JPS6213889A - Piping method - Google Patents

Piping method

Info

Publication number
JPS6213889A
JPS6213889A JP15649986A JP15649986A JPS6213889A JP S6213889 A JPS6213889 A JP S6213889A JP 15649986 A JP15649986 A JP 15649986A JP 15649986 A JP15649986 A JP 15649986A JP S6213889 A JPS6213889 A JP S6213889A
Authority
JP
Japan
Prior art keywords
tube
metal
spring constant
sheath
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15649986A
Other languages
Japanese (ja)
Inventor
森武 充
中芝 明雄
平岡 励
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP15649986A priority Critical patent/JPS6213889A/en
Publication of JPS6213889A publication Critical patent/JPS6213889A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、金属可視管に関し、特に隠蔽領域に予め敷設
されたさや管内に挿通して配管するための配管方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal visible pipe, and more particularly to a piping method for inserting and piping into a sheath pipe laid in advance in a concealed area.

鉄筋コンクリートビルなどの建造物において、都市ガス
の配管工事をするにあたってさや管を隠蔽領域に予め敷
設し、その後都市ガスを導くための可視管を前記さや管
内に挿通して配管する二重配管工法が提案されている 
(特願昭55−25808)、このような二重配管工法
によれば、配管工事が簡略化され、また管継手などが不
要となり、補修をきわめて簡単に行なうことができると
いう利点がある。
When performing city gas piping work in buildings such as reinforced concrete buildings, a double piping method is used in which a sheath pipe is laid in advance in a concealed area, and then a visible pipe for guiding the city gas is inserted into the sheath pipe. Proposed
(Japanese Patent Application No. 55-25808), such a double piping construction method has the advantage of simplifying piping work, eliminating the need for pipe joints, and making repairs extremely easy.

前記二重配管工法において、さや管内に可視管を挿通す
る際には、さや管の屈曲部の数、およびその屈曲部の曲
率半径の大小にかかわらず、極力1人の作業者で可視管
を容易に挿通しうるようにすることが望ましい。そのた
め可視管はゴムや合成樹脂などのように比較的柔軟な材
料で、しかも都市ガスなどの流体を円滑に流通させうる
構造を有していることが要求される。ところが、高分子
材料などでは火災時の安全対策面や長期寿命などの点に
おいで、現状では直ちに使用できるものがない。
In the above-mentioned double piping method, when inserting the visible pipe into the sheath pipe, the visible pipe should be inserted by one worker as much as possible, regardless of the number of bends in the sheath pipe and the size of the radius of curvature of the bends. It is desirable that it be easily inserted. Therefore, the visible tube is required to be made of a relatively flexible material such as rubber or synthetic resin, and to have a structure that allows fluid such as city gas to flow smoothly. However, there are currently no polymeric materials that can be used immediately due to fire safety measures and long lifespan.

前記高分子材料製可撓管の欠点を解決するための金属可
視管としては、大なる可視性を有する金属材料たとえば
銅製あるいは鉛製円筒管や、金属管の断面形状を細工し
て可撓性を有するようにした金属可視管がある。前記銅
管などの柔軟材料では、たとえば1.5 倍程度まで伸
長することができる。ところがさや管の曲率半径が小さ
な屈曲部では、前記金属可撓管が偏平してしまい流体抵
抗が大きくなる。また屈曲部を複数回通過していくに従
って、加工硬化を生じ、次第に挿通抵抗が大になる。さ
らに屈曲部の曲率半径が小さい部分では、過大な引張り
力が必要となり、金属可視管の挿通作業を作業者1人で
実施することが困難となる。
To solve the drawbacks of flexible tubes made of polymer materials, metal visible tubes may be made of metal materials with high visibility, such as copper or lead cylindrical tubes, or metal tubes whose cross-sectional shape may be modified to make them flexible. There is a metal visible tube that has . In the case of a flexible material such as the copper tube, it is possible to elongate the length up to about 1.5 times, for example. However, at a bent portion where the radius of curvature of the sheath tube is small, the metal flexible tube becomes flat and fluid resistance becomes large. In addition, as the wire passes through the bent portion multiple times, work hardening occurs, and the insertion resistance gradually increases. Furthermore, in a portion where the radius of curvature of the bent portion is small, an excessive tensile force is required, making it difficult for a single operator to insert the visible metal tube.

