JPS62138244A - Antistatic laminated material - Google Patents

Antistatic laminated material

Info

Publication number
JPS62138244A
JPS62138244A JP27683585A JP27683585A JPS62138244A JP S62138244 A JPS62138244 A JP S62138244A JP 27683585 A JP27683585 A JP 27683585A JP 27683585 A JP27683585 A JP 27683585A JP S62138244 A JPS62138244 A JP S62138244A
Authority
JP
Japan
Prior art keywords
antistatic
parts
plasticizer
laminate
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27683585A
Other languages
Japanese (ja)
Inventor
片川 芳郎
守 伊藤
裕之 田島
澤近 康昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP27683585A priority Critical patent/JPS62138244A/en
Publication of JPS62138244A publication Critical patent/JPS62138244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透明で真空成形、圧空成形の可能な−帯電防
止性能及びその耐久性に優れた帯電防止性のプラスチッ
ク積層材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an antistatic plastic laminate that is transparent, vacuum-formable, and pressure-formable and has excellent antistatic performance and durability.

〔従来の技術〕[Conventional technology]

現在電子機器部品や光学機器部品の収納、運搬、保管等
にプラスチック製のトレー、その他の容器が多く用いら
れている。これらプラスチック製の容器はそのままでは
静電気を帯び易く、一方上記部品は静電気による破壊を
受は易く、静電気によるゴミの付着を極端に嫌う物品で
ある。
Currently, plastic trays and other containers are often used for storing, transporting, storing, etc. electronic device parts and optical device parts. These plastic containers are easily charged with static electricity as they are, and on the other hand, the above-mentioned parts are easily damaged by static electricity, and are objects that extremely dislike the attachment of dust due to static electricity.

そのために、プラスチック製のトレーその他の容器を帯
電防止処理する提案が多くなされ、例えば、表面を界面
活性剤等の帯電防止剤で後処理したり、プラスチックシ
ートに導電性物質の粉末を混入する等の方法が採られて
いる。
To this end, many proposals have been made to antistatically treat plastic trays and other containers, such as post-treating the surface with antistatic agents such as surfactants, or mixing conductive material powder into plastic sheets. method has been adopted.

前者の表面後処理法では、被覆された界面活性剤は、長
期間の使用中に揮散したりg擦等により脱離し易く、又
、帯電防止塗料等を塗工する方法は、容器の表面に凹凸
のある場合は、均一な塗工が困難であり、かつ、塗工に
より製品のコス]−高を招く欠点がある。
In the former surface post-treatment method, the coated surfactant easily evaporates during long-term use or comes off due to g-rubbing, etc., and the method of applying antistatic paint, etc. If there are irregularities, it is difficult to apply uniformly, and the coating also increases the cost of the product.

又、後者の方法では、界面活性剤やカーボンブラック等
の導電性微粉末等を混練して導電性シートとするもので
あるため、表面後処理法のような脱離し易いと云う欠点
はないが、界面活性剤の混練では、そのブリードにより
帯電防止能を発揮するものであるため、一般に帯電防止
性能は余り良好ではなく、後者の導電性粉末の混練法で
は、帯電防止性能は良いが、シートの成形性が悪く、が
っ、シートが黒色等不透明となり、特にカーボンブラッ
クの場合は色落ちがあるため、収納部品の汚れ、作業者
、作業台の汚れ等にもつながり、好ましくない。
In addition, in the latter method, conductive fine powder such as surfactant and carbon black is kneaded to form a conductive sheet, so it does not have the disadvantage of being easily desorbed as in the surface post-treatment method. In the kneading of surfactants, antistatic performance is generally not very good because the antistatic performance is exhibited by bleeding, and the latter method of kneading conductive powder has good antistatic performance, but The moldability of the material is poor, and the sheet becomes black or other opaque, and especially in the case of carbon black, the color bleeds, which is undesirable because it can stain the stored parts, the operator, and the workbench.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記欠点のない、帯電防止性能が大き
く、その耐久性が大で、かつ、透明な容器を、真空成形
、圧空成形により容易に製造できる、プラス千ツク素材
としての帯電防止性積層材を提供することである。
The object of the present invention is to provide an antistatic material as a plastic material that does not have the above-mentioned drawbacks, has high antistatic performance, is highly durable, and can easily produce transparent containers by vacuum forming or pressure forming. The purpose of the present invention is to provide a flexible laminated material.

