JPS6213841B2 - - Google Patents

Info

Publication number
JPS6213841B2
JPS6213841B2 JP53046482A JP4648278A JPS6213841B2 JP S6213841 B2 JPS6213841 B2 JP S6213841B2 JP 53046482 A JP53046482 A JP 53046482A JP 4648278 A JP4648278 A JP 4648278A JP S6213841 B2 JPS6213841 B2 JP S6213841B2
Authority
JP
Japan
Prior art keywords
transistor
base
oscillation
circuit
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53046482A
Other languages
Japanese (ja)
Other versions
JPS54139364A (en
Inventor
Shoichi Shimizu
Kenichi Torii
Shigeo Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4648278A priority Critical patent/JPS54139364A/en
Publication of JPS54139364A publication Critical patent/JPS54139364A/en
Publication of JPS6213841B2 publication Critical patent/JPS6213841B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • H03B5/1215Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair the current source or degeneration circuit being in common to both transistors of the pair, e.g. a cross-coupled long-tailed pair

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【発明の詳細な説明】 この発明は、集積回路内に設けられて好適なる
発振装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oscillation device that is preferably provided within an integrated circuit.

近時、テレビ受像機のチユーナ部分を局部発振
装置を含め集積回路(IC)化することが考えら
れている。この場合、問題となることは多数の回
路を同一チツプ上に形成する関係上チツプの温度
上昇が起こり、局部発振装置に周波数ドリフトが
起こるということである。この問題は特にテレビ
のスイツチを入れた時からチツプ温度が一定にな
るまでの間のスイツチオンドリフトにおいて顕著
である。
Recently, it has been considered to incorporate the tuner part of a television receiver into an integrated circuit (IC) including a local oscillator. In this case, the problem is that since a large number of circuits are formed on the same chip, the temperature of the chip increases and a frequency drift occurs in the local oscillator. This problem is particularly noticeable during switch drift from when the TV is turned on until the chip temperature becomes constant.

従来一般に、発振装置の発振周波数を安定化さ
せる方法としては、第1にタンク回路とトランジ
スタの結合を粗にして、発振周波数値ができるだ
けトランジスタの素子パラメータに依存せずにタ
ンク回路で決定されるように考慮する。第2にリ
アクタンス安定法を用いて安定させるなどの方法
が用いられてきた。しかしタンク回路とトランジ
スタ結合を粗にすると、発振が不安定になりやす
く、またリアクタンス安定化法はある周波数では
改善されるが、発振周波数を変化させるチユーナ
の発振装置においては不向きである。
Conventionally, in general, as a method for stabilizing the oscillation frequency of an oscillation device, first, the coupling between the tank circuit and the transistor is made coarse, so that the oscillation frequency value is determined by the tank circuit as much as possible without depending on the element parameters of the transistor. Consider this. Second, methods such as stabilization using the reactance stabilization method have been used. However, if the tank circuit and transistor coupling are made rough, oscillation tends to become unstable, and although the reactance stabilization method improves at a certain frequency, it is not suitable for tuner oscillation devices that change the oscillation frequency.

この発明はかかる点に鑑みてなされたもので、
トランジスタの素子パラメータを積極的に利用し
て、チツプ温度変化に対するドリフト、特にスイ
ツチオンドリフトを軽減することのできる発振装
置を提供することを目的とするものである。
This invention was made in view of these points,
It is an object of the present invention to provide an oscillation device that can reduce drift due to chip temperature changes, particularly switch drift, by actively utilizing element parameters of a transistor.

すなわちこの発明はトランジスタのコレクタ出
力の一部をベース入力側に帰還するように構成さ
れた発振回路の上記トランジスタのベース電位を
温度変化に応じて変化させることによりトランジ
スタのベース・コレクタ接合容量を変化させ、温
度上昇に対するドリフトを軽減させるようにした
ものである。
That is, the present invention changes the base-collector junction capacitance of the transistor by changing the base potential of the transistor in an oscillation circuit configured to feed back a part of the collector output of the transistor to the base input side in accordance with temperature changes. This is to reduce drift due to temperature rise.

以下この発明を図面を参照して詳細に説明す
る。
The present invention will be explained in detail below with reference to the drawings.

