JPS62139485A - Subsample interpolation system - Google Patents

Subsample interpolation system

Info

Publication number
JPS62139485A
JPS62139485A JP60280319A JP28031985A JPS62139485A JP S62139485 A JPS62139485 A JP S62139485A JP 60280319 A JP60280319 A JP 60280319A JP 28031985 A JP28031985 A JP 28031985A JP S62139485 A JPS62139485 A JP S62139485A
Authority
JP
Japan
Prior art keywords
value
pixel
block
picture element
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60280319A
Other languages
Japanese (ja)
Other versions
JPH0547033B2 (en
Inventor
Toshihiro Honma
敏弘 本間
Shinichi Maki
新一 牧
Kiichi Matsuda
松田 喜一
Toshitaka Tsuda
俊隆 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60280319A priority Critical patent/JPS62139485A/en
Publication of JPS62139485A publication Critical patent/JPS62139485A/en
Publication of JPH0547033B2 publication Critical patent/JPH0547033B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To secure the continuity of image data by using a value obtained by multiplying each picture element by a function for using plural picture elements around the picture element concerned as a signal value after interpolating at every block on the receiving side. CONSTITUTION:A signal thinned based on an ordinary method and sent from the transmission side is inputted to a decoding circuit 10 and interpolated similarly to the ordinary method. The output of the circuit 10 is applied to an interpolating circuit 20 to execute interpolating operation for removing discontinuity generated among respective bloks formed at the time of thinning. When the value of the remarked picture element is Z0, a value just before the Z0 is Z<-1>, a value separated by 2 before the Z0 is Z<-2>, a value just after the Z0 is Z<1>, and a value separated by 2 after the Z0 is Z<2>, a function f(z) expressed by the shown equation is formed and the value of the function f(z) is set up to a new signal value for the remarked picture element Z0. Consequently, the continuity of the image data can be secured.

Description

【発明の詳細な説明】 〔概要〕 不連続画像データ列に単純な補間処理を行うことにより
連続画像データ列に変換する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A discontinuous image data string is converted into a continuous image data string by performing simple interpolation processing.

〔産業上の利用分野〕[Industrial application field]

本発明は画像13号の帯域圧縮方式に係り、特に符号化
された画像データの間引きによって情報発生量を低減さ
せるサブサンプル手法に関して、間引かれた画像データ
の再生方法である補間方式に関するものである。
The present invention relates to a band compression method for image No. 13, and in particular to a sub-sampling method for reducing the amount of information generated by thinning encoded image data, and relates to an interpolation method as a method for reproducing thinned image data. be.

〔従来の技術〕[Conventional technology]

画像信号を伝送する場合、画像信号の帯域圧縮を行うこ
とにより伝送時間の短縮、又は伝送帯域の縮小を計るこ
とが行われているのは周知の通りである。
It is well known that when transmitting an image signal, the transmission time or the transmission band is reduced by compressing the band of the image signal.

一般に画像信号を帯域圧縮して伝送する場合、画像信号
をPCM符号化して8ビット単位のディジタル信号とし
、前信号との差分をとるDPCM符号形式が採られてい
るが、此の差分信号を其の侭伝送せず、更にサブサンプ
リング(間引き)を行って情報伝送量を少なくすること
が行われている。
Generally, when transmitting an image signal after band compression, the image signal is PCM encoded into a digital signal in units of 8 bits, and a DPCM encoding format is adopted in which the difference from the previous signal is calculated. The amount of information transmitted is further reduced by sub-sampling (thinning out) without transmitting the information during the period.

従来技術に依ると、此の様な画像(A号の情報伝送量を
低減させるためサブサンプリングを行う場合、ハードウ
ェアの制約から全画面を小画面単位(ブロック単位)に
区分し、此のブロック内で成る基準に従って間引きをす
る画素の位置を決めて行うのが普通である。
According to the conventional technology, when performing subsampling to reduce the amount of information transmitted in an image like this (A), due to hardware constraints, the entire screen is divided into small screen units (block units), and this block Normally, the positions of pixels to be thinned out are determined according to a standard within the range.

第3図は従来のサブサンプリングの一例を説明する図で
ある。
FIG. 3 is a diagram illustrating an example of conventional subsampling.

周知の通り、全画面F(原画)を複数本の走査線で走査
して得られる各行は複数個の画素E1〜Enから構成さ
れる。尚此の1行の画素信号列は所渭連続データである
As is well known, each row obtained by scanning the entire screen F (original image) with a plurality of scanning lines is composed of a plurality of pixels E1 to En. Note that this one row of pixel signal columns is continuous data.

