JPS62139809A - Method and apparatus for refining molten steel under reduced pressure - Google Patents

Method and apparatus for refining molten steel under reduced pressure

Info

Publication number
JPS62139809A
JPS62139809A JP27802985A JP27802985A JPS62139809A JP S62139809 A JPS62139809 A JP S62139809A JP 27802985 A JP27802985 A JP 27802985A JP 27802985 A JP27802985 A JP 27802985A JP S62139809 A JPS62139809 A JP S62139809A
Authority
JP
Japan
Prior art keywords
vacuum
molten steel
rate
pattern
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27802985A
Other languages
Japanese (ja)
Inventor
Masahiro Koreyasu
是安 正博
Tsugio Chikama
近間 次雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27802985A priority Critical patent/JPS62139809A/en
Publication of JPS62139809A publication Critical patent/JPS62139809A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To suppress the bumping of a molten steel in the stage of refining the molten steel under a reduced pressure by controlling the pressure in a vacuum vessel and the change rate of a decarburization rate with age in such a manner that the CO and CO2 generated from the molten steel do not attain a satd. state. CONSTITUTION:A ladle 2 contg. the molten steel 3 is set in the vacuum vessel 1 and the molten steel 3 is stirred by oxygen blowing from a lance 5 and the Ar blown from a porous plug 4 by which the molten steel is refined. The pressure in an exhaust gas path 6 and the CO and CO2 in the gas are measured by a pressure gage 8 and an analyzer 9 in this stage. The signal obtd. by processing the value which is the result of the subtraction of the measured value from the preset vacuum degree pattern set in a vacuum degree pattern setter 10 with a proportional integrator 12 and the signal obtd. by subtracting the change rate pattern set in a setter 11 for the pattern of the change rate of the decarburization rate with age from the change rate of the decarburization with age determined by the gas analyzer 9 and processing the result thereof with a proportional integrating differentiator 14 are added in an adder 13. The vacuum degree of a pressure reducing means 7 is so regulated as to increase the pressure in the vacuum vessel 1. The generation of the bumping of the molten steel by the CO and CO2 and the consequent overflow from the ladle 2 are thus prevented.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、減圧下で溶鋼を精錬する際に問題となる溶鋼
の突沸現象を抑制して操業性を向上せしめる減圧下での
溶鋼の精錬方法及び該方法を実施するための装置に関す
るものである。
The present invention relates to a method for refining molten steel under reduced pressure, which improves operability by suppressing the bumping phenomenon of molten steel, which is a problem when refining molten steel under reduced pressure, and an apparatus for carrying out the method. .

【従来の技術】[Conventional technology]

