JPS62138312A - Preparation of powdery silicon nitride - Google Patents

Preparation of powdery silicon nitride

Info

Publication number
JPS62138312A
JPS62138312A JP27501585A JP27501585A JPS62138312A JP S62138312 A JPS62138312 A JP S62138312A JP 27501585 A JP27501585 A JP 27501585A JP 27501585 A JP27501585 A JP 27501585A JP S62138312 A JPS62138312 A JP S62138312A
Authority
JP
Japan
Prior art keywords
sio
powder
heating
silicon nitride
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27501585A
Other languages
Japanese (ja)
Inventor
Satoshi Hikichi
引地 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP27501585A priority Critical patent/JPS62138312A/en
Publication of JPS62138312A publication Critical patent/JPS62138312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain superfine particles of alpha-Si3N4 powder having high purity at high yield by heating powder mixture of SiO2 and C with reducing atmosphere at >=specified temp. to form SiO and then nitriding generated SiO. CONSTITUTION:SiO is formed by heating a powder mixture of SiO2 and C in reducing atmosphere at >=1,700 deg.C, and formed SiO is nitrided. Generation of the above described SiO is performed by replacing the atmosphere with CO after replacing the atmosphere with gaseous Ar.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本発明は窒化硅素の超微粒子粉末の製造方法に関するも
ので、特にα−8i 6N4超微粒子を高収率で高品位
のものを得ようとするものである。
Detailed Description of the Invention (1) Industrial Application Field The present invention relates to a method for producing ultrafine silicon nitride particles, and in particular, to obtain α-8i 6N4 ultrafine particles with high yield and high quality. That is.

(2)従来技術 S i 3N4は共有結合性が極めて強い化合物であり
(2) Prior Art S i 3N4 is a compound with extremely strong covalent bonding properties.

高い温度まで高い結合強度を保持し、しかも熱膨張係数
が小さく、耐食性に優れていることなどから、エンジン
部品などの高温構造部材として有望な材料の一つとされ
ている。このS i 3N4粉末をセラミックエンジン
て採用するためには、純度の高い原料を低価格に量産化
する必要がある。
It maintains high bonding strength even at high temperatures, has a small coefficient of thermal expansion, and has excellent corrosion resistance, making it a promising material for high-temperature structural members such as engine parts. In order to use this S i 3N4 powder in ceramic engines, it is necessary to mass-produce raw materials with high purity at low cost.

513N4の合成法には次ぎのような4種の方法が知ら
れている。
The following four methods are known for the synthesis of 513N4.

ωシリコン直接窒化法 3 S l +2N2→5i3N4 (2)シリカ還元法 3810 +6C+2N2 →S i 3N4+ 6CO ■気相反応法 3SxC1+4N’H3→S 13N4 + 12HC
L(4)熱分解法 3S i (h旧)2→S 13N4 +2洲。
ω Silicon direct nitriding method 3 S l +2N2→5i3N4 (2) Silica reduction method 3810 +6C+2N2 →S i 3N4+ 6CO ■Gas phase reaction method 3SxC1+4N'H3→S 13N4 + 12HC
L(4) Pyrolysis method 3S i (h old) 2→S 13N4 +2S.

(3)発明が解決しようとする問題点 このうち(1)の方法は粉砕時に不純物が混入し。(3) Problems that the invention attempts to solve Among these methods, method (1) introduces impurities during pulverization.

反応時間が長く、得られる粉末は粗くβ−813N4が
混入し易い。(2)の方法は発熱反応であるので反応操
作は簡単であるが、 SiCやSi2ON2が混入し易
い。
The reaction time is long, and the resulting powder is coarse and β-813N4 is easily mixed. Since method (2) is an exothermic reaction, the reaction operation is simple, but SiC and Si2ON2 are likely to be mixed in.

(3)の方法は純度の高いものが得られるがコスト高と
なる。(4)の方法は反応が不均一で低温処理が必要で
ありコスト高となる。
Method (3) can yield products with high purity, but is expensive. Method (4) causes non-uniform reaction and requires low temperature treatment, resulting in high cost.

上述のように夫々の方法に問題があり高純度で高α率の
Si、N4微粉末を高収率に得ることは困難であった。
As mentioned above, each method has problems, and it has been difficult to obtain Si and N4 fine powders of high purity and high alpha ratio in high yield.

本発明はこれらの問題を解決しようとするもので高純度
で超微粒子(数十X〜数百久の粒径)のα−813N4
粉末を高収率で安定に得ようとするものである。
The present invention aims to solve these problems by using α-813N4 of high purity and ultrafine particles (particle size of several tens of times to hundreds of years).
The aim is to stably obtain powder with high yield.

(4)問題点を解決するための手段 本発明は+ 8102粉末とC粉末を原料に用い、高周
波誘導加熱炉において1700℃以上に還元加熱するこ
とによってSiOのガスを発生させ、その後このSiO
を窒化させる−ものである。SiOの発生は雰囲気をA
rガスで置換した後COで置換して行う。
(4) Means for Solving the Problems The present invention uses +8102 powder and C powder as raw materials and generates SiO gas by heating reductively to 1700°C or higher in a high-frequency induction heating furnace, and then converts the SiO
It is something that nitrides. The generation of SiO is caused by changing the atmosphere to A.
This is done by replacing with r gas and then with CO.

(5)作用 本発明において窒化反応させるためにはN2ガスを含ま
せることが必要である。
(5) Function In the present invention, it is necessary to include N2 gas in order to carry out the nitriding reaction.

即ち、 SiO□の窒化反応は下記の如くである。That is, the nitriding reaction of SiO□ is as follows.

5in2+C−) SiO+ Co         
(1)S+02+CO−+SlO+CO□      
  (2)C+C02→2 Co          
  (3)′2S io + 3C+ 2N2→S i
 3N4+ 3CO(4)ここで(1)の反応、即ちS
iOの生成を促進させるためにはCOO20存在、及び
加熱温度の設定が重要である。高温下、低酸素分圧下で
の生成物としてはSiOと共にSiCを考慮する必要が
ある。SiOの発生は(1)式により表わされ、平衡条
件は但し、a8.O2・・・5IO2の活量Ps、。・
・・SjOの分圧 PCO・・・COの分圧 T  ・・・絶対温度 であり、一方S t O2からのSiC生成反応はSi
O2+3C−+SiC+2CO・・・(7)である。
5in2+C-) SiO+ Co
(1) S+02+CO-+SlO+CO□
(2) C+C02→2 Co
(3)'2S io + 3C+ 2N2→S i
3N4+ 3CO(4) where the reaction (1), i.e. S
In order to promote the production of iO, the presence of COO20 and the setting of the heating temperature are important. It is necessary to consider SiC as well as SiO as a product under high temperature and low oxygen partial pressure. The generation of SiO is expressed by equation (1), and the equilibrium conditions are a8. O2...5IO2 activity Ps.・
・・Partial pressure PCO of SjO ・Partial pressure T of CO ・・Absolute temperature, while the SiC production reaction from S t O2
O2+3C-+SiC+2CO (7).

(1)式と(7)式とが競合する条件下では、 SiO
とSiC間に次ぎのような関係が成立する。
Under conditions where equation (1) and equation (7) conflict, SiO
The following relationship holds between and SiC.

SiC+ Co = SiO+ 2C・・・(9)この
関、係を1650℃、1700℃、1750℃について
計算したものが第1図である。図において直線は(9)
式の条件下である。従って、この直線よシ上部の状態つ
まb Pcoの高い領域では生成したSiCがSiOと
して発生することを意味し、このように図の直線よシ上
のCO分圧を本発明では選定するものである。
SiC+ Co = SiO+ 2C (9) This relationship is calculated for 1650°C, 1700°C, and 1750°C in Figure 1. In the figure, the straight line is (9)
Under the conditions of Eq. Therefore, in the region above this straight line, where b Pco is high, the generated SiC is generated as SiO, and in this way, the CO partial pressure above the straight line in the figure is selected in the present invention. be.

つぎに、SiOの発生速度式は一次反応式で。Next, the generation rate equation for SiO is a first-order reaction equation.

S+02+C−+5lO(気体) + Co     
 ・・・(1)′但しJsi□ −SiO発生速度 (
mol/5ec)k・−SiC発生速度定数(mol/
crn−see)A・・・粉末とルツボとの接触面積(
crn2)で表わされ、 SiOの発生量はkの値で比
較すれば良いことが分る。    ′ 本発明者らが数多く実験した結果1sIO発生速度定数
にと保持温度Tem、p(℃)あるいはI/Tとの関係
を第3図のように得た。図においてTemp=1700
℃以下ではiogk=−5,5以下でゆるやかに左上に
傾いているが、1700℃以上になるとiogk=−5
,5を越えその傾きは急になる。このことは1700℃
を境界にして、即ち1700℃を越えることによりSi
Oの発生は急激であることを意味している。この結果、
 SiOの生成層を犬ならしめるため、加熱温度を本発
明では1700℃以上とするものである。
S+02+C-+5lO (gas) + Co
...(1)' However, Jsi□ -SiO generation rate (
mol/5ec) k・-SiC generation rate constant (mol/
crn-see) A...Contact area between powder and crucible (
crn2), and it can be seen that the amount of SiO generated can be compared by the value of k. ' As a result of numerous experiments conducted by the present inventors, the relationship between the 1sIO generation rate constant and the holding temperature Tem, p (° C.) or I/T was obtained as shown in FIG. In the figure, Temp=1700
Below ℃, iogk=-5. Below 5, it tilts gently to the upper left, but above 1700℃, iogk=-5.
, 5, the slope becomes steeper. This means 1700℃
, that is, by exceeding 1700°C
This means that the generation of O is rapid. As a result,
In the present invention, the heating temperature is set to 1700° C. or higher in order to form a uniform SiO generation layer.

(5)実施例 試料1として5i02 : C=1 : 3とした粉末
を100メツシユの篩通しをし、グラファイトるつぼに
0.25gr挿入した。
(5) As Example Sample 1, a powder containing 5i02:C=1:3 was passed through a 100 mesh sieve, and 0.25 gr was inserted into a graphite crucible.

また、この試料1の粉末にさらにSを重量比にして0.
4%を混合した試料2も別なルツボで同様に行った。
Furthermore, S was added to the powder of Sample 1 at a weight ratio of 0.
Sample 2 containing 4% was also prepared in a different crucible.

このルツボを高周波誘導加熱炉の炉内にセットし、 A
rガス(400CC/mi n )で十分に置換した後
、CO力゛ス(400cc/m i n )でさらに置
換し、1400℃まで加熱し、 coガスと共にN2ガ
ス(2500CC/min )と導入し、1750℃ま
で昇温した。
This crucible is set in a high frequency induction heating furnace, and A
After sufficiently replacing with r gas (400 cc/min), further replacing with CO gas (400 cc/min), heating to 1400°C, and introducing N2 gas (2500 cc/min) together with co gas. , the temperature was raised to 1750°C.

1750℃に昇温しで2〜4分位でSiO生成の白煙が
発生した。
White smoke due to SiO generation was generated in about 2 to 4 minutes after the temperature was raised to 1750°C.

(6)発明の効果 捕捉した粉末は、 SiC、Si2ON2の全く含まれ
ないα−8i3N4を純度98チ以上で数十乃至数百X
の粒子径の超微粒子が得られた。
(6) The powder that captures the effects of the invention is α-8i3N4 containing no SiC or Si2ON2, with a purity of 98% or more and tens to hundreds of times.
Ultrafine particles with a particle size of .

尚、第2図にこの時の加熱時間を515N4の生成量と
時間との関係を示し極めて短時間に生成していることが
分る。
Incidentally, FIG. 2 shows the relationship between the amount of 515N4 produced and the heating time at this time, and it can be seen that the 515N4 is produced in an extremely short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSiOの分圧とSiO2の活量との関係を示す
。第2図は実施例における1750℃(加熱時)での加
熱時間とSi3N4の発生量を示す図。第3図はSiO
発生速度定数にと保持温度の関係を示す。 P510(atm) 第1 図 時間(min)
FIG. 1 shows the relationship between the partial pressure of SiO and the activity of SiO2. FIG. 2 is a diagram showing the heating time at 1750° C. (during heating) and the amount of Si3N4 generated in the example. Figure 3 shows SiO
The relationship between the generation rate constant and the holding temperature is shown. P510 (atm) Figure 1 Time (min)

Claims (1)

【特許請求の範囲】[Claims] (1)SiO_2とCとの混合粉末を1700℃以上の
還元雰囲気で加熱してSiOを生成し、そのSiOを窒
化することを特徴とした窒化硅素微粉末の製造方法。
(1) A method for producing silicon nitride fine powder, characterized by heating a mixed powder of SiO_2 and C in a reducing atmosphere at 1700° C. or higher to generate SiO, and nitriding the SiO.
JP27501585A 1985-12-09 1985-12-09 Preparation of powdery silicon nitride Pending JPS62138312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27501585A JPS62138312A (en) 1985-12-09 1985-12-09 Preparation of powdery silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27501585A JPS62138312A (en) 1985-12-09 1985-12-09 Preparation of powdery silicon nitride

Publications (1)

Publication Number Publication Date
JPS62138312A true JPS62138312A (en) 1987-06-22

Family

ID=17549688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27501585A Pending JPS62138312A (en) 1985-12-09 1985-12-09 Preparation of powdery silicon nitride

Country Status (1)

Country Link
JP (1) JPS62138312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753114B1 (en) 2005-07-26 2007-08-29 한국원자력연구원 Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753114B1 (en) 2005-07-26 2007-08-29 한국원자력연구원 Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders

Similar Documents

Publication Publication Date Title
JPH0134925B2 (en)
US4781874A (en) Process for making silicon nitride articles
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPS62138312A (en) Preparation of powdery silicon nitride
JPS62162608A (en) Production of silicon nitride fine powder
JPS616109A (en) Manufacture of sic
JPS63151603A (en) Production of silicon nitride powder
JPS63147811A (en) Production of fine sic powder
JPS6259049B2 (en)
JPS60122706A (en) Manufacture of silicon nitride powder
JPS6183605A (en) Production of chromium nitride
JPH03193617A (en) Production of silicon carbide powder
JPS58176109A (en) Production of alpha-type silicon nitride
JP2633620B2 (en) Method for producing silicon carbide whiskers
Hanabusa et al. Production of Si3N4/Si3N4 and Si3N4/Al2O3 composites by CVD coating of fine particles with ultrafine powder
JPH01103913A (en) Method for synthesizing silicon carbide powder
JPS60200814A (en) Production of composite fine powder consisting of silicon nitride and silicon carbide
JPH0445443B2 (en)
JPH055799B2 (en)
JPH01278406A (en) Production of acicular silicon nitride
JPH01239100A (en) Production of single crystal whisker
JPH0454609B2 (en)
JPS61232213A (en) Production of silicon carbide
JPS6350307A (en) Production of fine silicon nitride powder