JPS62139323A - Control of ion beam dosage - Google Patents

Control of ion beam dosage

Info

Publication number
JPS62139323A
JPS62139323A JP27892985A JP27892985A JPS62139323A JP S62139323 A JPS62139323 A JP S62139323A JP 27892985 A JP27892985 A JP 27892985A JP 27892985 A JP27892985 A JP 27892985A JP S62139323 A JPS62139323 A JP S62139323A
Authority
JP
Japan
Prior art keywords
ion beam
ion
converted
current
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27892985A
Other languages
Japanese (ja)
Inventor
Takeshi Onishi
毅 大西
Toru Ishitani
亨 石谷
Hifumi Tamura
田村 一二三
Kaoru Umemura
馨 梅村
Yoshimi Kawanami
義実 川浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27892985A priority Critical patent/JPS62139323A/en
Publication of JPS62139323A publication Critical patent/JPS62139323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled ion beam dosage with high precision by a method wherein a probe current is converted into frequency using a part of primary ion beams to correct beam irradiating time at each deflecting point immediately referring to the data on the conversion. CONSTITUTION:Ion beam led out of a fluid metallic ion source 7 by an electrode 8 are limited by a throttle 9 to be focussed by lenses 6a, 6b for deflection by a deflector 5 in a vacuum chamber 101. The ion current Ip to the throttle 9 is linearized to be converted into frequency f while signals to be the clock 1' of pattern producer 1 are transmitted from photocouplers 11. When the beam stop clock number is assumed to be n, the beam dosage D=n/K and f=K.Ip therefore if Ip and f are measured to calculate a constant K and the beam stop clock number n is set up, D value shall be a constant not to be fluctuated even if the Ip is fluctuated during scanning process so that the dosage may be made constant to provided processing and implantation with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオンマイクロビーム装置において、特に高精
度のイオンビーム照射量を得る制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion microbeam apparatus, particularly to a control method for obtaining a highly accurate ion beam irradiation amount.

〔従来の技術〕[Conventional technology]

従来の方式は、特開昭60−143630号記載のもの
でその原理図を第3図に示す、これはイオン源7から出
たイオンビームを静電レンズ6a、6bで集束し、偏向
器5で偏向を行い、細く絞ったイオンビームでマスクレ
ス・イオン注入を行うもので、パターン発生器1のクロ
ック信号源として可変周波数発振器2を用いることで連
続的なイオン注入量の制御を可能としたものである。こ
れによると、プローブ電流をあらかじめファラデーカッ
プ4で測定しておき、その情報を基に可変周波数発振器
の発振周波数を設定している。したがって描画前に計測
したプローブ電流の測定値が描画中変動しない事を前提
としており、描画時間中のビーム電流のドリフトに関し
ては考慮されていなかった。
The conventional method is described in Japanese Patent Application Laid-Open No. 60-143630, and its principle diagram is shown in FIG. This device performs maskless ion implantation using a narrowly focused ion beam, and by using a variable frequency oscillator 2 as a clock signal source for the pattern generator 1, it is possible to continuously control the amount of ion implantation. It is something. According to this, the probe current is measured in advance with the Faraday cup 4, and the oscillation frequency of the variable frequency oscillator is set based on the information. Therefore, it is assumed that the measured value of the probe current measured before writing does not change during writing, and the drift of the beam current during writing time has not been taken into consideration.

これは特に長時間の描画を必要とする際問題となる。This becomes a problem especially when drawing for a long time is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は描画中のビーム電流のドリフトについて
配慮されておらず、描画中のビーム電流のドリフトがそ
のままビーム照射量の変動になってしまう問題があった
The above-mentioned conventional technology does not take into consideration the drift of the beam current during writing, and there is a problem in that the drift of the beam current during writing directly causes a fluctuation in the beam irradiation amount.

本発明の目的は、描画中にビーム電流のドリフトがあっ
ても、ビーム照射量を所望の値に保ち。
An object of the present invention is to maintain the beam irradiation amount at a desired value even if there is a drift in the beam current during writing.

高精度の描画を行うことにある。The purpose is to perform high-precision drawing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、一次イオンビームの一部を利用してプロー
ブ電流を換算し、その情報を基にリアルタイムで各偏向
点におけるビーム照射時間に補正を加えることにより、
達成される。
The above purpose is to convert the probe current using a part of the primary ion beam, and use that information to correct the beam irradiation time at each deflection point in real time.
achieved.

〔作用〕[Effect]

上記のように構成することによって、ビーム電流のドリ
フトがあった場合にもリアルタイムで各偏向点における
ビーム照射時間に補正を加えることができるため、ビー
ム照射量を所望の値に保つことができる。
With the above configuration, even if there is a drift in the beam current, the beam irradiation time at each deflection point can be corrected in real time, so the beam irradiation amount can be maintained at a desired value.

〔実施例〕〔Example〕

実施例を説明する前にまず本発明の原理について説明す
る。
Before describing embodiments, the principle of the present invention will be explained first.