〔問題点を解決するための手段〕[Means for solving problems]

即ち、本発明は、エチレン性不飽和基を有するイオン電
解性モノマーの1種以上とエチレン性不飽和基を有する
重合性モノマーの1種以上とを必須の繰り返し単位とす
る共重合体と可塑剤とからなる導電性透明高分子膜を形
成し得る帯電防止組成物を、プラスチックシートに塗工
してなる真空成形、圧空成形の可能な帯電防止性積層材
に関するものである。
That is, the present invention provides a copolymer containing as essential repeating units one or more ionically electrolytic monomers having an ethylenically unsaturated group and one or more polymerizable monomers having an ethylenically unsaturated group, and a plasticizer. The present invention relates to an antistatic laminate material that can be vacuum-formed or pressure-formed, and is formed by coating a plastic sheet with an antistatic composition capable of forming a conductive transparent polymer film consisting of the following.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の積層材の基層をなすプラスチックシートのプラ
スチックとしては、透明で真空成形、圧空成形の可能な
ものは何れも好ましく用い得るが、例えば、硬質ポリ塩
化ビニル、ポリプロピレン、ポリスチレン、ポリカーボ
ネート等を挙げることができる。
As the plastic of the plastic sheet forming the base layer of the laminate material of the present invention, any transparent material that can be vacuum-formed or pressure-formed can be preferably used, and examples thereof include hard polyvinyl chloride, polypropylene, polystyrene, polycarbonate, etc. be able to.

プラスチックシートの厚みは、特に限定されず目的に応
じて適宜選択される。一般的なもので良く、通常は0.
2〜1.0mm程度である。
The thickness of the plastic sheet is not particularly limited and is appropriately selected depending on the purpose. It can be any general value, usually 0.
It is about 2 to 1.0 mm.

本発明の積層材の帯電防止被覆層となる帯電防止性組成
物は、エチレン性不飽和基を有するイオン電解性モノマ
ーの1種以上とエチレン性不飽和基を有する重合性モノ
マーの1種以上とを必須の繰り返し単位とする共重合体
と可塑剤とからなり、透明な導電性高分子皮膜を形成す
るものである。
The antistatic composition that becomes the antistatic coating layer of the laminate of the present invention comprises one or more ionic electrolytic monomers having an ethylenically unsaturated group and one or more polymerizable monomers having an ethylenically unsaturated group. It is composed of a copolymer containing 100% as an essential repeating unit and a plasticizer, and forms a transparent conductive polymer film.

本組成物におけるイオン電解性モノマーと重合性モノマ
ーの比率は、10 : 90〜50 : 50の範囲が
好ましい。イオン電解性モノマーが10重量%以下では
、導電性が悪<、50重量%以上では膜が脆(なり好ま
しくない。
The ratio of the ion electrolytic monomer to the polymerizable monomer in this composition is preferably in the range of 10:90 to 50:50. If the content of the ion electrolytic monomer is less than 10% by weight, the conductivity is poor, and if it is more than 50% by weight, the film becomes brittle (unpreferably).

本発明で云うイオン電解性モノマーとしては、第四級ア
ンモニウム基合有七ツマーの塩、スルホニウム基含有モ
ノマーの塩、ホスホニウム基含有モノマーの塩等が挙げ
られ、中でも第四級アンモニウム基含有上ツマーの塩、
例えば、メタクリロイルオキシエチルトリメチルアンモ
ニウムクロライド、2−ヒドロキシ−3−メタクリロイ
ルオキシプロピルトリメチルアンモニウムクロライド等
が好適に用いられる。
The ion electrolytic monomer referred to in the present invention includes salts of quaternary ammonium group-containing monomers, salts of sulfonium group-containing monomers, salts of phosphonium group-containing monomers, and among others, quaternary ammonium group-containing monomers. salt,
For example, methacryloyloxyethyltrimethylammonium chloride, 2-hydroxy-3-methacryloyloxypropyltrimethylammonium chloride, etc. are preferably used.

