JPS6213993A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6213993A
JPS6213993A JP15371585A JP15371585A JPS6213993A JP S6213993 A JPS6213993 A JP S6213993A JP 15371585 A JP15371585 A JP 15371585A JP 15371585 A JP15371585 A JP 15371585A JP S6213993 A JPS6213993 A JP S6213993A
Authority
JP
Japan
Prior art keywords
heat exchanger
ribs
rib
fin
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15371585A
Other languages
Japanese (ja)
Other versions
JPH0227598B2 (en
Inventor
Atsushi Kanda
篤 神田
Daisuke Kawamura
大助 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP15371585A priority Critical patent/JPH0227598B2/en
Publication of JPS6213993A publication Critical patent/JPS6213993A/en
Publication of JPH0227598B2 publication Critical patent/JPH0227598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a heat exchanger whose pressure loss is low, while heat transfer area is large, whose size can be miniaturized, and mechanical intensity is high, by flowing both fluids in the direction of ribs of corrugated fins, in a heat exchanger of cross flow type being curved in an arc. CONSTITUTION:A corrugated fin 7 is a serration-type fin with its ribs formed staggeredly in the longitudinal direction 'L', that is the direction of ribs. The fin 7 is formed in such a manner that its rib part 8 is cut off by every unit length 'd' in the longitudinal direction with the bottom part 9 of each rib 8 being left unseparated, and the cut ribs are curved to the bottom side 9 in accordance with the curvature 1/R of a core part. They are placed between bulkheads 1, 1, with its direction of rib 'L' being set in accordance with the circumferential direction 'A' of a core part. In such a structure, a fluid flowing to the circumferential direction 'A' in the other fluid passage 3 circulates in the direction of rib of a corrugated fin 7. Pressure loss by fins 7 is made low, accordingly the pitch of corrugation can be narrowed. The heat transfer area can be increased, the heat exchanging efficiency can be increased, and a heat exchanger itself can be miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、弧状に彎曲した直交流形式の熱交換器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an arcuate cross-flow type heat exchanger.

〔従来の技術〕[Conventional technology]

円弧状機器の外周面に沿った弧状の熱交換器は、伝熱効
率面から一方の流体を周方向に、他方の流体を軸心方向
に流すいわゆる直交流形式のものが使用されている。第
8図に従来のこの種の熱交換器の1つである空冷式オイ
ルクーラのコア部を示す。
The arc-shaped heat exchanger along the outer peripheral surface of the arc-shaped device is of the so-called cross-flow type, in which one fluid flows in the circumferential direction and the other fluid flows in the axial direction, in terms of heat transfer efficiency. FIG. 8 shows the core portion of an air-cooled oil cooler, which is one of the conventional heat exchangers of this type.

コア部は隔板(1)(1)・・・間に一方の流体通路<
21と他方の流体通路(3)が交互に形成された積層構
造で、コア部全体が所要の半径Rで円弧状に彎曲してい
る。そこで、この弧状のコア部の周方向をA、周方向A
と直角な周面長手方向をBでそれぞれ表わせば、一方の
流体通路(2)が空気全長手方向Bに通じる空気通路で
ある。この空気通路(2)に設けられる波形フィン(4
)は空気の流通方向と、彎曲加工の点とから、リブを長
手方向Bに向け、波形の連続する方向を周方向Aに一致
させた形で配設される。
The core part has one fluid passage between the partition plates (1) (1).
21 and the other fluid passage (3) are alternately formed, and the entire core portion is curved in an arc shape with a required radius R. Therefore, the circumferential direction of this arc-shaped core portion is A, and the circumferential direction A is
If the circumferential longitudinal direction perpendicular to is represented by B, one fluid passageway (2) is an air passageway communicating with the entire air longitudinal direction B. The corrugated fins (4) provided in this air passage (2)
) is arranged so that the ribs are oriented in the longitudinal direction B and the continuous direction of the waveforms is aligned with the circumferential direction A from the viewpoint of the air flow direction and the curving process.

(5)は空気通路(2)の周方向端部に設けたスペーサ
ーバーである。
(5) is a spacer bar provided at the circumferential end of the air passage (2).