近年、真空容器内に設置した取鍋内に溶鋼を注入し真空
容器内を減圧して取鍋内の溶鋼をアルゴンガスの如き不
活性ガスで撹拌しながら酸素ガスを上吹きするvOD法
と通称されている/8鋼の精錬力4が、脱炭反応を侵先
的に進行させて極低炭素鋼を製造できると共に、脱炭に
伴うCOボイリング等により脱水素、脱窒素等の脱ガス
処理を効果的に進めることができるため、広〈実施され
るようになってきている。 しかしながら、このような減圧下での’t81JAの精
錬方法においては、真空容器を真空にする作業開始初期
に活発なcoボイリングが起こりスピッティングにより
溶鋼が取鍋より流出するという現象の発生が減圧下での
溶鋼の精錬における非常に大ぎな問題となっていた。口
のスピッティング発生の原因は、一般的には真空精錬前
の溶鋼中の成分や温度が適切でなく、溶鋼中の′t1離
FJ、素最が非常に高い場合や混入スラグ伍が多く且つ
このスラグ中に多聞の金属酸化物が含有されている場合
や減圧下での酸素吹込み条件がハニドブローである場合
などにおいて著しくなる。このようなことから従来にお
いては、 ■スピッティングが発生しても溶鋼が取鋼中がら流出し
ないように溶鋼の液面を取鋼の上端より充分に低くする
、 ■取鋼を収納する真空容器内を減圧する手段を調整して
減圧速度を可及的にゆるやかにする、などの対策が採ら
れていたに過ぎなかった。
In recent years, a method commonly known as the vOD method, in which molten steel is poured into a ladle placed in a vacuum vessel, the pressure inside the vacuum vessel is reduced, and oxygen gas is blown upward while stirring the molten steel in the ladle with an inert gas such as argon gas. The refining power of /8 steel, which is 4, allows the decarburization reaction to progress aggressively to produce ultra-low carbon steel, as well as degassing processes such as dehydrogenation and denitrification through CO boiling etc. that accompany decarburization. It is becoming more and more widely implemented as it can effectively advance the process. However, in the 't81JA refining method under reduced pressure, active co-boiling occurs at the beginning of the work to evacuate the vacuum vessel, and molten steel flows out of the ladle due to spitting. This has become a very serious problem in the refining of molten steel. The cause of spitting is generally that the composition and temperature of the molten steel before vacuum refining are not appropriate, that the molten steel has a very high FJ, or that there is a lot of slag mixed in. This becomes noticeable when the slag contains a large amount of metal oxide or when the oxygen blowing conditions under reduced pressure are honey blowing. For this reason, in the past, the following measures were taken: - Keep the liquid level of the molten steel sufficiently lower than the top of the steel so that the molten steel does not flow out into the steel draw even if spitting occurs; - Vacuum container to store the steel draw The only measures taken were simply adjusting the means to depressurize the inside and slowing down the rate of decompression as much as possible.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしながら口のような手段を減圧下での溶鋼の精錬に
おいて実施すると、上記第1の手段では処理溶Tl4m
に対して非常に大きな精錬用取鋼が必要になると共に取
鋼を収納する真空容器もそれに見合った大型のものが必
要となり、非常に不経済で実用に適さない問題点があっ
た。 また上記第2の手段では真空容器内を減圧する手段が大
きな能力を持っているにもかかわらず能力を押えて稼動
させることになるので操業時間も長くなり非能率となっ
て好ましくないばかりでなく、鋼種により目標炭素但、
溶鋼成分、スラグ成分、溶鋼重量、添加する他の金属及
びその量、などがそれぞれ相違しているので当然発生す
るco。 co、の聞が巽なって精錬条件が異なるので種々の精錬
条件に合わせて減圧程度を設定しなければならず、この
減圧程度の設定な鋼種において変更しないようにすると
益々作業能率が低下するという問題点があった。
However, if such a method is implemented in the refining of molten steel under reduced pressure, the first method described above will reduce the amount of molten Tl4m
However, a very large steel stock for refining is required, and a correspondingly large vacuum container for storing the steel stock is required, which is extremely uneconomical and unsuitable for practical use. In addition, in the second method described above, although the means for reducing the pressure inside the vacuum container has a large capacity, it is operated at reduced capacity, which not only increases the operating time and results in inefficiency, which is not only undesirable. , target carbon depending on the steel type, however,
Since the composition of molten steel, slag composition, weight of molten steel, other metals added and their amounts are different, CO naturally occurs. Since the refining conditions vary depending on the length of the refining process, it is necessary to set the degree of depressurization according to the various refining conditions, and it is said that if the degree of depressurization is not changed for steel types that have a certain degree of decompression, the work efficiency will further decrease. There was a problem.