第1図において、プローブ電流1pを反映した電流I 
(I=F (Ip) )をリニアライズし周波数fに変
換すると次式が得られる。
In Figure 1, a current I reflecting the probe current 1p
When (I=F (Ip)) is linearized and converted to frequency f, the following equation is obtained.

f=K・Ip (Hz)  K:定数    (1)パ
ターン発生器1が偏向点において、クロックをn回カウ
ントする間ビームを静止させるとすると、偏向点でのビ
ーム照射量りは次式で表現できる。
f=K・Ip (Hz) K: Constant (1) Assuming that the pattern generator 1 holds the beam stationary at the deflection point while counting the clock n times, the beam irradiation amount at the deflection point can be expressed by the following formula. .

D=ニブローブ流×ビーム静止時間 ”Ip ・− = n / K           (2)よって、
Ipが変動しても、nにより設定した所望のビーム照射
量が得られる。
D=niblob flow x beam rest time”Ip・−=n/K (2) Therefore,
Even if Ip varies, the desired beam irradiation amount set by n can be obtained.

以下、本発明の一実施例を第2図により説明する。第2
図はイオンマイクロビーム装置を示しており、真空カラ
ム10内で液体金属イオン源7から引出電極8によりイ
オンビームを引出し、絞り9によりビーム開口角を制限
し、静電レンズ6a。
An embodiment of the present invention will be described below with reference to FIG. Second
The figure shows an ion microbeam device, in which an ion beam is extracted from a liquid metal ion source 7 in a vacuum column 10 by an extraction electrode 8, the beam aperture angle is limited by an aperture 9, and an electrostatic lens 6a.

6bでビームを集束し、偏向器5によりビームを偏向す
る。この際、絞り9に流入するイオン電流を電流−周波
数変換器2で周波数に変換し、高耐圧のフォトカプラー
11により信号を伝送し、パターン発生器のクロックと
した。イオン源からの全イオン電流Itotが5μA以
下の領域で、絞り9に流入する電流工とプローブ電流I
pの間でほぼ比例関係が成立したため、本実施例は1信
号のりニアライズは行わなかった。ファラデーカップ4
によりプローブ電流工、を測定し、加えて、クロ。
6b focuses the beam, and deflector 5 deflects the beam. At this time, the ion current flowing into the aperture 9 was converted into a frequency by the current-frequency converter 2, and a signal was transmitted by the high-voltage photocoupler 11 and used as a clock for the pattern generator. In the region where the total ion current Itot from the ion source is 5 μA or less, the current flow into the aperture 9 and the probe current I
Since a substantially proportional relationship was established between p, one signal linearization was not performed in this embodiment. faraday cup 4
By means of the probe, the electric current is measured, and in addition, the black.

ツク周波数fを測定して、式(1)よりkを求めると に=f/Ip =17x108/100×IO−”=1
.7X1014 となった、ビーム静止クロック数nを170に設定する
とビーム照射量りは D=n/に==170/1.7xlO”=IX10″″
工” (C) となり、Ipが変動してもDの値は変動せず、均質に描
画が行えた。
Measuring the frequency f and finding k from equation (1) = f/Ip = 17x108/100xIO-" = 1
.. 7X1014.If the beam resting clock number n is set to 170, the beam irradiation amount becomes D=n/==170/1.7xlO"=IX10""
(C) Even if Ip varied, the value of D did not vary, and uniform drawing was possible.

また、絞りにイオンビームが照射したことにより発生し
た2次電子、電流からプローブ電流を換算した場合にお
いても、同様のビーム照射量制御機能が確かめられた。
A similar beam irradiation amount control function was also confirmed when converting the probe current from the secondary electrons and current generated when the aperture was irradiated with the ion beam.

上記実施例では、絞りに流入するイオン電流をもとにビ
ーム照射量を制御したが、Ip を直接電流−周波数変
換器2の六方とするため、試料電流をモニターした場合
も、上記実施例と同様、ビーム照射量の制御が行えた。
In the above embodiment, the beam irradiation amount was controlled based on the ion current flowing into the diaphragm, but since Ip is directly set to the hexagonal current-frequency converter 2, the above embodiment also applies when the sample current is monitored. Similarly, the beam irradiation amount could be controlled.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、集束イオンビームの走査の際ビーム電
流が変動しても一定のビーム照射量が得られるため、高
精度の加工、注入などが行える。
According to the present invention, a constant beam irradiation amount can be obtained even if the beam current fluctuates during scanning with a focused ion beam, so that highly accurate processing, implantation, etc. can be performed.