4HL来のサブサンプリングの簡単な一例を挙げて説明
すると1行の複数個の画素E、−E、を数ブロックに分
ける。例えば連続する5個の画素を1ブし1ツクとし、
画素E、〜E、を第1ブロツク、画素E6〜E、。を第
2ブロツク、・・・とする。
To explain a simple example of subsampling in 4HL, a plurality of pixels E and -E in one row are divided into several blocks. For example, 5 consecutive pixels are set as 1 block and 1 block,
The pixels E, ~E, are the first block, and the pixels E6~E. Let be the second block...

此の様にに個のブロックに区分した後、各ブロックとも
其の第2画素と第4画素を間引く。
After dividing into individual blocks in this manner, the second and fourth pixels of each block are thinned out.

従って第1ブロツクでは画素E2とE4が間引かれて画
素E、 、E3、ESが送出され、第2ブロツクでは画
素E7とE、が間引かれて画素E。
Therefore, in the first block, pixels E2 and E4 are thinned out, and pixels E, E3, and ES are sent out, and in the second block, pixels E7 and E are thinned out, and pixels E are sent out.

、211 、El。が送出される。, 211, El. is sent.

受信側の復号化回路では間引かれた画像信号を受信して
此れを復元(補間)する必要がある。
The decoding circuit on the receiving side needs to receive the thinned out image signal and restore (interpolate) it.

間引かれた画素E2を復元するには、例えば画素E2の
位置に画素E1のデータを使用したり、画素E1と画素
E、のデータの平均を使用したりすることが行われてい
る。同様に画素E4を復元するには、画素E4の位置に
画素E3のデータを使用したり、画素E3と画素E、の
データの平均を使用したりする。
In order to restore the thinned out pixel E2, for example, the data of the pixel E1 is used at the position of the pixel E2, or the average of the data of the pixel E1 and the pixel E is used. Similarly, to restore pixel E4, the data of pixel E3 is used at the position of pixel E4, or the average of the data of pixel E3 and pixel E is used.

一般的にはサブサンプリングにより間引かれた部分の画
像データの補間は前後の画像データに任意の関数を乗す
ることにより得られる。
Generally, interpolation of the image data of the portion thinned out by subsampling is obtained by multiplying the previous and subsequent image data by an arbitrary function.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然しなからサンプリング周波数の関係から1ブロツクに
含まれる画素数は画面全体の倍数関係から例えば5.7
.13の様な奇数値にする場合が多い。従って前記サブ
サンプリングを行った場合、各ブロックの境界は不連続
データとなるため、任意の関数を乗じた補間を直接適用
出来ない。此のためブロックの境界線に縞が現れると云
う欠点があった。
However, due to the sampling frequency, the number of pixels included in one block is, for example, 5.7 due to the multiple of the entire screen.
.. It is often set to an odd number such as 13. Therefore, when the subsampling is performed, the boundaries of each block become discontinuous data, so interpolation multiplied by an arbitrary function cannot be directly applied. This has the disadvantage that stripes appear on the boundaries of blocks.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は連続画像データを複数個のブロックに区分
し、各ブロック毎に規定の間引きを行う帯域圧縮方式に
於いて、受信側で各ブロック毎に従来の補間を行った後
、各画素に画素を中心とする複数画素を使用する関数を
乗じた値を前記画素の信号値とすることにより解決され
る。
The problem mentioned above is that in a band compression method that divides continuous image data into multiple blocks and performs prescribed thinning for each block, the receiving side performs conventional interpolation for each block, and then This can be solved by setting the signal value of the pixel to be a value multiplied by a function that uses a plurality of pixels centered on the pixel.

〔作用〕[Effect]

本発明に依ると画像信号を複数個のブロックに分けて各
ブロック内で間引き、其のブロック内で補間を行う為に
必然的にブロック間に生ずる再生画面の不連続性を除去
する為、従来通りブロック内で補間を行って得られた不
連続データを連続データに変換する処理を行うことによ
り再生された画像からブロック間の縞がなくなると云う
利点が生まれる。
According to the present invention, an image signal is divided into a plurality of blocks, thinned out within each block, and interpolation is performed within each block, so that discontinuity in the reproduced screen that inevitably occurs between blocks is removed. By performing a process of converting discontinuous data obtained by interpolating within a block into continuous data, there is an advantage that stripes between blocks are eliminated from the reproduced image.

〔実施例〕〔Example〕

第1図は本発明に依るサブサンプル補間方式の一実施例
を示す図である。
FIG. 1 is a diagram showing one embodiment of a subsample interpolation method according to the present invention.

第2図は本発明に依るサブサンプル補間方式の説明図で
ある。
FIG. 2 is an explanatory diagram of the subsample interpolation method according to the present invention.

図中、10は復号化回路、2oは本発明に依る補間回路
である。
In the figure, 10 is a decoding circuit, and 2o is an interpolation circuit according to the present invention.

