱重工サーマルシステムズ株式会社 Rotary compressor

Similar Documents

Publication Publication Date Title
US4370106A (en) Bearing assembly for high speed shaft
KR900014725A (en) Turbocharger with rotor
WO1999014510A1 (en) Bearing arrangement for air cycle machine
JP2510425Y2 (en) Lubrication structure of compressor main shaft bearing
US10557377B2 (en) Turbocharger
JPH01240785A (en) Vane type rotary compressor
US4971459A (en) Journal bearing with high stiffness
JPH0151912B2 (en)
JPS62139994A (en) Rotary compressor
US4496297A (en) Rotary vane pump with overlapping rotor and housing portions
US2126279A (en) Air compressor
JPS62150094A (en) Lightweight oilless vacuum pump
JPS6331678B2 (en)
JP3179716B2 (en) Canned motor pump
JPH102227A (en) Floating bearing structure for supercharger
US3999903A (en) Combination thrust and journal bearing
JPS6166882A (en) Compressor with ceramic rotor
JPS614885A (en) Compressor
KR930007432Y1 (en) Compressor
US4025248A (en) Radially extended vapor inlet for a rotary multivaned expander
JPS63259187A (en) Scroll fluid machine
KR102273470B1 (en) Turbo charger
JPS59206693A (en) No-lubrication type vane vacuum pump
JP2712087B2 (en) Compressor bearing structure
JPH0650438A (en) Sealing structure for high speed revolving body