重合性モノマーとしては、酢酸ビニル、スチレン、アク
リル酸アルキル、メタクリル酸アルキル、アクリロニト
リル、N−メチロール或いはアルコキシメチル(メタ)
アクリルアミド、(メタ)アクリル酸、2−ヒドロキシ
エチル(メタ)アクリレート、2−ヒドロキシプロピル
アクリレート、ジメチルアミノ−2−ヒドロキシプロピ
ル(メタ)アクリレート、グリシジル(メタ)アクリレ
ート、(メタ)アクリルアミド等を挙げることができる
Polymerizable monomers include vinyl acetate, styrene, alkyl acrylate, alkyl methacrylate, acrylonitrile, N-methylol or alkoxymethyl (meth)
Examples include acrylamide, (meth)acrylic acid, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl acrylate, dimethylamino-2-hydroxypropyl (meth)acrylate, glycidyl (meth)acrylate, (meth)acrylamide, etc. can.

上記のイオン電解性モノマー及び重合性モノマーは、そ
れぞれ1種を用いても良く、又2種以上を用いても良い
。又、これらのモノマー以外に第三の共重合可能なモノ
マーを併用しても良い。これらのモノマーとしては、例
えば、ジメタクリル酸エチレングリコールなどのエチレ
ン性不飽和基を2(IN以上有する七ツマ−が挙げられ
る。
The above-mentioned ion electrolytic monomers and polymerizable monomers may be used alone or in combination of two or more. Further, in addition to these monomers, a third copolymerizable monomer may be used in combination. Examples of these monomers include heptamers having 2 (IN or more) ethylenically unsaturated groups, such as ethylene glycol dimethacrylate.

これらモノマー混合物の共重合反応の重合開始剤として
は、ベンゾイルパーオキサイド、アブビスイソブチロニ
トリル等の通常のラジカル触媒などを使用することがで
きる。共重合体の製造は乳化重合、溶液重合の何れでも
良い。
As a polymerization initiator for the copolymerization reaction of these monomer mixtures, common radical catalysts such as benzoyl peroxide and abbisisobutyronitrile can be used. The copolymer may be produced by either emulsion polymerization or solution polymerization.

この組成物は、有機溶媒による溶液、又は水性エマルジ
ョンとして塗工され得るが、塗工作業性の点からは、前
者の溶液型塗工液が好ましい。
This composition can be applied as a solution using an organic solvent or as an aqueous emulsion, but the former solution-type coating liquid is preferred from the viewpoint of coating workability.

本発明の積層材は、真空成形、圧空成形等が容易にでき
なければ、その利用価値は半減するから、成形性が良好
なことが必須の要件であるが、塗工組成物が、可塑剤を
必須成分として含むのは、このためである。勿論可塑剤
を含有せしめなくても、共電゛合体自体に成形性を上げ
るだめの内部可塑化成分を多量に含有させることもでき
るが、共重合体自体で成形性を上げると、共重合体に粘
着性が出てくるため、塗工積層材がブロッキングを起こ
し易くなる場合があるため好ましくなく、可塑剤による
外部可塑化で成形性を付与する方が好ましい。
If the laminated material of the present invention cannot be easily subjected to vacuum forming, pressure forming, etc., its utility value will be halved, so good formability is an essential requirement. This is why it contains as an essential ingredient. Of course, even if a plasticizer is not included, the co-electropolymer itself can contain a large amount of internal plasticizing component to improve the moldability, but if the copolymer itself improves the moldability, This is not preferable because the coated laminate may become prone to blocking due to the appearance of tackiness, and it is preferable to impart moldability by external plasticization with a plasticizer.