第1図に於いて復号化回路1oは従来の復号化回路であ
り、送信側から送られて来た従来方式により間引かれた
信号が復号化回路1oに入る。復号化回路10で従来方
式と同じ補間を行って出力する。
In FIG. 1, a decoding circuit 1o is a conventional decoding circuit, and a signal sent from the transmitting side and thinned out according to the conventional method enters the decoding circuit 1o. The decoding circuit 10 performs the same interpolation as in the conventional method and outputs the same.

此の復号化回路10の出力を使用して画像を其の侭再生
すると前述した様に其のブロックの境界線に縞々が生ず
るので本発明に依る補間回路2oに入力して第2の補間
を行う。
When an image is later reproduced using the output of this decoding circuit 10, as mentioned above, stripes occur on the boundary lines of the blocks, so the output is input to the interpolation circuit 2o according to the present invention to perform second interpolation. conduct.

第2図に示す信号列はブロック別に間引かれた後ブロッ
ク別に補間された信号を再び連続して作った13号列で
あり、↓印で示す■、■、及び■等はブロックの境界線
である。
The signal sequence shown in Figure 2 is the 13th sequence in which the signals that have been thinned out for each block and then interpolated for each block are continuously created again. It is.

上記信号列の任意の−の画素に注目し、下記の演算操作
を行う。尚本説明に於いては注目した画素の前後2画素
迄を取り上げて演算操作を行うが必ずしも此れにこだわ
る必要はなく前後3画素迄を取り上げても、前後4画素
迄を取り上げても良い。其の範囲を拡げる程、連続性が
確保される。
Paying attention to any negative pixel in the above signal string, perform the following arithmetic operation. In this explanation, calculation operations are performed using up to two pixels before and after the pixel of interest, but it is not necessary to stick to this, and up to three pixels before and after, or up to four pixels before and after the pixel of interest may be taken up. The more the scope is expanded, the more continuity is ensured.

注目した画素の値に関数f (z)を乗じた値を新しい
画素の値とする。
The value obtained by multiplying the value of the pixel of interest by the function f (z) is set as the value of the new pixel.

f(z)=a、z−”+azz−’+a、z。f(z)=a,z−”+azz−’+a,z.

+34 z″+as zl′ 但しa、〜a、は重みづけ計数、 zoばン主目している画素、 z −1は画素z0の一つ前の画素、 z−2は画素z −1の一つ前の画素、z +lは画素
z0の一つ後の画素、 Z 12は画素z1の一つ後の画素を表す。
+34 z″+as zl′ where a, ~a, is a weighting coefficient, zo is the pixel of interest, z −1 is the pixel immediately before pixel z0, z−2 is one of the pixels z −1 The previous pixel, z+l, represents the pixel after pixel z0, and Z12 represents the pixel after pixel z1.

尚a、+a2+a3+a4+a5=lとする。Note that a, +a2+a3+a4+a5=l.

今例えば第2図の画素E、に注目するとする。For example, let us now focus on pixel E in FIG.

画素E5の値に重みづけ計数a、を乗じ、画素E4の値
に重みづけ計数a2を乗じ、画素E3の値に重みづけ計
数a1を乗じ、画素E6の値に重みつけ計数a4を乗じ
、画素E、の値に重みつけ計数a5を乗して其の和を求
め、此の和を画素E5の新値とする。
The value of pixel E5 is multiplied by weighting factor a, the value of pixel E4 is multiplied by weighting factor a2, the value of pixel E3 is multiplied by weighting factor a1, the value of pixel E6 is multiplied by weighting factor a4, and the value of pixel E6 is multiplied by weighting factor a4. The value of E is multiplied by the weighting coefficient a5 to find the sum, and this sum is set as the new value of the pixel E5.

次に画素E6の場合にも同様に、 画素E6の値に重みつけ計数a3を乗じ、画素E5の値
に重みづけ計数a2を乗じ、画素E4の値に重みづけ計
数a1を乗じ、画素E、の値に重みつけ計数a4を乗じ
、画素E、の値に重みづけ計数a、を乗して其の和を求
め、此の和を画素E6の新値とする。
Next, in the case of pixel E6, the value of pixel E6 is multiplied by weighting coefficient a3, the value of pixel E5 is multiplied by weighting coefficient a2, the value of pixel E4 is multiplied by weighting coefficient a1, and pixel E, The value of the pixel E is multiplied by the weighting coefficient a4, the value of the pixel E is multiplied by the weighting coefficient a, the sum is determined, and this sum is set as the new value of the pixel E6.