第1図は金属管の断面形状を細工して蛇腹管とした従来
からの金属可視管の断面図である。このような金属可撓
管1は可撓性が非常に優れているが、有効内径diに対
し、突出外径doが約1.6倍程度となる。そのため挿
通距離が同一の直管に比較すると約2.4倍もの材料が
必要となり、製造コストが大になる。またピッチpiに
対し、山の高さhが高いため流体摩擦損失が大きい欠点
がある。
FIG. 1 is a cross-sectional view of a conventional metal visible tube which is made into a bellows tube by modifying the cross-sectional shape of the metal tube. Although such a metal flexible tube 1 has excellent flexibility, the protruding outer diameter do is about 1.6 times the effective inner diameter di. Therefore, compared to a straight pipe having the same insertion distance, approximately 2.4 times as much material is required, increasing manufacturing costs. In addition, since the height h of the crest is high relative to the pitch pi, there is a drawback that fluid friction loss is large.

さらに上記したように有効内径diに対し、挿入可撓管
1の突出外径doは約1.6倍程度となり、したがって
さや管の外径も太くならざるを得す、管敷空間が大きく
なるという欠点がある。
Furthermore, as mentioned above, the protruding outer diameter do of the flexible insertion tube 1 is approximately 1.6 times the effective inner diameter di, and therefore the outer diameter of the sheath tube must also become thicker, and the tube bed space becomes larger. There is a drawback.

第2図は他の金属可撓管2を示す断面図である。FIG. 2 is a sectional view showing another metal flexible tube 2. FIG.

この金属可視管2は、山の断面形状が略Ω状に形成され
ており、第1図で示した金属可撓管1と同様に非常に優
れた可撓性を有する。しかし第1図の金属可撓管1より
も必要材料が大になるとともに、必要な敷設空間も大と
なる。
This metal visible tube 2 has a ridge having a substantially Ω-shaped cross-section, and has very excellent flexibility like the metal flexible tube 1 shown in FIG. However, the required material is larger than that of the metal flexible tube 1 shown in FIG. 1, and the required installation space is also larger.

本発明は、薄肉金属管を蛇腹状に形成した基本構造を有
し、さや管内にわずがな牽引荷重で引込んで挿通するこ
とができ、しかも必要材料が可及的に少なくて済むよう
にした配管方法を提供することを目的とする。
The present invention has a basic structure in which a thin-walled metal tube is formed into a bellows shape, and can be drawn into and inserted into a sheath tube with a slight traction load, and requires as little material as possible. The purpose is to provide a piping method that provides

以下、図面によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は本発明の一実施例の金属可撓管の断面図面であ
る。この金属可撓管10は、ステンレス鋼や軟鋼、銅、
黄銅などの金属材料から成る薄肉金属管を蛇腹状に形成
して成る。金属可撓管10は、隠蔽領域8に予め敷設さ
れ、複数の屈曲部7を有するさや管9内に挿通される。
FIG. 3 is a sectional view of a metal flexible tube according to an embodiment of the present invention. This metal flexible tube 10 is made of stainless steel, mild steel, copper,
It is made by forming a thin metal tube made of a metal material such as brass into a bellows shape. The metal flexible tube 10 is laid in advance in the concealment area 8 and inserted into a sheath tube 9 having a plurality of bends 7 .