第1図はこの発明の一実施例による発振装置の
構成を示すもので、基本的に発振回路1とこの発
振回路1の温度ドリフトを軽減させるための制御
回路とから構成されている。発振回路1はエミ
ツタが定電流源3に共通に接続され、ベースにそ
れぞれバイアス抵抗4,5が接続された差動形式
の第1のトランジスタ6第2のトランジスタ7を
有する。この第1、第2のトランジスタ6,7の
コレクタ相互間にはリアクタンスLT8、コンデ
ンサCT9からなるタンク回路10が接続され、
第1のトランジスタ6のコレクタから第2のトラ
ンジスタのベースに、第2のトランジスタ7のコ
レクタから第1のトランジスタ6のベースにそれ
ぞれ帰還コンデンサ11,12を介して帰還がか
けられている。尚この発振回路1はタンク回路1
0および帰還コンデンサ11,12を除いて集積
回路化されている。またトランジスタのベース・
コレクタ間の容量CDは接合容量を模擬的に表わ
したものである。
FIG. 1 shows the configuration of an oscillation device according to an embodiment of the present invention, which basically consists of an oscillation circuit 1 and a control circuit 2 for reducing temperature drift of this oscillation circuit 1. The oscillation circuit 1 has a first transistor 6 and a second transistor 7 of a differential type, whose emitters are commonly connected to a constant current source 3 and whose bases are connected to bias resistors 4 and 5, respectively. A tank circuit 10 consisting of a reactance L T 8 and a capacitor C T 9 is connected between the collectors of the first and second transistors 6 and 7.
Feedback is applied from the collector of the first transistor 6 to the base of the second transistor and from the collector of the second transistor 7 to the base of the first transistor 6 via feedback capacitors 11 and 12, respectively. Note that this oscillation circuit 1 is a tank circuit 1.
0 and feedback capacitors 11 and 12 are integrated circuits. Also, the base of the transistor
The collector-to-collector capacitance C D is a simulated representation of the junction capacitance.

この発振回路の発振周波数〓SCは次式で表わ
される。
The oscillation frequency 〓 SC of this oscillation circuit is expressed by the following formula.

上式においてPTR(T)ベースコレクタ間の接
合容量CDを除いたトランジスタの素子パラメー
タによる項を表わし、正の温度特性をもつので、
温度が上昇するにしたがつて発振周波数は減少す
る。しかし上式からわかるように、トランジスタ
のベース・コレクタ接合容量CDは発振周波数に
直接影響を及ぼすから、第1図において温度上昇
とともに各トランジスタ6,7のベース電位を下
げて、接合容量CDを小さくすれば発振周波数を
温度に対して一定に保つことが可能である。この
機能をもつのが制御回路である。この制御回路2
は、基本構成として、温度検知および信号増幅作
用を有するトランジスタ13とバイアス抵抗
R21,R22,R23およびR24とを有し、発振回路1と
ともに同一半導体基板上に集積回路化されてい
る。トランジスタ13のベースはバイアス抵抗
R2114を介して電源VCCに接続されるとともに
バイアス抵抗R2215を介して接地されている。
またコレクタはバイアス抵抗R2316を介して前
記電源VCCに、またエミツタはバイアス抵抗R24
17を介して接地されている。そして出力はコレ
クタ18より取り出され、発振回路1の制御入力
端19に接続されている。
In the above equation, P TR (T) represents the term due to the element parameters of the transistor excluding the base-collector junction capacitance C D , and has positive temperature characteristics, so
As the temperature increases, the oscillation frequency decreases. However, as can be seen from the above equation, the base-collector junction capacitance C D of the transistor directly affects the oscillation frequency. By reducing , it is possible to keep the oscillation frequency constant with respect to temperature. The control circuit has this function. This control circuit 2
The basic configuration includes a transistor 13 having temperature detection and signal amplification functions and a bias resistor.
It has R 21 , R 22 , R 23 and R 24 and is integrated with the oscillation circuit 1 on the same semiconductor substrate. The base of transistor 13 is a bias resistor
It is connected to the power supply V CC via R 21 14 and grounded via bias resistor R 22 15.
The collector is connected to the power supply V CC through the bias resistor R 23 16, and the emitter is connected to the bias resistor R 24
It is grounded via 17. The output is taken out from the collector 18 and connected to the control input terminal 19 of the oscillation circuit 1.

この回路において、スイツチを入れた直後の出
力電位VBは VB=VCC−R23×IQ3(T1) …(2) となる。但しIQ3(T1)スイツチオン直後のチツ
プ温度T1の時にトランジスタ13に流れる電流
値であり、 IQ3(T1)=V−VBE(T)/R24 …(3) である。VCはトランジスタ13のベース(C
点)のバイアス電位で、温度に対して変動しな
い。またVBE(T1)は温度T1におけるトランジス
タ13のベース・エミツタ間電圧である。
In this circuit, the output potential V B immediately after turning on the switch is V B =V CC -R 23 ×I Q3 (T 1 ) (2). However, I Q3 (T 1 ) is the current value flowing through the transistor 13 when the chip temperature is T 1 immediately after switching on, and I Q3 (T 1 )=V C −V BE (T 1 )/R 24 (3). . V C is the base of transistor 13 (C
The bias potential at point ) does not vary with temperature. Further, V BE (T 1 ) is the base-emitter voltage of the transistor 13 at the temperature T 1 .