可塑剤としては、透明性を損なわないものであれば、す
べて使用できるが、例えば、ジブチルフタレートやジオ
クチルフタレートの如きフタル酸誘導体が挙げられる。
Any plasticizer can be used as long as it does not impair transparency, and examples thereof include phthalic acid derivatives such as dibutyl phthalate and dioctyl phthalate.

可塑剤の組成物中の含有量は、組成物の共重合体の七ツ
マー成分組成により異なるが、共重合体固形分の20重
量%以下が好ましく、特に移行し易い可塑剤の場合には
、そのブリードが多いため10重量%以下が好ましい。
The content of the plasticizer in the composition varies depending on the composition of the 7-mer component of the copolymer of the composition, but is preferably 20% by weight or less of the solid content of the copolymer, and particularly in the case of a plasticizer that easily migrates, Since there is a large amount of bleeding, the content is preferably 10% by weight or less.

組成物中への可塑剤の添加は、重合前に行っても良く、
重合途中や、重合後に行っても良い。
The plasticizer may be added to the composition before polymerization,
It may be carried out during the polymerization or after the polymerization.

帯電防止性組成物のプラスチックシートへの塗工は、バ
ーコード、ロールコート、カーテンコート、グラビア印
刷等あらゆる塗工法が採用でき、又その塗工もプラスチ
ックシートの片面に塗工しても、両面に塗工してもよい
。その場合、プラスチックシートに予め物理的或いは化
学的処理を行って、帯電防止性組成物の塗工性、密着性
を改良したものを用いても良く、帯電防止組成物の塗工
膜の性能を損なわない範囲で膜上にオーバーコートして
も良い。
Various coating methods such as barcode, roll coating, curtain coating, and gravure printing can be used to apply the antistatic composition to the plastic sheet. It may be coated on. In that case, the plastic sheet may be subjected to physical or chemical treatment in advance to improve the coating properties and adhesion of the antistatic composition, thereby improving the performance of the coating film of the antistatic composition. The film may be overcoated as long as it does not damage the film.

〔発明の効果〕〔Effect of the invention〕

本発明の積層材は、帯電防止性能とその耐久性に優れ、
透明で、しかも真空成形、圧空成形等の成形性にすぐれ
ているプラスチック積層材である。
The laminate material of the present invention has excellent antistatic performance and durability,
It is a plastic laminate material that is transparent and has excellent formability in vacuum forming, pressure forming, etc.

〔実施例〕〔Example〕

次に本発明の実施例と比較例を示す。例中、部及び%は
重量表示である。
Next, examples of the present invention and comparative examples will be shown. In the examples, parts and percentages are by weight.

実施例1 還流冷却器、温度計、攪拌機、窒素導入管を備えた重合
槽に、メチルセロソルブ405部 、メタノール194
部、メタクリロイルオキシエチルトリメチルアンモニウ
ムクライト80部、スチレン60部、メチルメタクリレ
ート30部、ブチルアクリレート20部、アクリル酸1
0部、ベンゾイルパーオキサイド1部を配合し、窒素を
導入しながら、攪拌、加熱し、80℃で5時間重合反応
を行った。得られた帯電防止組成物溶液の固形分濃度は
25%、粘度は150 cps /25℃であった。こ
の溶液に可塑剤ジオクチルフタレートを8部添加し、可
塑剤含有の帯電防止組成物を得た。
Example 1 405 parts of methyl cellosolve and 194 parts of methanol were placed in a polymerization tank equipped with a reflux condenser, a thermometer, a stirrer, and a nitrogen introduction tube.
parts, 80 parts of methacryloyloxyethyltrimethylammonium chloride, 60 parts of styrene, 30 parts of methyl methacrylate, 20 parts of butyl acrylate, 1 part of acrylic acid
0 parts of benzoyl peroxide and 1 part of benzoyl peroxide were mixed, stirred and heated while introducing nitrogen, and a polymerization reaction was carried out at 80° C. for 5 hours. The obtained antistatic composition solution had a solid content concentration of 25% and a viscosity of 150 cps/25°C. 8 parts of a plasticizer dioctyl phthalate was added to this solution to obtain a plasticizer-containing antistatic composition.