これに対し、他方の流体通路(3)は油通路であって、
油を空気の流通方向(長手方向B)と直角な局方向AK
通じ、長手方向Bの両端部には弧状のスペーサーバー(
61備えている。油の流通方向から言えば、油通路(3
)に設ける波形フィン(7)は、そのリブ方向Li油の
流通する周方向Aに一致させるのが望ましいが、こうす
ると、波形フィン(7)の彎曲成形が困難になるので、
通常は空気通路(21と同じ様に長手方向Bにリブ全肉
け、その代り図示のように、リプの立上り部分に多数の
ルーパーを設けて周方向Aの油の流通を確保するように
している。しかしながら、油通路(3)のこのような構
造に句因して次のような間Eがある。
On the other hand, the other fluid passage (3) is an oil passage,
The oil is moved in the local direction AK perpendicular to the air flow direction (longitudinal direction B).
There are arc-shaped spacer bars (
It has 61 items. From the oil distribution direction, the oil passage (3
It is desirable that the rib direction of the corrugated fins (7) provided in ) coincide with the circumferential direction A in which the Li oil flows, but if this is done, it will be difficult to curve the corrugated fins (7).
Usually, the ribs are completely thickened in the longitudinal direction B as in the air passage (21), and instead, as shown in the figure, a large number of loopers are provided at the rising part of the lip to ensure oil circulation in the circumferential direction A. However, due to this structure of the oil passage (3), there is the following difference.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

先ず、上述したように、油の流通を確保するため、波形
フィン(7)にp−バーを設けているが、油は波形ルー
パ一部を通過毎にフィン面に突当り、曲がり流れること
になる。その結果、油通路(3)における圧力損失が大
となり、これを改善するためにはフィン(7)の波形ピ
ッチを大きくすることとルーバーピッチを極端に小さく
することが必要となり、結果的に伝熱面積の減少とフィ
ン成形性の悪化とを招来する。
First, as mentioned above, in order to ensure oil circulation, a p-bar is provided on the corrugated fin (7), but each time the oil passes through a portion of the corrugated looper, it hits the fin surface and flows in a curved manner. . As a result, the pressure loss in the oil passage (3) becomes large, and in order to improve this, it is necessary to increase the waveform pitch of the fins (7) and extremely reduce the louver pitch, which results in the transmission of This results in a decrease in thermal area and deterioration in fin formability.

また、油通路(3)における圧力損失が大きいと、油を
一方通行で通過させなければならない。その結果、冷却
された油は、熱交換器のコア部の外に別途設けた配管で
入口側へ返却されることKなり、熱交換器の小型化が難
しい。
Moreover, if the pressure loss in the oil passage (3) is large, the oil must be passed through in one direction. As a result, the cooled oil is returned to the inlet side through a separate pipe provided outside the core of the heat exchanger, making it difficult to downsize the heat exchanger.

更にまた、この種の熱交換器ではコア部全ろう付にて一
体化するのが通例となっているが、油通路(3)におけ
るフィン(7)の波形ピッチが大きいと、その周方向A
の両端部において隔板(1]とスペーサーバー(5)と
をろう付完了まで押えておくバックアップフィンの存在
しない場合が多く、ろう付を行っても周方向両端部にろ
う付不良が頻発し、外部リークやコア部の破損の可能性
が大きい。
Furthermore, in this type of heat exchanger, it is customary to integrate the entire core part by brazing, but if the waveform pitch of the fins (7) in the oil passage (3) is large, the circumferential direction A
In many cases, there are no backup fins to hold the partition plate (1) and spacer bar (5) at both ends until brazing is complete, and even if brazing is performed, brazing failures frequently occur at both ends in the circumferential direction. , there is a high possibility of external leakage or damage to the core.