【問題点を解決するための手段1 本発明者らは上記問題点を解決すべく種々研究を行った
結果、スピッティングの叩き溶鋼の突沸現象の発生は真
空容器内の圧力に対応した飽和j以上となるco、co
、反応が溶鋼に発生するために起こることが大部分であ
ることを究明し、溶鋼から発生するco、co、が飽和
状態に到達しないように真空容器内の圧力を制御すると
共に溶鋼の脱炭速度の経時的変化率を制御すればよいこ
とに着眼して本発明に係る減圧下での溶鋼の精錬方法と
この方法を実施するための装置を完成したのである。 すなわち本発明は、真空取鍋脱ガス装置により溶鋼の精
錬を行うに際し、真空容器に接続した排ガス路の圧力の
測定とガス分析とを行い、予め設定した真空度パターン
から測定圧力を差し引いた場合の正の値の処理信号とガ
ス分析により求゛めた脱炭速度の経時変化率から予め設
定した脱炭速度の経時変化率パターンを差し引いた場合
の正の値の処理信号との和の値に対応させて、真空取鍋
脱ガス装置の真空度を調節することを特徴とする減圧下
での溶鋼の精錬方法及びこの方法を実施するための装置
を提供するものである。 [実施例1 以下、本発明に係る減圧下での溶鋼の精錬方法を実施す
る本発明装置の1実施例について本発明方法を詳細に説
明する。 図面は本発明に係る減圧下での溶鋼の精錬装置の1実施
例のブロック説明図である。 図中、1は真空容器、2は真空容器1内に設置されてお
りその内部に精錬すべき溶鋼3を注入されている取鋼、
4は真空容器1内に設置されている取12の底部より溶
鋼3中にアルゴンガスなどの不活性ガスを吹き込むため
のポーラスプラグ、5は真空容器1内に設置されている
取鍋2内の溶!!43の上面に吹き付ける酸素を供給す
るための酸素ランス、6は真空容器1内の圧力を減圧せ
しめるために真空容器1に接続した排ガス路でありこの
排ガス路6の末端側には真空ポンプやスチームエゼクタ
−などの減圧手段7が接続されている。 8は排ガス路6の圧力の測定を行う真空度肝、9は排ガ
ス路6のガス分析を行うガス分析計でありこのガス分析
計9としては本出願人が先に特開昭59−185720
号で図示した方法に使用するガス分析計を使用すればよ
い。10は真空容器1内の経時的圧力変化を溶鋼の鋼種
に合わせて予め真空度パターンとして設定する真空度パ
ターン設定器、11は溶鋼3の脱炭速度の経時変化率パ
ターンを溶鋼の鋼種に合わせて予め脱炭速度経時変化率
パターンとして設定する脱炭速度経時変化率パターン設
定器、12は真空度パターン設定器10に予め設定した
真空度パターンから真空度肝8により測定された排ガス
路6の測定圧力を差し引いた値のうち正の値のみを比例
積分する比例積分器でありこの比例積分器12の処理信
号は加算器13へ出力される。14は排ガス路6でのガ
ス分析計9によるガス分析により求めた脱炭速度の経時
変化率から脱炭速度経時変化率パターン設定器11に予
め設定した溶鋼3の脱炭速度経時変化率パターンを差し
引いた値のうち正の値のみを比例積分微分する比例積分
微分器でありこの比例積分微分器14の処理信号も加算
器13へ出力される。15は加算器13よりの信号によ
り減圧手段7の真空度を調「するために真空度肝8及び
ガス分析計9から離れた排ガス路6のガス排出側に連結
されている空気導入管に設置されている調茄弁であり、
この調節弁15の代わりに減圧手段7そのものである真
空ポンプやスチームエゼクタ−によりかかる真空度を前
記加算器13からの信号により調整しても良い。 【作 用] 以上の如き本発明に係る減圧下での溶鋼の精錬装置によ
り本発明方法を実施するには、先ず酸素ランス5及び排
ガス路6を取り付(づた真空容器1内に底部にポーラス
プラグ4が取り付けられ精錬すべき溶鋼3を注入した取
鋼2を設置する。この際、必要に応じて取鍋2の上部に
中蓋(図示なし)を設置してもよい。しかる後に全装置
を作動せしめる作動スイッチ(図示なし)をONするこ
とにより、ポーラスプラグ4よりアルゴンガスなどの不
活性ガスを吹き出させて溶鋼3を撹拌させると共に上部
の酸素ランス5より酸素を溶tJI43の上面に吹き付
け、真空容器1に接続した排ガス路6より減圧手段7に
より真空容器1内を減圧下に維持して溶鋼3の精錬を行
うのである。この際、真空容器1に接続した排ガス路6
の圧力を真空度肝8により測定すると共に同じく真空容
器1に接続した排ガス路6のCOガス及びCo2ガス濃
度をガス分析計9で分析して、予め設定した真空度パタ
ーン設定器10に設定した真空度パターンから測定圧力
を差し引いた場合の正の値を比例積分器12で処理した
処理信号と、ガス分析計9により求めた脱炭速度の経時
変化率から脱炭速度経時変化率パターン設定器11に予
め設定した脱炭速度経時変化率パターンを差し引いた場
合の正の値を比例積分微分器14で処理した処理信号と
を加算器13で加口し、その和の値に対応させて該和の
値が大ぎい程真空容器1内の圧力が高くなるように減圧
手段7の真空度を調節するのである。 このように真空度パターン設定器10に予め設定した真
空度パターンから真空度針8により測定した圧力を差し
引いた場合の正の値のみを処理する理由は、真空取鏑脱
ガス装置の真空容器1内の真空度が予め設定した真空度
パターンより進むと真空容器1内の圧力に対応した飽和
量以上のCO反応が生じてCoボイリング等により突沸
現象が発生し易いために真空容器1内の圧力を予め設定
した真空度パターンより常に太き目に維持しておくから
であり、またガス分析計9により求めた脱炭速度の経時
変化率から脱炭速度経時変化率パターン設定311に予
め設定した脱炭速度の経時変化率を差し引いた場合の正
の値のみを処理する理由は、脱炭速度の経時変化率が予
め設定した脱炭速度の経時変化率より遅いと溶113の
CO反応が活発になってCoボイリング等により突沸現
象が発生し易くなるからであり、また上記真空度及び脱
炭速度の経時変化率について共に正の値の処理信号の和
を使用する理由は、もし予め設定した真空度パターンか
ら測定圧力を差し引いた場合の値の処理信号とガス分析
により求めた脱炭速度の経口5変化率から予め設定した
脱炭速度の経時変化率を差し引いた場合の値の処理信号
とが一方が正で他方が負の値であるとその和の値は零又
は負となって真空取鍋脱ガス装置の真空度を調節しない
場合が生じて突沸現象が発生する恐れをなくすためであ
る。 また、真空度に関する処理信号として比例積分器12に
より処理した信号とし脱炭速度の経時変化率に関する処
理信号として比例積分微分314により処理した信号と
する理由は、真空容器1内の圧力が予め設定した真空度
パターンと相違している影響は溶鋼3の脱炭速度の経時
変化率が予め設定した脱炭速度の経時変化率と相違して
いるほどCoボイリング等により突沸現象が発生するこ
とに大きな影響を与えないためにCoボイリング等に影
響を与え易い脱炭速度の経時変化率に関する処理信号を
比例積分器に微分器を加えた応答性の速い比例積分微分
器14で処理した信号としCoボイリング等に影響を与
え難い真空度に関する処理信号を応答性の遅い比例積分
器12で処理した信号としたからである。 【発明の効果】 以上の如く、本発明に係る減圧下での溶鋼の精錬方法は
、真空取鍋脱ガス装置により溶鋼の精錬を行うに際し、
真空容器に接続した排ガス路の圧力の測定とガス分析と
を行い、予め設定した真空度パターンから測定圧力を差
し引いた場合の正の値の処理信号とガス分析により求め
た脱炭速度の経時変化率から予め設定した脱炭速度の経
時変化率パターンを差し引いた場合の正の値の処理信号
との和の値に対応させて真空取鍋脱ガス装置の真空度を
調節することを特徴とする方法であるので、真空数tl
AMガス装置により溶鋼の精錬を行うに際して真空容器
内の圧力が予め設定した真空度パターンと相違してより
真空になってCoボイリング等が生じ易くなったり、溶
鋼の脱炭速度の経時変化率が予め設定した脱炭速度の経
時変化率パターンより大きくなって脱炭が遅くれてCo
ボイリング等が生じ易くなると、予め設定した各パター
ンとの差に応じて真空取鍋脱ガス装置の真空度を調節す
るために急激なco、co、反応が抑制されてCoボイ
リング等による溶鋼の突沸現象の発生は完全に阻止でき
るため、取鋼内に従来よりも多量の溶鋼を注入した状態
で真空取鍋脱ガス装置により溶鋼の精錬を安全且つ安定
して行うことができると共に酸素ガスによるハードブロ
ーも可能となって脱ガス処理時間の短縮も図れるのであ
り、しかも真空容器内の補修回数が減少して操業性の向
上を図ることが可能となる画期的な方法であり、また本
発明に係る減圧下での溶鋼の精錬装置は、前記した効果
をイアする本発明に係る減圧下での溶鋼の精錬方法を実
施するための装置であって比較的簡単な設備で上記効果
を何する本発明に係る減圧下での溶鋼の精錬方法を実施
できるものであり、鉄!!4製造業の分野における工業
的l1fl]値はノμ常に大きなものがある。
[Means for Solving the Problems 1] The present inventors have conducted various studies to solve the above problems, and have found that the occurrence of the bumping phenomenon of molten steel during spitting is caused by saturation corresponding to the pressure inside the vacuum vessel. The above co, co