この可塑剤含有の帯電防止組成物を0 、3mm厚みの
硬質ポリ塩化ビニルシートにバーコータでドライ膜が5
μmになるように塗工し、帯電防止性積層材を得た。こ
の積層材シートを真空成形機にセットし、遠赤外線ヒー
ターで22秒間加熱後真空成形を行い、成形品を得た。
A dry film of this plasticizer-containing antistatic composition was coated onto a 3 mm thick hard polyvinyl chloride sheet using a bar coater.
The antistatic laminated material was obtained by coating to a thickness of μm. This laminate sheet was set in a vacuum forming machine, heated for 22 seconds with a far-infrared heater, and then vacuum formed to obtain a molded product.

この成形前の積層材の外観及び表面抵抗値、成形品の外
観、表面抵抗値、静電圧減衰速度の測定結果を第1表に
示す。
Table 1 shows the measurement results of the appearance and surface resistance value of the laminate before molding, the appearance of the molded product, the surface resistance value, and the electrostatic voltage decay rate.

実施例2 実施例1と同様の重合槽に、メチルセロソルブ405部
 、メタノール194部、メタクリロイルオキシエチル
トリメチルアンモニウムクライト70部、メチルメタク
リレート70部、t−ブチルメタアクリレート40部、
ブチルアクリレート10部、アクリル酸10部、ジブチ
ルフタレート8部、ベンゾイルパーオキサイド1部を配
合し、実施例1と同様に重合反応を行った。
Example 2 In a polymerization tank similar to Example 1, 405 parts of methyl cellosolve, 194 parts of methanol, 70 parts of methacryloyloxyethyltrimethylammonium chloride, 70 parts of methyl methacrylate, 40 parts of t-butyl methacrylate,
10 parts of butyl acrylate, 10 parts of acrylic acid, 8 parts of dibutyl phthalate, and 1 part of benzoyl peroxide were blended, and a polymerization reaction was carried out in the same manner as in Example 1.

得られた可塑剤含有の帯電防止組成物溶液の固形分濃度
は25.7%、粘度は200 cps ’/25°Cで
あった。
The obtained plasticizer-containing antistatic composition solution had a solid content concentration of 25.7% and a viscosity of 200 cps'/25°C.

この可塑剤含有の帯電防止組成物を0.3 mm厚みの
硬質ポリ塩化ビニルシートにバーコータでドライ膜厚が
5μmとなるように塗工し、帯電防止性積層材を得た。
This plasticizer-containing antistatic composition was coated onto a 0.3 mm thick hard polyvinyl chloride sheet using a bar coater to give a dry film thickness of 5 μm to obtain an antistatic laminate.

この積層材シートを真空成形機にセットし、遠赤外線ヒ
ーターで25秒間加熱後真空成形を行い、成形品を得た
。この成形前の積層材の外観及び表面抵抗値、成形品の
外観、表面抵抗値、静電圧減衰速度の結果を第1表に示
す。
This laminate sheet was set in a vacuum forming machine, heated with a far infrared heater for 25 seconds, and then vacuum formed to obtain a molded product. Table 1 shows the results of the appearance and surface resistance value of the laminate before molding, the appearance of the molded product, the surface resistance value, and the electrostatic voltage decay rate.

比較例1 実施例1によって得られた帯電防止性組成物溶液を、可
塑剤の添加なしに0.3mm厚みの硬質ポリ塩化ビニル
シートにパーコータでドライ膜厚が5μmになるように
塗工し、帯電防止用積層材を得た。この積層材シートを
真空成形機にセットし、遠赤外線ヒーターで25秒間加
熱後真空成形を行い、成形品を得た。この成形前の積層
材の外観及び表面抵抗値、成形品の外観、表面抵抗値、
静電圧減衰速度の結果を第1表に示す。
Comparative Example 1 The antistatic composition solution obtained in Example 1 was applied to a 0.3 mm thick hard polyvinyl chloride sheet using a percoater without adding a plasticizer so that the dry film thickness was 5 μm. An antistatic laminate material was obtained. This laminate sheet was set in a vacuum forming machine, heated with a far infrared heater for 25 seconds, and then vacuum formed to obtain a molded product. The appearance and surface resistance value of the laminated material before molding, the appearance and surface resistance value of the molded product,
The results of the static voltage decay rate are shown in Table 1.