金属可撓管10の肉厚し、山のピッチpi、 tt+の
高さ11、外径do、および内径diは、ばね定数Kが
20 K g/ m11≦に≦90Kg/a+mとなる
ように選ばれている。これによってさや管9の内径との
口径比を極力100%に近接して選ぶことができ、しか
もさや管9の屈曲部7が3ケ所であってしかも曲率半径
がさや管の内径の5倍程度であるときに、30〜40 
Kgの牽引力で挿通することができる。
The thickness of the metal flexible tube 10, the pitch of the peaks pi, the height 11 of tt+, the outer diameter do, and the inner diameter di are selected so that the spring constant K is 20 K g/m11≦ and 90 Kg/a+m. It is. As a result, the diameter ratio to the inner diameter of the sheath tube 9 can be selected as close to 100% as possible, and even though the sheath tube 9 has three bent portions 7, the radius of curvature is about five times the inner diameter of the sheath tube. 30-40 when
It can be inserted with a pulling force of Kg.

金属可撓管の可視性と軸方向のばね定数にとは、第4図
で示すように一次関数の関係にあることが実験によって
確認された。そこで、可視管の可撓性を軸方向のばね定
数にで置きかえて検討する。
It has been confirmed through experiments that the visibility of the flexible metal tube and the axial spring constant are in a linear function relationship, as shown in FIG. Therefore, we will replace the flexibility of the visible tube with the spring constant in the axial direction.

ここで、前記「可視性」は、300ma+の間隔をあけ
た一対の支点で水平に支持された可撓管の前記両支点間
の中央部に荷重を加え、前記中央部を10I11だけ撓
ませるに必要な荷重で表わされる。
Here, the above-mentioned "visibility" means that when a load is applied to the central part between the two supporting points of a flexible tube supported horizontally by a pair of supporting points spaced apart by 300 ma+, the central part is deflected by 10I11. It is expressed as the required load.

ばね定数には第1式で示される。The spring constant is expressed by the first equation.

第1式において、Eは使用材料のヤング率であり、Nは
100IIII11当りの山数であり、DIllは平均
口径本発明者の実験によると、ばね定数にとさや管9内
に挿通する際の牽引荷重Fとの間には第2式のような関
係があることが判っている。
In the first equation, E is the Young's modulus of the material used, N is the number of peaks per 100III11, and DIll is the average diameter. It is known that there is a relationship between the traction load F and the following equation.

第2式においてaは定数である。たとえばさや管9の内
径と金属可視管の外径doとの比すなわち口径比が0.
75 であり、さや管9の屈曲部7の曲率半径が120
m5である場合には、a=2.2である。ここでさや管
9の屈曲部7の数に対応した牽引荷重Fの一例を示すと
第5図のようになる。
In the second formula, a is a constant. For example, the ratio of the inner diameter of the sheath tube 9 to the outer diameter do of the metal visible tube, that is, the aperture ratio is 0.
75, and the radius of curvature of the bent portion 7 of the sheath tube 9 is 120.
When m5, a=2.2. Here, an example of the traction load F corresponding to the number of bent portions 7 of the sheath pipe 9 is shown in FIG. 5.

なおtl&S図において、曲線11,12.13は屈曲
部の数がそれぞれ1,2.3個である場合を示す。
In the tl&S diagram, curves 11 and 12.13 indicate cases where the number of bends is 1 and 2.3, respectively.

しかも、この場合、前記口径比は0.73であり、屈曲
部の曲率半径はさや管9 の内径の4.1倍に選ばれて
いる。
Moreover, in this case, the aperture ratio is 0.73, and the radius of curvature of the bent portion is selected to be 4.1 times the inner diameter of the sheath tube 9.

第5図において、屈曲部を3個とし、作業具1人で牽引
し得る程度の牽引荷重Fをたとえば35にぎとすると、
可視性は5 Kg/am7300m程度であり、このと
きのぽね定数は、第4図から45Kg/■程度である。
In FIG. 5, if there are three bent parts and the traction load F that can be pulled by one person is 35, for example,
The visibility is about 5 Kg/am7300m, and the bone constant at this time is about 45 Kg/■ from Fig. 4.

このようにして必要なばね定数を選ぶことができる。In this way, the required spring constant can be selected.

本発明者が各種の形状の金属可視管を試作したときのば
ね定数Kを第1表に示す。
Table 1 shows the spring constants K obtained when the present inventor prototyped metal visible tubes of various shapes.