, it was determined that most of the reaction occurred due to the reaction occurring in the molten steel, and the pressure in the vacuum vessel was controlled so that the CO generated from the molten steel did not reach a saturated state, and the decarburization of the molten steel was carried out. Focusing on the fact that it is only necessary to control the rate of change in velocity over time, they have completed a method for refining molten steel under reduced pressure and an apparatus for carrying out the method according to the present invention. That is, in the present invention, when refining molten steel using a vacuum ladle degassing device, the pressure of the exhaust gas path connected to the vacuum container is measured and gas analyzed, and the measured pressure is subtracted from a preset vacuum degree pattern. The value of the sum of the positive value processed signal and the positive value processed signal obtained by subtracting the preset pattern of decarburization rate change over time from the rate of change over time of decarburization rate determined by gas analysis. The present invention provides a method for refining molten steel under reduced pressure, which is characterized by adjusting the degree of vacuum of a vacuum ladle degassing device, and an apparatus for carrying out this method. [Example 1] Hereinafter, the method of the present invention will be described in detail with respect to one embodiment of the apparatus of the present invention for carrying out the method of refining molten steel under reduced pressure according to the present invention. The drawing is a block explanatory diagram of one embodiment of the apparatus for refining molten steel under reduced pressure according to the present invention. In the figure, 1 is a vacuum vessel, 2 is a steel stock installed in the vacuum vessel 1, and into which molten steel 3 to be refined is poured;
4 is a porous plug for blowing inert gas such as argon gas into the molten steel 3 from the bottom of the ladle 12 installed in the vacuum container 1; 5 is a porous plug in the ladle 2 installed in the vacuum container 1; Melt! ! 43 is an oxygen lance for supplying oxygen to the upper surface; 6 is an exhaust gas line connected to the vacuum vessel 1 to reduce the pressure inside the vacuum vessel 1; and a vacuum pump or steam A pressure reducing means 7 such as an ejector is connected. Reference numeral 8 denotes a vacuum gauge for measuring the pressure in the exhaust gas passage 6, and numeral 9 denotes a gas analyzer for analyzing the gas in the exhaust gas passage 6. This gas analyzer 9 was first developed by the applicant in Japanese Unexamined Patent Publication No. 59-185720.
The gas analyzer used in the method illustrated in this issue may be used. Reference numeral 10 is a vacuum degree pattern setting device for setting the temporal pressure change in the vacuum vessel 1 as a vacuum degree pattern in accordance with the steel type of molten steel, and 11 is a vacuum degree pattern setting device that sets the temporal change rate pattern of the decarburization rate of the molten steel 3 in accordance with the steel type of molten steel. A decarburization rate over time change rate pattern setter 12 is a decarburization rate over time change rate pattern set in advance as a decarburization rate over time change rate pattern. The proportional integrator 12 is a proportional integrator that proportionally integrates only the positive value of the value obtained by subtracting the pressure, and the processed signal of the proportional integrator 12 is outputted to the adder 13. 14 is a decarburization rate over time change rate pattern of the molten steel 3 preset in the decarburization rate over time change rate pattern setter 11 from the rate of change over time of the decarburization rate determined by gas analysis by the gas analyzer 9 in the exhaust gas path 6. This is a proportional-integral-differentiator that performs proportional-integral-differential differentiation of only positive values among the subtracted values, and the processed signal of this proportional-integral-differentiator 14 is also output to the adder 13. Reference numeral 15 is installed in an air inlet pipe connected to the gas discharge side of the exhaust gas path 6, which is remote from the vacuum level gauge 8 and the gas analyzer 9, in order to adjust the degree of vacuum of the pressure reducing means 7 based on the signal from the adder 13. It is a chounaben that is