次にチツプ温度が上昇し、温度T2で一定にな
ると、その時流れる電流値IQ3(T2)は、 IQ3(T2)=V−VBE(T)/R24 …(4) となる。トランジスタのベース・エミツタ間電圧
BEはチツプ温度が上昇してくると減少し、一般
に約−2mV/℃の温度特性があることが知られ
ている。従つてかかる温度特性からVBE(T2)<
BE(T1)であるので、IQ3(T2)>IQ3(T1)と
なる。よつて(2)式より、温度T2の時の出力電圧
Bは、温度T1の時よりも低い電圧となる。従つ
て温度上昇にともなつて発振回路1を構成するト
ランジスタ6,7のベース電位が下がり、接合容
量CDが減少して発振周波数の低下を補償するこ
とができる。
Next, when the chip temperature rises and becomes constant at T 2 , the current value I Q3 (T 2 ) flowing at that time is I Q3 (T 2 )=V C −V BE (T 2 )/R 24 (4) ) becomes. It is known that the base-emitter voltage V BE of a transistor decreases as the chip temperature rises, and generally has a temperature characteristic of about -2 mV/°C. Therefore, from this temperature characteristic, V BE (T 2 ) <
Since V BE (T 1 ), I Q3 (T 2 )>I Q3 (T 1 ). Therefore, from equation (2), the output voltage V B when the temperature is T 2 is a lower voltage than when the temperature is T 1 . Therefore, as the temperature rises, the base potential of the transistors 6 and 7 constituting the oscillation circuit 1 decreases, and the junction capacitance C D decreases, making it possible to compensate for the decrease in the oscillation frequency.

第2図はかかる発振装置をVHF帯の局部発振
装置としてチユーナをIC化した際の温度ドリフ
トの測定結果を示すものである。発振周波数は約
270MHz、チツプの消費電力は約300mWで、外気
に対してチツプ温度は約50℃上昇する。図中実線
Aはトランジスタのベース電圧を温度上昇に対し
て一定にした従来の発振装置の特性を示し、破線
Bはベース電圧を温度上昇に対して約1V降下さ
せたこの発明の発振装置の特性を示すものであ
る。この特性からわかるように、補償をかけない
従来の装置では約−160〜170KHzの周波数の変動
があらわれるのに対し、この発明の装置では約
50KHzの変動に抑えられており、補償の効果が顕
著にあらわれている。
FIG. 2 shows the measurement results of temperature drift when such an oscillation device is used as a VHF band local oscillation device and a tuner is integrated into an IC. The oscillation frequency is approximately
At 270MHz, the power consumption of the chip is approximately 300mW, and the chip temperature rises approximately 50°C relative to the outside air. In the figure, the solid line A shows the characteristics of the conventional oscillation device in which the base voltage of the transistor is kept constant with respect to temperature rise, and the broken line B shows the characteristics of the oscillation device of the present invention in which the base voltage is lowered by about 1 V with respect to temperature rise. This shows that. As can be seen from this characteristic, in the conventional device without compensation, frequency fluctuations of approximately -160 to 170 KHz appear, whereas in the device of the present invention, frequency fluctuations of approximately -160 to 170 KHz appear.
The fluctuation is suppressed to 50KHz, and the effect of compensation is clearly visible.

第3図は本発明で用いられる制御回路2の具体
的構成例を示すものである。この制御回路が第1
図に示した制御回路2の構成と異なる点は、第1
図のトランジスタ13に対応するトランジスタ3
2の前段に新たにトランジスタ31がダーリント
ン接続されて挿入されている点である。このよう
な構成によると温度検知部のVBEが2つあるの
で、バイアス抵抗値R34およびR33が第1図のR24
およびR23とそれぞれ等しい場合、出力電圧VB
約2倍変動する。逆にトランジスタ1個の時と同
じ出力電圧変化を得る時はR33/R34の比はR23
R24の比に比較して約半分で済む。同一チツプ内
に拡散抵抗を作つた場合には、抵抗値が近いほど
互いのバラツキ比は小さいので、この場合精度の
良い制御電圧を作り出すことができる。同様の理
由から第4図に示すようにn個(n>2)のトラ
ンジスタ41,42……をダーリントン接続して
構成することもできる。
FIG. 3 shows a specific example of the configuration of the control circuit 2 used in the present invention. This control circuit is the first
The difference from the configuration of the control circuit 2 shown in the figure is that the first
Transistor 3 corresponding to transistor 13 in the figure
The difference is that a transistor 31 is newly inserted in a Darlington-connected state before the transistor 2. According to this configuration, since there are two V BEs of the temperature detection section, the bias resistance values R 34 and R 33 are equal to R 24 in Fig. 1.
and R 23 respectively, the output voltage V B varies by approximately twice. Conversely, to obtain the same output voltage change as with one transistor, the ratio of R 33 /R 34 is R 23 /
The ratio is about half that of R 24 . When diffused resistors are formed in the same chip, the closer the resistance values are, the smaller the variation ratio is, so in this case, a highly accurate control voltage can be created. For the same reason, n transistors 41, 42, . . . can be connected in Darlington as shown in FIG. 4.