第  1   表 第1表に示した各種形状の金属可撓管10のさや’fl
’9内への通管実験を行なった結果、N003およびN
 o、 4  の金属可視管は、口径比が0.75程度
であり、しかも外径doの5倍程度の曲率半径を有する
屈曲部が3個所あるさや管内に挿通したと軽に座屈を生
じた。またNo、6  の金属可撓管の場合には座屈を
生じることはなかったので、ばね定数にはN o、 6
とN004との中間の値である約90Kg/−一が上限
値であり、その値を超えると座屈を生じることが推定さ
れる。なお、ばね定数Kが90Kg/mmであるときの
牽引荷重は約45〜50Kgであり、作業具1人で牽引
し得る値である。
Table 1 Sheaths of flexible metal tubes 10 of various shapes shown in Table 1
As a result of pipe passage experiments into '9, N003 and N
A metal visible tube of 0.4 has an aperture ratio of about 0.75 and easily buckles when inserted into a sheath tube that has three bends with a radius of curvature of about 5 times the outer diameter do. Ta. In addition, buckling did not occur in the case of No. 6 metal flexible tube, so the spring constant is No. 6
The upper limit is approximately 90 kg/-1, which is an intermediate value between N004 and N004, and it is estimated that buckling will occur if this value is exceeded. Note that when the spring constant K is 90 kg/mm, the traction load is about 45 to 50 kg, which is a value that can be pulled by one person with the working tool.

作業員1人が配管現場で牽引し得る荷重は、一般的な背
筋力の1/2程度である50に、が限界である。
The maximum load that one worker can pull at a piping site is 50, which is about 1/2 of the typical back muscle strength.

また屈曲部が5個である時に牽引できるためには、18
図からもばね定数90 K g/ mmが上限となる。
Also, in order to be able to tow when there are 5 bends, 18
From the figure, the upper limit is the spring constant of 90 Kg/mm.

第8図は、plfJ1表に示された金属可撓管No、3
゜No、4 wNo、5 、No、6 f)ばね定数と
牽引荷重トノ関係を点Q 3 、Q 4 、Q 5 、
Q 6  でそれぞれ示すグラフである。このtIIJ
8図の実験結果は、屈曲部が5個であるときの総牽引荷
重をその屈曲部の数5  、。
Figure 8 shows metal flexible tube No. 3 shown in the plfJ1 table.
゜No, 4 wNo, 5, No, 6 f) Spring constant and traction load tonnage relationship at points Q 3 , Q 4 , Q 5 ,
The graphs are respectively indicated by Q 6 . This tIIJ
The experimental results shown in Figure 8 show that when there are 5 bends, the total traction load is calculated by the number of bends: 5.

で割った値、すなわち1個の屈曲部あたりの牽引荷重を
示している。この実験結果から、ばね定数を増加するこ
とによって牽引荷重が増大することが判る。
In other words, it shows the traction load per bend. This experimental result shows that the traction load increases by increasing the spring constant.

ぽね定数Kを小さくすると、牽引荷重が小となり、さや
管内への挿通作業は楽になるが、内径di1ピッチpお
よびヤング率Eを一定とすれば、前述の第1式から明ら
かなように山の高さIIが大となる。それに応じて、材
料の使用率すなわち挿通距離に対して金属可視管を直管
に延伸した長さの比率が大となる。第6図はばね定数に
と材料使用率との関係を示すグラフである。
If the bone constant K is made smaller, the traction load becomes smaller and the insertion work into the sheath becomes easier, but if the inner diameter di1 pitch p and Young's modulus E are kept constant, the mountain The height II becomes large. Correspondingly, the ratio of the material usage rate, that is, the length of the straight metal visible tube to the insertion distance becomes large. FIG. 6 is a graph showing the relationship between spring constant and material usage rate.