Instead of the regulating valve 15, the degree of vacuum may be adjusted by the pressure reducing means 7 itself, such as a vacuum pump or a steam ejector, using a signal from the adder 13. [Function] In order to carry out the method of the present invention using the apparatus for refining molten steel under reduced pressure according to the present invention as described above, first, the oxygen lance 5 and the exhaust gas passage 6 are attached to the bottom of the vacuum vessel 1. A ladle 2 with a porous plug 4 attached and injected with molten steel 3 to be refined is installed.At this time, an inner lid (not shown) may be installed on the top of the ladle 2 if necessary. By turning on the operation switch (not shown) that activates the device, inert gas such as argon gas is blown out from the porous plug 4 to stir the molten steel 3, and oxygen is supplied to the top surface of the molten JI43 from the oxygen lance 5 at the top. The molten steel 3 is refined by blowing and maintaining the inside of the vacuum vessel 1 under reduced pressure by the decompression means 7 through the exhaust gas line 6 connected to the vacuum vessel 1.
At the same time, the CO gas and Co2 gas concentrations in the exhaust gas line 6 connected to the vacuum container 1 are analyzed by the gas analyzer 9, and the vacuum set in the preset vacuum pattern setting device 10 is determined. A decarburization rate temporal change rate pattern setting device 11 uses a processed signal obtained by processing a positive value obtained by subtracting the measured pressure from the degree pattern by a proportional integrator 12 and a decarburization rate temporal change rate determined by the gas analyzer 9. The adder 13 adds the positive value obtained by subtracting the decarburization rate aging rate pattern set in advance to the processed signal processed by the proportional-integral-differentiator 14. The degree of vacuum of the pressure reducing means 7 is adjusted so that the larger the value of , the higher the pressure inside the vacuum container 1. The reason why only the positive value when the pressure measured by the vacuum needle 8 is subtracted from the vacuum pattern set in advance in the vacuum pattern setting device 10 is processed is as follows. If the degree of vacuum inside the vacuum chamber advances beyond the preset vacuum degree pattern, the CO reaction will occur in an amount greater than the saturation amount corresponding to the pressure inside the vacuum chamber 1, and bumping phenomena due to Co boiling etc. will easily occur. This is because the degree of vacuum is always kept thicker than the preset vacuum degree pattern, and the decarburization rate over time change rate pattern setting 311 is set in advance based on the rate of change over time of the decarburization rate determined by the gas analyzer 9. The reason why only positive values are processed when the rate of change over time of the decarburization rate is subtracted is that if the rate of change over time of the decarburization rate is slower than the preset rate of change over time of the decarburization rate, the CO reaction in the molten 113 becomes active. This is because the bumping phenomenon is likely to occur due to Co boiling, etc., and the reason why the sum of processed signals with positive values for both the degree of vacuum and the rate of change over time of the decarburization rate is used is that if preset A processed signal of the value obtained by subtracting the measured pressure from the vacuum degree pattern and a processed signal of the value obtained by subtracting the preset rate of change over time of the decarburization rate from the rate of change of the decarburization rate determined by gas analysis. This is to eliminate the possibility that if one is positive and the other is negative, the sum value will be zero or negative and the degree of vacuum of the vacuum ladle degassing device may not be adjusted and a bumping phenomenon will occur. be. Further, the reason why the processed signal related to the degree of vacuum is the signal processed by the proportional integrator 12 and the processed signal related to the rate of change over time of the decarburization rate is the signal processed by the proportional integral differential 314 is that the pressure in the vacuum vessel 1 is set in advance. The effect of being different from the vacuum degree pattern is that the more the rate of change over time of the decarburization rate of molten steel 3 differs from the rate of change over time of the decarburization rate set in advance, the more likely the bumping phenomenon will occur due to Co boiling etc. In order not to affect Co boiling, a processed signal related to the rate of change over time of the decarburization rate, which tends to affect Co boiling, etc., is processed by a proportional integral differentiator 14 with a fast response, which is a proportional integrator and a differentiator. This is because the processed signal related to the degree of vacuum, which does not easily affect the air pressure, etc., is processed by the proportional integrator 12, which has a slow response. [Effects of the Invention] As described above, the method for refining molten steel under reduced pressure according to the present invention, when refining molten steel using a vacuum ladle degassing device,
The pressure of the exhaust gas path connected to the vacuum vessel is measured and gas analyzed, and the positive value processed signal obtained by subtracting the measured pressure from the preset vacuum degree pattern and the change over time in the decarburization rate determined by gas analysis. The degree of vacuum of the vacuum ladle degassing device is adjusted in accordance with the sum of a positive value of a processing signal obtained by subtracting a preset rate of change over time of the decarburization rate from the decarburization rate. method, the vacuum number tl
When refining molten steel using an AM gas device, the pressure inside the vacuum container may differ from the preset vacuum pattern and become more vacuum, making it easier for Co boiling to occur, or the rate of change over time in the decarburization rate of molten steel. When the decarburization rate becomes larger than the preset pattern of change over time, decarburization becomes slow and Co
When boiling, etc. is likely to occur, the degree of vacuum of the vacuum ladle degassing device is adjusted according to the difference from each preset pattern, and the rapid CO, CO, and reactions are suppressed, resulting in bumping of molten steel due to Co boiling, etc. Since the occurrence of this phenomenon can be completely prevented, it is possible to safely and stably refining molten steel using a vacuum ladle degassing device with a larger amount of molten steel injected into the steel ladle than before, and it is also possible to refining molten steel safely and stably using oxygen gas. This is an innovative method that enables blowing and shortens the degassing treatment time, and also reduces the number of repairs in the vacuum container and improves operability. The apparatus for refining molten steel under reduced pressure according to the present invention is an apparatus for carrying out the method for refining molten steel under reduced pressure according to the present invention, which achieves the above-mentioned effects, and achieves the above-mentioned effects with relatively simple equipment. The method of refining molten steel under reduced pressure according to the present invention can be carried out, and iron! ! 4 The industrial l1fl] value in the field of manufacturing industry is always large.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る減圧下での溶R4の聞f11!哀置
の1実施例のブロック説明図である。 1・・真空容器 2・・取鋼 3・・溶鋼 4・・ポーラスプラグ 5・・酸素ランス 6・・排ガス路 7・・減圧手段 8・・真空度針 9・・ガス分析計 10・・真空度パターン設定温 11・・脱炭速度紅時変化率パターン設定器12・・比
例積分器 13・・加n器 14・・比例積分微分器 15・・調節弁
The drawing shows a sample of the solution R4 under reduced pressure according to the present invention. It is a block explanatory diagram of one example of a funeral. 1. Vacuum vessel 2. Steel stock 3. Molten steel 4. Porous plug 5. Oxygen lance 6. Exhaust gas path 7. Decompression means 8. Vacuum degree needle 9. Gas analyzer 10. Vacuum. Degree pattern setting temperature 11...Decarburization speed red time change rate pattern setter 12...Proportional integrator 13...Additional unit 14...Proportional integral differentiator 15...Control valve