第5図は制御回路2の更に他の構成例を示すも
のである。この構成例が第1図と異なる点は、ト
ランジスタ13のベースとバイアス抵抗14間に
ダイオード51を順方向に挿入した点である。か
かる構成によると、C点の電位はダイオード51
の温度特性により温度上昇とともに上昇する。従
つて第1図の回路に比較して見かけ上温度係数が
ダイオードの数だけ大きくなる。このため、第3
図、第4図に示す構成例のようにトランジスタを
余分に設けなくても同様の効果を得ることができ
る。また第6図に示すようにトランジスタ13の
エミツタにダイオード61を挿入することによつ
ても温度係数を大きくすることができる。
FIG. 5 shows still another example of the configuration of the control circuit 2. In FIG. This configuration example differs from FIG. 1 in that a diode 51 is inserted between the base of the transistor 13 and the bias resistor 14 in the forward direction. According to this configuration, the potential at point C is the potential of the diode 51.
Due to the temperature characteristics of , it increases as the temperature rises. Therefore, compared to the circuit of FIG. 1, the apparent temperature coefficient becomes larger by the number of diodes. For this reason, the third
Similar effects can be obtained without providing an extra transistor as in the configuration example shown in FIGS. The temperature coefficient can also be increased by inserting a diode 61 into the emitter of the transistor 13 as shown in FIG.

発振回路においてはその出力を差動で取り出し
たい要求がしばしばある。その場合、発振回路を
第1図に示すような差動トランジスタ対で構成す
ることが必要になるが、この場合、トランジスタ
の増加に伴ないトランジスタのベース・コレクタ
間接合容量CDが増加するので、制御回路として
は出力電圧VBのとりうる変化幅の大きいものが
望ましい。上記第3図乃至第6図の制御回路はこ
のような要求を十分に満足するものである。
In oscillation circuits, there is often a requirement to extract the output differentially. In that case, it is necessary to configure the oscillation circuit with a differential transistor pair as shown in Figure 1, but in this case, as the number of transistors increases, the base-collector junction capacitance C D of the transistor increases. It is desirable that the control circuit has a wide variation range in the output voltage VB . The control circuits shown in FIGS. 3 to 6 above fully satisfy these requirements.