第6図において点Pは、第1図に示した従来の金属可撓
管1を示す。第6図から明らかなように材料使用率が1
60%を超えると、ばね定数にのわずかの変化に応じて
材料使用率が大幅に変化する。そのため安全を考えて材
料使用率を160%まで許容することになる。この材料
使用率160%のときのばね定数には約20%である。
In FIG. 6, point P indicates the conventional metal flexible tube 1 shown in FIG. As is clear from Figure 6, the material usage rate is 1.
Above 60%, the material utilization changes significantly in response to small changes in the spring constant. Therefore, considering safety, the material usage rate is allowed up to 160%. The spring constant when the material usage rate is 160% is approximately 20%.

したがってばね定数にの下限値は20Kg/m−であり
、上述の上限値90Kg/amと合わせて、ばね定数に
の範囲は20Kg/am以上であり90Kg/m−いか
に選ばれる。
Therefore, the lower limit of the spring constant is 20 kg/m, and in combination with the above-mentioned upper limit of 90 kg/am, the range of the spring constant is 20 kg/am or more and 90 kg/m.

なお、現実的には、さや管の内径に制約があり、またn
白部の曲率半径にも制約があるのでばね定数には30 
K g/ am以上でありかつ80Kg/信−以下に選
ぶことが望ましい。
In addition, in reality, there are restrictions on the inner diameter of the sheath tube, and n
Since there is also a restriction on the radius of curvature of the white part, the spring constant is 30
It is desirable to select a value of Kg/am or more and 80Kg/am or less.

上述の実施例は金属材料のみで金属可視管を形成する場
合について述べたが、本発明は第7図で示すように金属
製蛇腹管15の内面に可撓性を有する合成樹脂たとえば
エポキシ樹脂16を内張りした金属可撓管17に関連し
で実施することもできる。この第7図の実施例によれば
流体摩擦抵抗が低減される。
Although the above-mentioned embodiment described the case where the metal visible tube is formed only from metal materials, the present invention, as shown in FIG. It can also be implemented in conjunction with a metal flexible tube 17 lined with According to the embodiment shown in FIG. 7, fluid frictional resistance is reduced.

上述のごとく本発明によれば、軸方向のばね定数を20
Kg/eim以上でありかつ90 K g/ m+s以
下に選んだので、さや管との口径比を100%に接近し
て選ぶことができ、しかも作業具1人程度の牽引力でさ
や管内に挿通することができる。しかも材料使用量が極
力低減される。
As described above, according to the present invention, the spring constant in the axial direction is set to 20.
Kg/eim or more and 90 Kg/m+s or less, so the diameter ratio with the sheath pipe can be selected close to 100%, and moreover, it can be inserted into the sheath pipe with the pulling force of one person. be able to. Moreover, the amount of materials used is reduced as much as possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来技術をそれぞれ示す断面図、
第3図は本発明の一実施例の断面図、第4図は可撓性と
ばね定数との関係を示すグラフ、第5図は可視性と牽引
荷重との関係を示すグラフ、第6図はばね定数と材料使
用率との関係を示すグラフ、第7図は本発明の他の実施
例の断面図、第8図はばね定数と牽引荷重との関係を示
すグラフである。 9・・・さや管、10,17・・・金属可撓管、16・
・・エポキシ樹脂 代理人  弁理士 回教 圭一部 第2図 第 3 図 第4図 回層性(kg/cm/300mm) 第5(4 可撓+!(kg/cm7300mm) ハフ12.を数K(kg/mm) 第7図 161b 第8図 1;゛ね疋(嘱にg7mm)
FIG. 1 and FIG. 2 are cross-sectional views showing the prior art, respectively;
FIG. 3 is a cross-sectional view of an embodiment of the present invention, FIG. 4 is a graph showing the relationship between flexibility and spring constant, FIG. 5 is a graph showing the relationship between visibility and traction load, and FIG. 6 is a graph showing the relationship between visibility and traction load. 7 is a sectional view of another embodiment of the present invention, and FIG. 8 is a graph showing the relationship between spring constant and traction load. 9... Sheath tube, 10, 17... Metal flexible tube, 16.
... Epoxy resin agent Patent attorney Keiichi Kaiichi Figure 2 Figure 3 Figure 4 Layerability (kg/cm/300mm) 5th (4 Flexibility +! (kg/cm7300mm) Hough 12. to several K ( kg/mm) Fig. 7 161b Fig. 8 1;

Claims (2)

【特許請求の範囲】[Claims] (1)さや管を予め敷設しておき、 このさや管内に金属可撓管を挿入し、 金属可撓管は、蛇腹管状に形成され、軸方向のばね定数
が20Kg/mm以上であり、かつ90Kg/mm以下
に選ばれることを特徴とする配管方法。
(1) A sheath pipe is laid in advance, and a metal flexible pipe is inserted into the sheath pipe, and the metal flexible pipe is formed into a bellows tube shape, and has an axial spring constant of 20 kg/mm or more, and A piping method characterized in that the piping is selected to be 90Kg/mm or less.
(2)内面に可撓性を有する合成樹脂が内張りされるこ
とを特徴とする特許請求の範囲第1項記載の配管方法。
(2) The piping method according to claim 1, wherein the inner surface is lined with a flexible synthetic resin.
JP15649986A 1986-07-03 1986-07-03 Piping method Pending JPS6213889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15649986A JPS6213889A (en) 1986-07-03 1986-07-03 Piping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15649986A JPS6213889A (en) 1986-07-03 1986-07-03 Piping method

Publications (1)

Publication Number Publication Date
JPS6213889A true JPS6213889A (en) 1987-01-22

Family

ID=15629094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15649986A Pending JPS6213889A (en) 1986-07-03 1986-07-03 Piping method

Country Status (1)

Country Link
JP (1) JPS6213889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211030A (en) * 2016-05-25 2017-11-30 トヨタホーム株式会社 Piping structure of building, and building

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229618A (en) * 1975-09-01 1977-03-05 Nippon Kokan Kk <Nkk> Flexible corrugated steel pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229618A (en) * 1975-09-01 1977-03-05 Nippon Kokan Kk <Nkk> Flexible corrugated steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017211030A (en) * 2016-05-25 2017-11-30 トヨタホーム株式会社 Piping structure of building, and building

Similar Documents

Publication Publication Date Title
EP0554789A1 (en) Fiber optic cable
US9780540B2 (en) Duct rod system for installing an elongated element in a conduit
JPS6213889A (en) Piping method
US4625504A (en) Pitched cables sheathed with a plastic film and method of sheathing
DE3030125A1 (en) BENDABLE PIPE FOR AN ELECTRICAL CABLE
JP5572436B2 (en) Flexible synthetic resin tube
JP6391903B1 (en) Conduit, Conduit connection structure, Bell block, Conduit connection method, Conduit tube and Bell block connection method, Pipe joint, and Ring member
JP6469938B2 (en) Conduit tube, Conduit connection structure, Bell block, Connection method between conduit tubes, Conduit tube and Bell block connection method, Pipe joint, Ring member
KR930001668B1 (en) Spiral pipe
DE4041030A1 (en) CRIME SPLICE
JPH05332479A (en) Corrugated sleeve
JP4495996B2 (en) Synthetic resin double-layer corrugated pipe and method for repairing the pipe through which this corrugated pipe is inserted into an aged existing pipe
AU2006225058B2 (en) Tube
JP2003043324A (en) Optical fiber unit inserted into pipe, and method for insertion thereof
JP2568746B2 (en) Cable protection tube
US6014884A (en) Method of bending tubing
JP2784075B2 (en) Fiber optic cable
EP1705768A1 (en) Flexible sheath for protection of electrical cables
JP2006074856A (en) Bendable unit for multiholed conduit
JPS6122423Y2 (en)
JPH1141739A (en) Linear body and laying method thereof
JPH02167906A (en) Structure of pc cable at crooked part
JPS61215879A (en) Method of designing piping of sinking type buried duct
JP2002267056A (en) Horizontal drain pipe
JPH0721985Y2 (en) Spiral tube