Claims (1)

【特許請求の範囲】 1 真空取鍋脱ガス装置により溶鋼の精錬を行うに際し
、真空容器に接続した排ガス路の圧力の測定とガス分析
とを行い、予め設定した真空度パターンから測定圧力を
差し引いた場合の正の値の処理信号とガス分析により求
めた脱炭速度の経時変化率から予め設定した脱炭速度の
経時変化率パターンを差し引いた場合の正の値の処理信
号との和の値に対応させて、真空取鍋脱ガス装置の真空
度を調節することを特徴とする減圧下での溶鋼の精錬方
法。 2 真空取鍋脱ガス装置の真空度の調節を真空容器に接
続した排ガス路への空気の導入により行う特許請求の範
囲第1項に記載の減圧下での溶鋼の精錬方法。 3 真空取鍋脱ガス装置の真空度の調節を真空容器に接
続した真空ポンプの吸引力を調節して行う特許請求の範
囲第1項に記載の減圧下での溶鋼の精錬方法。 4 真空取鍋脱ガス装置の真空度の調節を真空容器に接
続した排ガス路に接続したスチームエゼクターにより行
う特許請求の範囲第1項に記載の減圧下での溶鋼の精錬
方法。 5 真空取鍋脱ガス装置の真空容器(1)に接続されて
いる排ガス路(6)の圧力測定及びガス分析をそれぞれ
行う真空度計(8)及びガス分析計(9)と、真空容器
(1)内の経時的圧力変化を予め真空度パターンとして
設定する真空度パターン設定器(10)と、溶鋼(3)
の脱炭速度の経時変化率を予め脱炭速度の経時変化率パ
ターンとして設定する脱炭速度経時変化率パターン設定
器(11)と、真空度パターン設定器(10)に設定し
た真空度パターンから真空度計(8)により測定した排
ガス路(6)の測定圧力を差し引いた場合の正の値のみ
を比例積分して処理信号として出力する比例積分器(1
2)と、ガス分析計(9)により測定した排ガス路(6
)の脱炭速度の経時変化率から脱炭速度経時変化率パタ
ーン設定器(11)に予め設定した脱炭速度の経時変化
率パターンを差し引いた場合の正の値のみを比例積分微
分して処理信号として出力する比例積分微分器(14)
と、比例積分器(12)からの処理信号と比例積分微分
器(14)からの処理信号とを加算して真空脱ガス装置
の真空度を調節する信号を出力する加算器(13)とを
備えていることを特徴とする減圧下での溶鋼の精錬装置
[Scope of Claims] 1. When refining molten steel using a vacuum ladle degassing device, the pressure of the exhaust gas path connected to the vacuum container is measured and gas analyzed, and the measured pressure is subtracted from a preset degree of vacuum pattern. The value of the sum of the positive value of the processed signal obtained by subtracting the preset decarburization rate pattern over time from the decarburization rate obtained by gas analysis. A method for refining molten steel under reduced pressure, characterized by adjusting the degree of vacuum of a vacuum ladle degassing device in accordance with the above. 2. The method for refining molten steel under reduced pressure according to claim 1, wherein the degree of vacuum of the vacuum ladle degassing device is adjusted by introducing air into an exhaust gas path connected to a vacuum container. 3. The method for refining molten steel under reduced pressure according to claim 1, wherein the degree of vacuum of the vacuum ladle degassing device is adjusted by adjusting the suction force of a vacuum pump connected to a vacuum container. 4. The method for refining molten steel under reduced pressure according to claim 1, wherein the degree of vacuum of the vacuum ladle degassing device is adjusted by a steam ejector connected to an exhaust gas path connected to a vacuum vessel. 5 A vacuum gauge (8) and a gas analyzer (9) for measuring the pressure and gas analysis of the exhaust gas path (6) connected to the vacuum container (1) of the vacuum ladle degassing device, respectively, and the vacuum container ( 1) A vacuum degree pattern setting device (10) that presets the pressure change over time as a vacuum degree pattern; and a molten steel (3).
The rate of change over time of the decarburization rate is set in advance as a rate of change over time pattern of the decarburization rate from the decarburization rate over time change rate pattern setter (11) and the degree of vacuum pattern set in the degree of vacuum pattern setter (10). A proportional integrator (1) that proportionally integrates only the positive value obtained by subtracting the measured pressure in the exhaust gas path (6) measured by the vacuum gauge (8) and outputs it as a processed signal.
2) and the exhaust gas path (6) measured by the gas analyzer (9).
) is processed by proportional-integral-differentiating only the positive value when the decarburization rate temporal change rate pattern set in advance in the decarburization rate temporal change rate pattern setter (11) is subtracted from the decarburization rate temporal change rate. Proportional integral differentiator (14) that outputs as a signal
and an adder (13) that adds the processed signal from the proportional integrator (12) and the processed signal from the proportional integral differentiator (14) and outputs a signal for adjusting the degree of vacuum of the vacuum degassing device. An apparatus for refining molten steel under reduced pressure.
JP27802985A 1985-12-12 1985-12-12 Method and apparatus for refining molten steel under reduced pressure Pending JPS62139809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27802985A JPS62139809A (en) 1985-12-12 1985-12-12 Method and apparatus for refining molten steel under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27802985A JPS62139809A (en) 1985-12-12 1985-12-12 Method and apparatus for refining molten steel under reduced pressure