本発明の目的は、これらの問題点を全て解決した圧力損
失が少なく、伝熱面積も大で、しかも小型化が可能で、
機械強度的にも優れた熱交換器を提供することにある。
The purpose of the present invention is to solve all of these problems, to reduce pressure loss, to have a large heat transfer area, and to be able to be miniaturized.
An object of the present invention is to provide a heat exchanger having excellent mechanical strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の熱交換器は、上記目的全達成するため、リプ構
造に改良を加えていずれの流体通路においても流体がリ
ブ方向に通過するようにしたもので、その特徴とすると
ころは、弧状に彎曲し、その周方向Aと直角な局面長手
方向Bに一方の流体が通じ、周方向Aに他方の流体が通
じる直交流形式の熱交換器において、一方の流体通路に
波形フィンをそのリプを前記長手方向Bに向けて設け、
他方の流体通路にはリプがその長手方向りにおいて底部
を残して所定長毎に分離して底部の側へ彎曲せしめられ
た波形フィンを、そのリプを周方向Aに向けて配設せし
めた点にある。
In order to achieve all of the above objectives, the heat exchanger of the present invention has an improved lip structure so that fluid passes in the direction of the ribs in any fluid passage. In a cross-flow type heat exchanger that is curved and has one fluid communicating in the curved longitudinal direction B perpendicular to the circumferential direction A and the other fluid communicating in the circumferential direction A, a corrugated fin is installed in one fluid passage to extend its lip. provided toward the longitudinal direction B;
In the other fluid passage, the lips are separated at predetermined length intervals leaving the bottom part in the longitudinal direction, and wave-shaped fins are curved toward the bottom side, and the lips are arranged in the circumferential direction A. It is in.

以下、図面に掲げる実施例に基づいて本発明を説明する
The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明を実施した熱交換器の一例についてその
コア部を一部破断て示した斜視図、第2図は同コア部の
他方の流体通路に使用される波形フィンの側面図である
FIG. 1 is a perspective view of an example of a heat exchanger embodying the present invention, with the core section partially cut away, and FIG. 2 is a side view of a corrugated fin used in the other fluid passage of the core section. be.

第1図装置においては、他方の流体通路(3)に設けた
波形フィン(7)を除いて、第8図の従来装置と同じ構
造を有しているので、波形フィン(7)ヲ除く部分につ
いては第8図に符したのと同じ番号を符して詳細な説明
を省略する。
The device shown in FIG. 1 has the same structure as the conventional device shown in FIG. 8, except for the corrugated fins (7) provided in the other fluid passageway (3), so the parts excluding the corrugated fins (7) are the same as the conventional device shown in FIG. 8 are denoted by the same numbers as in FIG. 8, and detailed explanation thereof will be omitted.

第1図によれば、波形フィン(7)は伝熱性能向上を図
る目的でリプをその長手方向L(リプ方向)において千
鳥状に形成したいわゆるセレート型フィンとなっている
:このフィン(7)はまた、第2図の側面図に示すよう
に、リプ(8)がその長手方向L(リプ方向)において
底部(9)ヲ残して単位長d毎に切り離され、底部(9
)の側にコア部の曲率碌に合ったカーブで彎曲した構造
となっている。そして、第1図に示すように、リプ方向
りをコア部の周方向Aに一致させた形で隔板(11(1
1間に配設されている。
According to FIG. 1, the corrugated fin (7) is a so-called serrate-type fin in which lips are formed in a staggered manner in the longitudinal direction L (lip direction) for the purpose of improving heat transfer performance. ) is also cut off every unit length d in the longitudinal direction L (rip direction), leaving the bottom (9).
) side has a curved structure with a curve that matches the curvature of the core part. Then, as shown in FIG. 1, the partition plate (11 (1)
It is located between 1.

リプ(81k RE部(9)ヲ残して切り離すには、セ
レート型フィンの場合はリプ(8)がその長手方向L(
リプ方向)において単位長d毎に上下2箇所で接続され
た構造となっているので、上部の接続箇所を切シ離せば
よい。その際、上部が極力小さい範囲で接続されるよう
にしておけば、切シ離し作業が極めて容易となる。通常
の波形フィンの場合は底部(9)を残してリプ(8)と
直角方向にスリットを入れればよい。
In the case of a serrated type fin, the lip (8) should be separated in its longitudinal direction L (
Since the structure is such that they are connected at two locations above and below for each unit length d in the direction of the tape, it is only necessary to disconnect the upper connection location. At that time, if the upper part is connected within the smallest possible range, the disconnection work will be extremely easy. In the case of normal corrugated fins, it is sufficient to leave the bottom part (9) and make a slit in the direction perpendicular to the lip (8).

切り離す間隔は、大きくして行くと、切り離し作業が容
易になる反面、隔板(1)のカーブにフィン(7)が沿
わなくなり、両者のろう付が不完全となるので、その虞
れがない範囲にとどめおかなければならない。
If the separation interval is increased, the separation process will become easier, but on the other hand, the fins (7) will not follow the curve of the partition plate (1), and the brazing between the two will be incomplete, so there is no risk of this happening. Must be kept within range.

上記構成によれば、他方の流体通路(3)において周方
向Aに流れる流体は、波形フィン(7)のリブ方向に流
通することになる。したがって、フィン(7)による圧
力損失が小さくなり、その分、フィン(7)の波形ピッ
チをつめることができるので、伝熱面積が増大し、熱交
換効率の向上を達成し、設計の自由度も大きくなる。
According to the above configuration, the fluid flowing in the circumferential direction A in the other fluid passageway (3) flows in the direction of the ribs of the corrugated fins (7). Therefore, the pressure loss due to the fins (7) is reduced, and the waveform pitch of the fins (7) can be reduced accordingly, increasing the heat transfer area, achieving improved heat exchange efficiency, and increasing the freedom of design. also becomes larger.

更に、圧力損失が小さいと、他方の流体通路(3)をU
ターン構造にでき、還流用の配管が不用になるので、熱
交換器の小型化を可能にする。
Furthermore, when the pressure loss is small, the other fluid passage (3) is
The heat exchanger can be made into a turn structure, eliminating the need for reflux piping, making it possible to downsize the heat exchanger.

しかも、流体通路(3)の周方向端部において、波形フ
ィン(7)が上下の隔板(IHIIに密着し、更にその
上下にスペーサー(5)(5)が位置することになるの
で、ろう付時フィン(7)がスプリングバック力を生み
出し、各部材が密着して、ろう付性を向上させる。
Moreover, at the circumferential end of the fluid passageway (3), the corrugated fins (7) are in close contact with the upper and lower partition plates (IHII), and the spacers (5) (5) are located above and below the fins. When attached, the fins (7) create a springback force that brings each member into close contact, improving brazing performance.

その結果、同端部からのリークが防止され破損ひいては
熱交換コアの損傷も防ぐことが可能となる。
As a result, leakage from the same end is prevented, and damage to the heat exchange core can also be prevented.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明は弧状に9曲し
た直交流形式の熱交換器において、双方の流体を波形フ
ィンのリブ方向に通じるという簡単な手段で、熱交換効
率の面は勿論、装置規模や安全面でも大きな効果を発揮
するものである。
As is clear from the above description, the present invention is a cross-flow type heat exchanger with nine arcuate curves, and the present invention is a simple method in which both fluids are passed in the direction of the ribs of the corrugated fins. This has great effects in terms of equipment scale and safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した熱交換器の一例についてその
コア部を一部破断て示した斜視図、第2図は同コア部に
使用した波形フィンの側面図、第3図は従来の熱交換器
の第1図相当図である。 図中、l:隔板、2ニ一方の流体通路(空気通路)、3
:他方の流体通路(油通路)、4:流体通路(2+に設
けられた波形フィン、5.6:スペーサーバー、7:流
体通路(3)に設けられた波形フィン、8:リブ、9:
リブ(8)の底部。 第  3jl1 第  1  図 第  2  図
Fig. 1 is a perspective view of an example of a heat exchanger embodying the present invention, with the core section partially cut away, Fig. 2 is a side view of corrugated fins used in the core section, and Fig. 3 is a conventional heat exchanger. FIG. 2 is a diagram corresponding to FIG. 1 of the heat exchanger. In the figure, l: partition plate, 2 d one fluid passage (air passage), 3
: The other fluid passage (oil passage), 4: Fluid passage (corrugated fin provided on 2+, 5.6: Spacer bar, 7: Corrugated fin provided on fluid passage (3), 8: Rib, 9:
Bottom of rib (8). 3jl1 Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)弧状に彎曲し、その周方向Aと直角な周面長手方
向Bに一方の流体が通じ、周方向Aに他方の流体が通じ
る直交流形式の熱交換器において、一方の流体通路に波
形フィンをそのリブを前記長手方向Bに向けて設け、他
方の流体通路にはリブがその長手方向Lにおいて底部を
残して所定長毎に分離して底部の側へ彎曲せしめられた
波形フィンを、そのリブを周方向Aに向けて配設せしめ
たことを特徴とする熱交換器。
(1) In a cross-flow type heat exchanger that is curved in an arc and has one fluid communicating in the circumferential longitudinal direction B perpendicular to the circumferential direction A and the other fluid communicating in the circumferential direction A, one fluid passage The corrugated fins are provided with their ribs facing in the longitudinal direction B, and the ribs are separated at predetermined lengths in the longitudinal direction L, leaving a bottom portion, and curved toward the bottom side in the other fluid passage. , A heat exchanger characterized in that the ribs are arranged facing in the circumferential direction A.
JP15371585A 1985-07-11 1985-07-11 NETSUKOKANKI Expired - Lifetime JPH0227598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15371585A JPH0227598B2 (en) 1985-07-11 1985-07-11 NETSUKOKANKI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15371585A JPH0227598B2 (en) 1985-07-11 1985-07-11 NETSUKOKANKI

Publications (2)

Publication Number Publication Date
JPS6213993A true JPS6213993A (en) 1987-01-22
JPH0227598B2 JPH0227598B2 (en) 1990-06-18

Family

ID=15568514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15371585A Expired - Lifetime JPH0227598B2 (en) 1985-07-11 1985-07-11 NETSUKOKANKI

Country Status (1)

Country Link
JP (1) JPH0227598B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867787B1 (en) * 2007-01-12 2008-11-10 엘지전자 주식회사 Heat exchanger for a ventilating apparatus
GB2524059A (en) * 2014-03-13 2015-09-16 Hs Marston Aerospace Ltd Curved cross-flow heat exchanger
EP4227629A1 (en) * 2022-02-10 2023-08-16 Raytheon Technologies Corporation Conformal heat exchanger
EP4286780A1 (en) * 2022-06-03 2023-12-06 RTX Corporation Conformal heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100867787B1 (en) * 2007-01-12 2008-11-10 엘지전자 주식회사 Heat exchanger for a ventilating apparatus
GB2524059A (en) * 2014-03-13 2015-09-16 Hs Marston Aerospace Ltd Curved cross-flow heat exchanger
US9851159B2 (en) 2014-03-13 2017-12-26 Hs Marston Aerospace Limited Curved cross-flow heat exchanger
GB2524059B (en) * 2014-03-13 2019-10-16 Hs Marston Aerospace Ltd Curved cross-flow heat exchanger
EP4227629A1 (en) * 2022-02-10 2023-08-16 Raytheon Technologies Corporation Conformal heat exchanger
EP4286780A1 (en) * 2022-06-03 2023-12-06 RTX Corporation Conformal heat exchanger

Also Published As

Publication number Publication date
JPH0227598B2 (en) 1990-06-18

Similar Documents

Publication Publication Date Title
JP2555449B2 (en) Heat exchanger
EP0021651B1 (en) Louvred fins for heat exchangers
US4945981A (en) Oil cooler
US4966230A (en) Serpentine fin, round tube heat exchanger
US4301863A (en) Heat exchanger closure bar construction
JP3671295B2 (en) Heat exchanger with bypass channel formed with dimples
EP3196585A1 (en) Heat exchanger with center manifold
US3438433A (en) Plate fins
US3983932A (en) Heat exchanger
JP2020094791A5 (en)
US5062474A (en) Oil cooler
JPS6334466A (en) Condenser
US5975200A (en) Plate-fin type heat exchanger
JP3049386B2 (en) Combined heat exchanger
CN110230935B (en) Strong heat adaptability plate-fin heat exchanger core body with flexible structure
JPS6213993A (en) Heat exchanger
JPS6317393A (en) Heat exchanger
GB2132748A (en) Improvements relating to heat exchangers
JPH10176892A (en) Noded plate fin type heat exchanger
EP0803695B1 (en) Plate-fin heat exchanger
JPH10500203A (en) Plate heat exchanger
JPS63217197A (en) Heat exchanger
JPS62169995A (en) Heat exchanger
JPS63131993A (en) Heat exchanger
JPS6339582Y2 (en)