以上のようにこの発明はタンク回路を有しトラ
ンジスタのコレクタ出力の一部をベースに帰還す
るように構成された発振回路の前記トランジスタ
のベース電位を温度変化に応じて変化せしめるこ
とにより、発振周波数のドリフトを補償すること
ができる。
As described above, the present invention is capable of increasing the oscillation frequency by changing the base potential of the transistor in an oscillation circuit having a tank circuit and configured to feed back a part of the collector output of the transistor to the base. drift can be compensated for.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る発振装置の
構成を示す図、第2図はこの発明の発振装置によ
る周波数ドリフトの改善された様子を示す図、第
3図乃至第6図はそれぞれこの発明の発振装置で
用いられる制御回路の構成例を示す図である。 1……発振回路、2……制御回路、3……定電
流源、6,7……トランジスタ、10……タンク
回路、13……トランジスタ、14,15,1
6,17……バイアス抵抗。
FIG. 1 is a diagram showing the configuration of an oscillation device according to an embodiment of the present invention, FIG. 2 is a diagram showing how frequency drift is improved by the oscillation device of the present invention, and FIGS. 3 to 6 are respectively FIG. 3 is a diagram showing a configuration example of a control circuit used in the oscillation device of the present invention. 1... Oscillation circuit, 2... Control circuit, 3... Constant current source, 6, 7... Transistor, 10... Tank circuit, 13... Transistor, 14, 15, 1
6, 17...Bias resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 エミツタが定電流源に共通に接続された差動
形式の第1および第2のトランジスタ、この第1
および第2のトランジスタのコレクタ間に接続さ
れたタンク回路、および前記第1のトランジスタ
のコレクタから前記第2のトランジスタのベース
に、また前記第2のトランジスタのコレクタから
前記第1のトランジスタのベースにそれぞれ帰還
をかける帰還回路とからなる発振回路と、この発
振回路の温度変化による発振周波数変化を補償す
るように前記第1および第2のトランジスタのベ
ース電位を温度変化に応じて変化せしめる制御回
路とを備え、前記制御回路は、第3のトランジス
タと、この第3のトランジスタのベース・接地間
およびエミツタ・接地間にそれぞれ接続された第
1および第2の抵抗と、前記第3のトランジスタ
のベース・定電位間およびコレクタ・前記定電位
間にそれぞれ接続された第3および第4の抵抗
と、前記第3の抵抗から前記第3のトランジスタ
のベース・エミツタを介して前記第2の抵抗に至
る経路中に挿入された少くともひとつダイオード
又は前記第3のトランジスタに対してダーリント
ン接続された少くともひとつのトランジスタと、
前記第3のトランジスタのコレクタ出力を前記発
振回路を構成する第1および第2のトランジスタ
のベースに供給する手段とからなり前記発振回路
とともに集積回路化されていることを特徴とする
発振装置。
1 first and second transistors of differential type whose emitters are commonly connected to a constant current source;
and a tank circuit connected between the collectors of the second transistor and from the collector of the first transistor to the base of the second transistor and from the collector of the second transistor to the base of the first transistor. an oscillation circuit consisting of a feedback circuit that applies feedback, and a control circuit that changes the base potential of the first and second transistors in accordance with temperature changes so as to compensate for changes in oscillation frequency due to temperature changes in the oscillation circuit; The control circuit includes a third transistor, first and second resistors connected between the base and ground of the third transistor and between the emitter and ground, respectively, and the base of the third transistor.・Third and fourth resistors connected between the constant potential and the collector and the constant potential, respectively, and from the third resistor to the second resistor via the base and emitter of the third transistor. at least one diode inserted in the path or at least one transistor Darlington connected to the third transistor;
An oscillation device comprising means for supplying the collector output of the third transistor to the bases of the first and second transistors constituting the oscillation circuit, and the oscillation device is integrated with the oscillation circuit.
JP4648278A 1978-04-21 1978-04-21 Oscillator Granted JPS54139364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4648278A JPS54139364A (en) 1978-04-21 1978-04-21 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4648278A JPS54139364A (en) 1978-04-21 1978-04-21 Oscillator

Publications (2)

Publication Number Publication Date
JPS54139364A JPS54139364A (en) 1979-10-29
JPS6213841B2 true JPS6213841B2 (en) 1987-03-30

Family

ID=12748413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4648278A Granted JPS54139364A (en) 1978-04-21 1978-04-21 Oscillator

Country Status (1)

Country Link
JP (1) JPS54139364A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6238323Y2 (en) * 1980-02-12 1987-09-30
JPS58173904A (en) * 1982-04-06 1983-10-12 Matsushita Electric Ind Co Ltd Temperature compensating device of oscillator

Also Published As

Publication number Publication date
JPS54139364A (en) 1979-10-29

Similar Documents

Publication Publication Date Title
US4978930A (en) Low voltage VCO temperature compensation
KR920000104B1 (en) Crystal oscillator circuit
US5119015A (en) Stabilized constant-voltage circuit having impedance reduction circuit
US4283674A (en) Constant voltage output circuit
US4270102A (en) Integrated circuit FM local oscillator with AFC control and temperature compensation
US4587478A (en) Temperature-compensated current source having current and voltage stabilizing circuits
JPH0642184B2 (en) Current stabilization circuit
US4386327A (en) Integrated circuit Clapp oscillator using transistor capacitances
JP2002198733A (en) Oscillator circuit
JPH0461522B2 (en)
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
JPS6234295B2 (en)
JPS6213841B2 (en)
US4504798A (en) Transistor circuit including biassing circuit
US4500831A (en) Current source
US3452281A (en) Transistor amplifier circuit having diode temperature compensation
JP3596282B2 (en) Crystal oscillation circuit
US4451799A (en) B-Class complementary circuit
JPH03117015A (en) Emitter coupled multivibrator circuit
JPH0379123A (en) Constant current source circuit
JPH0129852Y2 (en)
US4230980A (en) Bias circuit
JPS63184408A (en) Transistor bias circuit
JPH0462485B2 (en)
JPH0614307B2 (en) Voltage stabilization circuit