此の様に従来の復号化回路出力の各画素に就いて上記演
算を行うことにより、間引きの際に設けた各ブロック間
に生ずる不連続性を除去することが可能である。
By performing the above calculation on each pixel output from the conventional decoding circuit in this manner, it is possible to remove discontinuities that occur between blocks provided during thinning.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明した様に本発明によれば、従来迄の単純
な補間方式に簡単な補足操作を行うことにより画像デー
タの連続性を確保出来ると云う大きい効果がある。
As described above in detail, the present invention has the great effect of ensuring the continuity of image data by performing a simple supplementary operation to the conventional simple interpolation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に依るサブサンプル補間方式の一実施例
を示す図である。 第2図は本発明に依るサブサンプル補間方式の説明図で
ある。 第3図は従来のサブサンプリングの一例を説明する図で
ある。 図中、Fは全画面、E、−E、は夫々画素、10は復号
化回路、20は本発明に依る補間回路である。 /#−登明によ5フブフンプルオ車間方IJ、シー實施
夕・1第 12 メレ漠aft、によ3ソブサンプルネ小゛間方θ説8H
図第 2 図
FIG. 1 is a diagram showing one embodiment of a subsample interpolation method according to the present invention. FIG. 2 is an explanatory diagram of the subsample interpolation method according to the present invention. FIG. 3 is a diagram illustrating an example of conventional subsampling. In the figure, F is the entire screen, E and -E are pixels, 10 is a decoding circuit, and 20 is an interpolation circuit according to the present invention. / # - Tomeiyo 5 Fubufunpuruo car direction IJ, Sea practice, 1st 12th Mere desert aft, Yo 3 Sobus sample Nekojima direction θ theory 8H
Figure 2

Claims (1)

【特許請求の範囲】 連続画像データを複数個のブロックに区分し、各ブロッ
ク毎に規定の間引きを行う帯域圧縮方式に於いて、 受信側で前記各ブロック毎に補間を行った後、各画素に
前記画素を中心とする複数画素を使用する関数を乗じた
値を前記画素の信号値とすることを特徴とするサブサン
プル補間方式。
[Claims] In a band compression method that divides continuous image data into a plurality of blocks and performs prescribed thinning for each block, after interpolation is performed for each block on the receiving side, each pixel is A sub-sample interpolation method characterized in that the signal value of the pixel is set to a value obtained by multiplying by a function using a plurality of pixels centered on the pixel.
JP60280319A 1985-12-13 1985-12-13 Subsample interpolation system Granted JPS62139485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280319A JPS62139485A (en) 1985-12-13 1985-12-13 Subsample interpolation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280319A JPS62139485A (en) 1985-12-13 1985-12-13 Subsample interpolation system

Publications (2)

Publication Number Publication Date
JPS62139485A true JPS62139485A (en) 1987-06-23
JPH0547033B2 JPH0547033B2 (en) 1993-07-15

Family

ID=17623336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280319A Granted JPS62139485A (en) 1985-12-13 1985-12-13 Subsample interpolation system

Country Status (1)

Country Link
JP (1) JPS62139485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112085U (en) * 1991-03-18 1992-09-29 株式会社ウイル storage case
JPH0612391U (en) * 1992-07-23 1994-02-15 益弘 光山 Disk case

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04112085U (en) * 1991-03-18 1992-09-29 株式会社ウイル storage case
JPH0612391U (en) * 1992-07-23 1994-02-15 益弘 光山 Disk case

Also Published As

Publication number Publication date
JPH0547033B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
EP0126148B1 (en) Image processing method using a block overlap transformation procedure
JPS61144989A (en) High efficient coding device of television signal
US4710823A (en) Density conversion in image reproduction
JPS62139485A (en) Subsample interpolation system
JPH088684B2 (en) High efficiency code decoding device
US5805229A (en) Apparatus for simultaneously generating interpolated video signals for even and odd lines
JPS61140289A (en) High efficient coding method of television signal
JP2910213B2 (en) High efficiency coding apparatus and method
JP2862233B2 (en) Information transmission system
US4977452A (en) Sampled-value code processing device
JP2862232B2 (en) Information transmission system
JP2603290B2 (en) Color video signal processing method
JP2744085B2 (en) Video signal encoding method and encoding device
JPS63250987A (en) Highly efficient coding device for picture signal
JP2855617B2 (en) High efficiency coding apparatus and coding method
JPH0543235B2 (en)
JPS6367970A (en) Color picture data coder
JPS62178085A (en) Picture information transmission system
JP2531236B2 (en) Image signal processing circuit
JPH03213090A (en) Moving picture encoding system for storage
JPH06178121A (en) Compressing method
JPS6324761A (en) Method of encoding image blocks
JPS6335092A (en) High efficiency encoder
JPH01183981A (en) System for compressing image signal band
JPH0586119B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees