JPS62138359A - Ceramic sintered body - Google Patents

Ceramic sintered body

Info

Publication number
JPS62138359A
JPS62138359A JP60279162A JP27916285A JPS62138359A JP S62138359 A JPS62138359 A JP S62138359A JP 60279162 A JP60279162 A JP 60279162A JP 27916285 A JP27916285 A JP 27916285A JP S62138359 A JPS62138359 A JP S62138359A
Authority
JP
Japan
Prior art keywords
sintered body
component
less
ceramic sintered
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60279162A
Other languages
Japanese (ja)
Other versions
JPH0348153B2 (en
Inventor
晃 山川
雅也 三宅
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60279162A priority Critical patent/JPS62138359A/en
Publication of JPS62138359A publication Critical patent/JPS62138359A/en
Publication of JPH0348153B2 publication Critical patent/JPH0348153B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は従来にない低熱伝導率でかつ電気伝導性を兼ね
備えた新規な高強度セラミック材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel high-strength ceramic material that has unprecedentedly low thermal conductivity and electrical conductivity.

〔従来の技術・発明が解決しようとする問題点〕従来か
ら断熱性に秀れた高温材料で、かつ導電性を持った材料
としては、断熱性ファイバーに導電性のフィラーを混入
することで達成されている。しかしながら、その機械的
強度は著しく低く、構造材料としては使用できないとい
う欠点があった。
[Problems to be solved by conventional technology/inventions] Conventionally, high-temperature materials with excellent insulation properties and electrical conductivity have been achieved by mixing electrically conductive fillers into insulating fibers. has been done. However, its mechanical strength is extremely low, and it has the disadvantage that it cannot be used as a structural material.

本発明はこのような現状に鑑みて、断熱性・耐熱材料で
、導電性に加うるに機械強度も秀れた材料を提供するこ
とを目的とするものである。
In view of the current situation, it is an object of the present invention to provide a heat-insulating and heat-resistant material that has excellent mechanical strength as well as electrical conductivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記した目的を達成するため、種々材料を
検討した結果、熱伝導率が5 W/mK’c以下、電気
伝導率が10107−以上でかつ相対密度が90%以上
のセラミック焼結体を見いだしたものである。
In order to achieve the above object, the present inventors investigated various materials and found that a ceramic sintered material having a thermal conductivity of 5 W/mK'c or less, an electrical conductivity of 10107- or more, and a relative density of 90% or more was used. This is what I found.

すなわち、本発明はZrO2を主成分とし、第2成分と
して周期律表■a、 Va、 Ma族元素の炭化物、窒
化物、炭窒化物の1種または2種以上を10〜40体積
パーセントと、第2成分の金属元素と同一元素の酸化物
を第2成分のそれぞれ0.1ないし1Q、0重量パーセ
ントを含有し、熱伝導率が5 W/mK’c以下、電気
伝導率が101υb以上、平均粒度が2μ以下、相対密
度が90%以上であるセラミック焼結体である。本発明
の特に好ましい実施態様としては、Zr%がIna族元
素の酸化物、CaOまたはMgOから選ばれた安定化剤
を含む上記セラミック焼結体が挙げられ、このものは機
械特性において秀れる。さらに好ましくは、安定化剤と
してY2O3を2〜5モルパーセント含有し、ZrO2
結晶相が正方晶からなる上記セラミック焼結体が挙げら
れ、このものは高強度である。
That is, the present invention has ZrO2 as the main component, and 10 to 40 volume percent of one or more carbides, nitrides, and carbonitrides of elements in Groups ■a, Va, and Ma of the periodic table as the second component; Contains 0.1 to 1 Q and 0 weight percent of the second component of an oxide of the same element as the metal element of the second component, and has a thermal conductivity of 5 W/mK'c or less and an electrical conductivity of 101 υb or more, It is a ceramic sintered body having an average particle size of 2μ or less and a relative density of 90% or more. Particularly preferred embodiments of the invention include the ceramic sintered bodies described above, which contain a stabilizer in which Zr% is selected from oxides of elements of the Ina group, CaO or MgO, which exhibit excellent mechanical properties. More preferably, it contains 2 to 5 mol percent of Y2O3 as a stabilizer, and ZrO2
The ceramic sintered body has high strength and has a tetragonal crystal phase.

本発明は、ZrO,を主構成相とし、その一部を周期律
表■a族、Va族、Ma族元素の炭化物、窒化物または
炭窒化物で置換した焼結体よりなる。
The present invention consists of a sintered body in which ZrO is the main constituent phase, and a part of it is replaced with a carbide, nitride, or carbonitride of an element of group Ia, Va group, or Ma group of the periodic table.

ZrO2を主構成相とすることにより、強度の発現と断
熱性を得ることができる。好ましくはY2O,、CaO
またはMgOから選ばれる安定化剤を2モルから5モル
含有するZrO□を用いる。また、このようなZrO□
粉末としては、共沈法による微細な均一粉末のものが好
ましい。安定化剤の量が2モルに満たないと焼結体中に
単斜晶が生成してクラックが発生するし、5モルを越え
て存在すると焼結体の強度が低くなる。特に好ましくは
Y2O3を3モルパーセント程度含有し、焼結体中で正
方晶を呈するZrO2を用いることで、これにより高強
度が得られる。このようなZrO□粉末は、すでに部分
安定化ジルコニアとして公知のものである。
By using ZrO2 as the main constituent phase, it is possible to obtain strength and heat insulation properties. Preferably Y2O, CaO
Alternatively, ZrO□ containing 2 to 5 moles of a stabilizer selected from MgO is used. In addition, such ZrO□
The powder is preferably a fine, uniform powder obtained by a coprecipitation method. If the amount of the stabilizer is less than 2 moles, monoclinic crystals will form in the sintered body and cracks will occur, and if it is present in excess of 5 moles, the strength of the sintered body will be reduced. Particularly preferably, ZrO2 containing about 3 mol percent of Y2O3 and exhibiting a tetragonal crystal structure in the sintered body is used, whereby high strength can be obtained. Such ZrO□ powder is already known as partially stabilized zirconia.

周期律表F/ a % Va −、Va族の炭化物、窒
化物または炭窒化物は電気伝導性を得るため第2成分と
して添加するが、添加量としては、10〜40体積パー
セントとする。これは10体積パーセント未満では電気
伝導性が不足し、また後述するように本発明の焼結体の
好ましい各特性値は40体積パーセント以下とすること
で達成できる。
A carbide, nitride or carbonitride of group F/ a % Va − of the periodic table is added as a second component in order to obtain electrical conductivity, and the amount added is 10 to 40 percent by volume. If the content is less than 10% by volume, the electrical conductivity will be insufficient, and as will be described later, each preferable characteristic value of the sintered body of the present invention can be achieved by setting the content to 40% by volume or less.

また上記第2成分は、好ましくはその粒度が2μ以下、
特に好ましくは1μ以下のものを使用する。粒度が小さ
いほど電気伝導性が高くなるためであり、2μを越える
ものでは電気伝導性が低く、さらに機械的強度も小さな
焼結体しか得られない。
Further, the second component preferably has a particle size of 2μ or less,
Particularly preferably, one having a thickness of 1 μm or less is used. This is because the smaller the particle size, the higher the electrical conductivity; if the particle size exceeds 2μ, the electrical conductivity is low and furthermore, only a sintered body with low mechanical strength can be obtained.

周期律表■a、 Va、 Va族の炭化物、窒化物とし
てはTiOが原料価格及び得られる焼結体特性等から好
ましいが、TagXWe等あるいはTiN 、TaN。
As for the carbides and nitrides of group IVa, Va, and Va of the periodic table, TiO is preferable from the viewpoint of raw material cost and properties of the obtained sintered body, but TagXWe, TiN, and TaN are also preferable.

またはTi0N  等の如き混合物であっても秀れた性
能が得られる。
Alternatively, excellent performance can be obtained even with a mixture such as TiON.

上記した主成分および第2成分に加え、さらに第2成分
と同一の金属元素の酸化物をα1〜10重量パーセント
添加する。これは焼結性を向上せしめると共に、熱伝導
率の低下と電気伝導度の向上に有効であシ、添加量がi
l、1重量パーセント未満では効果が小さく、10重社
パーセントを越える添加は焼結体の強度の低下が大きく
なシ適当でない。
In addition to the above-mentioned main component and second component, an oxide of the same metal element as the second component is further added at α1 to 10% by weight. This is effective in improving sinterability, reducing thermal conductivity and improving electrical conductivity, and the amount added is i.
If the amount is less than 1% by weight, the effect will be small, and if it is added more than 10% by weight, the strength of the sintered body will be greatly reduced and is not suitable.

前述した如きZr0−粉末、特に好ましくは安定剤を適
量含むZrO2粉末と、添加する第2成分及び第2成分
と同一金属元素の酸化物の粉末を通常の方法で混合した
後、型押焼結(ホットプレス)、熱間静水圧プレス、不
活性ガス雰囲気焼結、真空焼結等により焼結し緻密な焼
結体とする。
After mixing the Zr0-powder as described above, particularly preferably the ZrO2 powder containing an appropriate amount of a stabilizer, the second component to be added and the powder of an oxide of the same metal element as the second component in a conventional manner, the mixture is subjected to embossing sintering. (hot press), hot isostatic press, inert gas atmosphere sintering, vacuum sintering, etc. to form a dense sintered body.

さらに、以上により得られた本発明の焼結体の特性は熱
伝導率が5w/mK’c以下、電気伝導率が10ηi以
上である。■aSVa、 Ma族元素の炭化物、窒化物
、炭窒化物等の第2成分の含有量により熱伝導率及び電
気伝導率が大きく変化するが、10ないし40体積パー
セントの含有量で上記の特性値を得る。また結晶粒度、
焼結体密度による影響も大きく、結晶粒度は平均粒度で
2μ以下、焼結体密度は相対比90パ一セント以上とす
る必要がある。
Further, the characteristics of the sintered body of the present invention obtained as described above are that the thermal conductivity is 5 w/mK'c or less, and the electrical conductivity is 10 ηi or more. ■Thermal conductivity and electrical conductivity vary greatly depending on the content of second components such as carbides, nitrides, and carbonitrides of aSVa and Ma group elements, but the above characteristic values are achieved at a content of 10 to 40 volume percent. get. Also, grain size,
The influence of the sintered body density is also large, and the average grain size must be 2 μ or less, and the sintered body density must be 90% or more in relative ratio.

これらの要件を満足することによって、断熱性に秀れ導
電性のある高強度セラミックスが得られるのである。な
お、前述のように酸化ジルコニウム粉末としては、共沈
法による微細均一粉末等が好ましい。まだ炭化物、窒化
物等の粉末は十分に粉砕した平均粒径2μ以下のものを
用いることが好ましい。
By satisfying these requirements, high-strength ceramics with excellent heat insulation and conductivity can be obtained. As mentioned above, the zirconium oxide powder is preferably a fine uniform powder produced by a coprecipitation method. It is preferable to use powders of carbides, nitrides, etc. that have been thoroughly ground and have an average particle size of 2 μm or less.

〔実施例〕〔Example〕

実施例1 表1に示す組成で配合した粉末を2 t/cJの圧力で
静水圧プレスし、温度1500℃で2時間真空中で焼結
した。炭化物、窒化物粉末には、あらかじめ該炭化物・
窒化物と同−金属元素の酸化物粉末を2.0重量パーセ
ント添加しておいた。
Example 1 Powder blended with the composition shown in Table 1 was hydrostatically pressed at a pressure of 2 t/cJ and sintered in vacuum at a temperature of 1500° C. for 2 hours. Carbide and nitride powders are pre-treated with carbides and nitrides.
An oxide powder of the same metal element as the nitride was added in an amount of 2.0% by weight.

得られた各焼結体からS wi X A m X 4 
G ymのサイズに切り出した各片について、密度、3
点曲げ強度、熱伝導率、電気伝導率及び粒径の測定を行
った。以上の結果も表1にまとめて示す。
From each sintered body obtained, S wi X A m X 4
For each piece cut out to the size of G ym, the density is 3
Point bending strength, thermal conductivity, electrical conductivity and particle size were measured. The above results are also summarized in Table 1.

表1の結果からS1〜6,9.11及び12の本発明の
焼結体は、断熱性に優れ電気伝導性を有する高強度材料
であることが明らかである。
From the results in Table 1, it is clear that the sintered bodies of the present invention of S1-6, 9.11, and 12 are high-strength materials with excellent heat insulation properties and electrical conductivity.

実施例2 表2に示す組成で配合した粉末を用いて実施例1と同様
の条件にて焼結体を得、同様に各特性値を測定した。得
られた結果も表2にまとめて示す。
Example 2 A sintered body was obtained under the same conditions as in Example 1 using powder blended with the composition shown in Table 2, and each characteristic value was measured in the same manner. The obtained results are also summarized in Table 2.

表2の結果を見れば、第2成分子ieに同一金属元素の
酸化物TiO2をα1ないし100重量%添加すること
の効果が明らかに理解できる。
Looking at the results in Table 2, the effect of adding α1 to 100% by weight of the oxide TiO2 of the same metal element to the second component ie can be clearly understood.

〔発明の効果〕〔Effect of the invention〕

本発明のセラミック焼結体は、耐熱性で低熱伝導率すな
わち断熱性に優れ、電気伝導性を有し、さらに高強度を
も備えた新規な材料である。
The ceramic sintered body of the present invention is a novel material that is heat resistant, has low thermal conductivity, that is, excellent heat insulation, has electrical conductivity, and also has high strength.

本発明のセラミック焼結体は上記の緒特性を要求される
材料として、例えば高温で使用される電極材料等として
用いて強度にも優れているため非常に有利である。
The ceramic sintered body of the present invention is very advantageous because it can be used as a material that requires the above-mentioned properties, such as an electrode material used at high temperatures, and has excellent strength.

Claims (3)

【特許請求の範囲】[Claims] (1)ZrO_2を主成分とし、第2成分として周期律
表IVa、Va、VIa族元素の炭化物、窒化物、炭窒化物
の1種または2種以上を10〜40体積パーセントと、
第2成分の金属元素と同一元素の酸化物を第2成分のそ
れぞれ0.1ないし10.0重量パーセントを含有し、
熱伝導率が5W/mK℃以下、電気伝導率が10^1■
/cm以上、平均粒度が2μ以下、相対密度が90%以
上であるセラミック焼結体。
(1) ZrO_2 as the main component, and 10 to 40 volume percent of one or more carbides, nitrides, and carbonitrides of group IVa, Va, and VIa elements of the periodic table as the second component;
Containing an oxide of the same element as the metal element of the second component in an amount of 0.1 to 10.0 weight percent of the second component,
Thermal conductivity is 5W/mK°C or less, electrical conductivity is 10^1■
/cm or more, an average particle size of 2μ or less, and a relative density of 90% or more.
(2)ZrO_2がIIIa族元素の酸化物、CaOまた
はMgOから選ばれた安定化剤を含む特許請求の範囲第
(1)項に記載されるセラミック焼結体。
(2) The ceramic sintered body according to claim (1), wherein ZrO_2 contains a stabilizer selected from oxides of group IIIa elements, CaO, or MgO.
(3)安定化剤としてY_2O_3を2〜5モルパーセ
ント含有することを特徴とする特許請求の範囲第(1)
項又は第(2)項に記載されるセラミック焼結体。
(3) Claim (1) characterized in that it contains 2 to 5 mol percent of Y_2O_3 as a stabilizer.
The ceramic sintered body described in item or item (2).
JP60279162A 1985-12-13 1985-12-13 Ceramic sintered body Granted JPS62138359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279162A JPS62138359A (en) 1985-12-13 1985-12-13 Ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279162A JPS62138359A (en) 1985-12-13 1985-12-13 Ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS62138359A true JPS62138359A (en) 1987-06-22
JPH0348153B2 JPH0348153B2 (en) 1991-07-23

Family

ID=17607311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279162A Granted JPS62138359A (en) 1985-12-13 1985-12-13 Ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS62138359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373848A2 (en) * 1988-12-13 1990-06-20 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JP2001233671A (en) * 2000-02-23 2001-08-28 Toshiba Corp Zirconium oxide sintered compact and ball bearing and bearing member using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body
JPS59217671A (en) * 1983-05-26 1984-12-07 日本特殊陶業株式会社 Heat insulating mechanism using pratially stabilized zirconia sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120571A (en) * 1982-01-09 1983-07-18 日本特殊陶業株式会社 High-tenacity ceramic sintered body
JPS59217671A (en) * 1983-05-26 1984-12-07 日本特殊陶業株式会社 Heat insulating mechanism using pratially stabilized zirconia sintered body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0373848A2 (en) * 1988-12-13 1990-06-20 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
US5068072A (en) * 1988-12-13 1991-11-26 Sumitomo Chemical Company, Limited Electrically conductive zirconia-based sintered body and process for the production thereof
EP0373848B1 (en) * 1988-12-13 1993-01-13 Sumitomo Chemical Company Limited Electrically conductive zirconia-based sintered body and process for the production thereof
JP2001233671A (en) * 2000-02-23 2001-08-28 Toshiba Corp Zirconium oxide sintered compact and ball bearing and bearing member using the same

Also Published As

Publication number Publication date
JPH0348153B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
Goldstein et al. Boron carbide–zirconium boride in situ composites by the reactive pressureless sintering of boron carbide–zirconia mixtures
JPS5924751B2 (en) Sintered shaped body
KR20170061755A (en) Alumina complex ceramics composition and manufacturing method thereof
US4506026A (en) Low firing ceramic dielectric for temperature compensating capacitors
JPS59182276A (en) Silicon nitride sintered body
JP3034132B2 (en) Zirconia solid electrolyte
JPS6126564A (en) Manufacture of heat resistant abrasion resistant ceramic material
JPS62138359A (en) Ceramic sintered body
JPS6186466A (en) Spinel ceramics
Yuan et al. Effects of BiNbO 4 on the microstructure and dielectric properties of BaTiO 3-based ceramics
EP0128956A4 (en) Low firing ceramic dielectric for temperature compensating capacitors.
JPS59227771A (en) Highly electroconductive zirconia sintered body
JPH10226578A (en) Electrically conductive and oxidation resistant ceramic material sintered in liquid phase, its production and its use
Amutha et al. Pressureless sintering of mullite/Mo composites
Moya et al. Influence of additives on the microstructural development of mullite-ZrO2 and alumina-ZrO2
US5712211A (en) Electrical discharge machinable MG-PSZ/TIB2 ceramic composite
KR100246145B1 (en) Method of manufacturing a zirconia ceramics
JPS60195057A (en) Silicon carbide sintered body and manufacture
JPS6121979A (en) Zrb2 sintered body
JPH0692270B2 (en) Silicon nitride sintered body
Gall et al. Effect of Y 2 O 3-addition on the crystallographic and mechanical properties of the Ce-TZP/Al 2 O 3 composite
Muraoka et al. Electrical and mechanical properties of ZrO2 (2 mol% Y2O3) MoSi2 composites and their laminated materials
Kapuri et al. Sintering of mullite-based particulate composites containing ZrO 2
JPS6163568A (en) Zirconia porous sintered body and manufacture
JP2858811B2 (en) Ceramic composite sintered body and method of manufacturing the same