また、特別に安定化回路を設けていないイオン源を用い
ても均一なビーム照射が行える。
Furthermore, uniform beam irradiation can be achieved even when using an ion source that is not specially provided with a stabilizing circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構成図、第2図は本発明。 の一実施例の装置の構成図、第3図は従来の一例を示す
構成図である。 1・・・パターン発生器、2・・・可変周波数発振器、
3・・・CPU、4・・・ファラデーカップ、5・・・
偏向器、6a、6b・・・静電レンズ、7・・・イオン
源、8・・・引出電極、9・・・絞り、10・・・真空
カラム、11・・・高耐圧フォトカプラー。
FIG. 1 is a basic configuration diagram of the present invention, and FIG. 2 is a diagram of the present invention. FIG. 3 is a block diagram showing a conventional example of the apparatus. 1... Pattern generator, 2... Variable frequency oscillator,
3...CPU, 4...Faraday cup, 5...
Deflector, 6a, 6b... Electrostatic lens, 7... Ion source, 8... Extraction electrode, 9... Aperture, 10... Vacuum column, 11... High voltage withstand photocoupler.

Claims (1)

【特許請求の範囲】 1、イオン源とそのイオン源から出たイオンビームを集
束、偏向する光学系を有するイオンビーム装置において
、一次イオンビームの一部を利用して、プローブ電流を
換算し、その情報を基にリアルタイムで各偏向点におけ
るビーム照射時間に補正を加えることを特徴とするイオ
ンビーム照射量の制御方法。 2、基準クロックに同期して描画パターンを発生し、ビ
ームの偏向を行うパターン発生器に一次イオンビームの
一部からプローブ電流値を周波数に換算したものをクロ
ックとして入力する事を特徴とする特許請求の範囲第1
項記載のイオンビーム照射量の制御方法。 3、引出電極、絞りなどに流入する一次イオンビームか
らプローブ電流を換算することを特徴とする、特許請求
の範囲第1項又は第2項記載のイオンビーム照射量の制
御方法。 4、一次イオンビームの照射により発生した二次電子か
らプローブ電流を換算することを特徴とする、特許請求
の範囲第3項記載のイオンビーム照射量の制御方法。
[Claims] 1. In an ion beam device having an ion source and an optical system for focusing and deflecting the ion beam emitted from the ion source, a part of the primary ion beam is used to convert the probe current, A method for controlling ion beam irradiation amount, which is characterized in that the beam irradiation time at each deflection point is corrected in real time based on the information. 2. A patent characterized in that a probe current value converted into a frequency from a part of the primary ion beam is input as a clock to a pattern generator that generates a drawing pattern in synchronization with a reference clock and deflects the beam. Claim 1
Method for controlling ion beam irradiation amount described in Section 1. 3. A method for controlling ion beam irradiation amount according to claim 1 or 2, characterized in that a probe current is converted from a primary ion beam flowing into an extraction electrode, an aperture, or the like. 4. The method for controlling the ion beam irradiation amount according to claim 3, characterized in that the probe current is converted from secondary electrons generated by irradiation with the primary ion beam.
JP27892985A 1985-12-13 1985-12-13 Control of ion beam dosage Pending JPS62139323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27892985A JPS62139323A (en) 1985-12-13 1985-12-13 Control of ion beam dosage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27892985A JPS62139323A (en) 1985-12-13 1985-12-13 Control of ion beam dosage

Publications (1)

Publication Number Publication Date
JPS62139323A true JPS62139323A (en) 1987-06-23

Family

ID=17604042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27892985A Pending JPS62139323A (en) 1985-12-13 1985-12-13 Control of ion beam dosage

Country Status (1)

Country Link
JP (1) JPS62139323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032011A (en) * 2004-07-13 2006-02-02 Hitachi Sci Syst Ltd Low vacuum scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032011A (en) * 2004-07-13 2006-02-02 Hitachi Sci Syst Ltd Low vacuum scanning electron microscope

Similar Documents

Publication Publication Date Title
US4980562A (en) Method and apparatus for high efficiency scanning in an ion implanter
US4641034A (en) Ion implantation apparatus and method for maskless processing
JPH0530016B2 (en)
WO1984000610A1 (en) Low voltage field emission electron gun
KR0142431B1 (en) Compensated scan wave form generator for ion tmplantation equipment
US4084095A (en) Electron beam column generator for the fabrication of semiconductor devices
JPS62139323A (en) Control of ion beam dosage
JPH08195181A (en) Scanning electron microscope
JPH0353439A (en) Electron optical lens barrel
KR960000808B1 (en) Secondary ion mass analyzer
JP2834466B2 (en) Ion beam device and control method thereof
JP2540306B2 (en) Ion implanter
JPH063720B2 (en) Focused ion beam device
KR100460482B1 (en) Scanning electron microscope
EP0162468A1 (en) Ion microbeam implanter
JPH0535540B2 (en)
JPH07111142A (en) Working method using focused ion beam
Dost Automatic focus control of charged-particle beams
JPH0428155A (en) Measuring of beam diameter of focusing charged particle beam
JPS62219445A (en) Electron beam device
JPS6231488B2 (en)
JPH02132745A (en) Charged corpuscular beam device
JPH05144404A (en) Electron beam figure drawing device
JPS6312146A (en) Pattern-dimension measuring apparatus
JPH0817196B2 (en) Electron beam probe device