Publications (1)

Publication Number Publication Date
JPS62139809A true JPS62139809A (en) 1987-06-23

Family

ID=17591656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27802985A Pending JPS62139809A (en) 1985-12-12 1985-12-12 Method and apparatus for refining molten steel under reduced pressure

Country Status (1)

Country Link
JP (1) JPS62139809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524441A (en) * 2004-12-20 2008-07-10 エドワーズ リミテッド Method for degassing molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524441A (en) * 2004-12-20 2008-07-10 エドワーズ リミテッド Method for degassing molten metal

Similar Documents

Publication Publication Date Title
EP0347884B1 (en) Process for vacuum degassing and decarbonization with temperature drop compensating feature
US2993780A (en) Method for treating steel in vacuo
US4604137A (en) Method and apparatus for controlled melt refining
JPS62139809A (en) Method and apparatus for refining molten steel under reduced pressure
EP4339303A1 (en) Method for refining molten steel
EP1757706B1 (en) Method for refining molten steel
RU2348699C2 (en) Method of vacuum refinement of liquid steel in ladle
CN115232923B (en) Method for refining molten steel by VD furnace
RU2754337C1 (en) Method for production of nitrogen-doped steel in bucket
JPH01268815A (en) Vacuum degassing treatment of molten steel
SU1096295A1 (en) Method for extrafurnace treatment of aluminium alloys
RU2055684C1 (en) Method of treating metal at continuous casting
SU1440604A1 (en) Method of working low-carbon nonageing steel in continuous casting
RU2030954C1 (en) Steel working method in the process of continuous pouring
RU2034679C1 (en) Method to work metal in the process of continuous casting and a device to implement it
SU707974A1 (en) Method of liquid metal denitration
JPH08291317A (en) Production of medium-carbon aluminum killed steel
RU2031138C1 (en) Method of out-of-furnace treatment of steel
SU697573A1 (en) Method of refining low -carbonaceous steel
SU1032027A2 (en) Method for extrafurnace treatment of molten metal
RU2048246C1 (en) Method for in-line evacuation of metal in the process of continuous casting
SU1047967A1 (en) Method of controlling steel circulation-type degassing process
SU1650717A1 (en) Device for vacuum-processing of metal with simultaneously treating it in a slag column
RU2034042C1 (en) Extra-lowcarbon non-aging steel production method
JPH0192313A (en) Method for refining molten steel