比較例2 実施例1と同様の重合槽に、メチルセロソルブ405部
 、メタノール194部、メタクリロイルオキシエチル
トリメチルアンモニウムクライト70部、メチルメタク
リレート60部、ブチルアクリレート60部、アクリル
MIO部、ベンゾイルパーオキサイド1部を配合し、実
施例1と同様に重合反応を行った・ 得られた帯電防止性組成物溶液の固形分濃度は25%、
粘度は160 cps /25℃であった。
Comparative Example 2 In a polymerization tank similar to Example 1, 405 parts of methyl cellosolve, 194 parts of methanol, 70 parts of methacryloyloxyethyltrimethylammonium chlorite, 60 parts of methyl methacrylate, 60 parts of butyl acrylate, parts of acrylic MIO, and 1 part of benzoyl peroxide were added. was blended and a polymerization reaction was carried out in the same manner as in Example 1. The solid content concentration of the obtained antistatic composition solution was 25%,
The viscosity was 160 cps/25°C.

この帯電防止性組成物を0.3 mm厚みの硬質ポリ塩
化ビニルシートにバーコータでドライ膜厚が5μmにな
るように塗工し、帯電防止性積層材を得た。この積層材
シートを真空成形機にセントし、遠赤外線ヒーターで2
3秒間加熱後真空成形を行い成形品を得た。この成形前
の積層材の外観及び表面抵抗値、成形品の外観、表面抵
抗値、静電圧減衰速度の結果を第1表に示す。
This antistatic composition was coated onto a 0.3 mm thick hard polyvinyl chloride sheet using a bar coater to give a dry film thickness of 5 μm to obtain an antistatic laminate. Place this laminated material sheet into a vacuum forming machine and heat it with a far infrared heater.
After heating for 3 seconds, vacuum forming was performed to obtain a molded product. Table 1 shows the results of the appearance and surface resistance value of the laminate before molding, the appearance of the molded product, the surface resistance value, and the electrostatic voltage decay rate.

なお、これらの実施例、比較例における塗膜の粘着性は
、比較例2の他は問題なかった。
The adhesiveness of the coating films in these Examples and Comparative Examples had no problem except in Comparative Example 2.

を用いて、5℃、50%RHで演11定した。The test was carried out at 5°C and 50% RH.

(2)外観は、○は良好、×は不良を示す。(2) Regarding the appearance, ◯ indicates good and × indicates poor appearance.

(3瀞電圧減衰速度は、5TATICDECAY ME
TER(ETS社話を用イテ、25”C115%RHテ
測定し、0%減減衰度(±5000V印加後OVに減衰
する週カで示した。
(3 voltage decay speed is 5TATICDECAY ME
TER was measured using a 25" C115% RH tester using an ETS newsletter, and expressed as the 0% attenuation rate (the week force required to attenuate to OV after applying ±5000V.

静電圧減衰速度は、FED、 TEST METHOD
 STD、 No。
The static voltage decay rate is FED, TEST METHOD
STD, No.

10IC−4046で規定された試験法に準拠して行っ
た。
The test was conducted in accordance with the test method specified in 10IC-4046.

MIL−B−81705B規格において、帯電防止性能
の基準を前記測定法で5000VがOvに減衰する時間
を2秒以下と規定している。
The MIL-B-81705B standard specifies that the standard for antistatic performance is 2 seconds or less for the time it takes for 5000V to decay to Ov using the above measurement method.

第1表に示した結果において、比較例2の成形品外観が
x印になっているのは、プラスチックシート上に形成し
た透明導電性高分子膜が真空成形時の伸びに追随できな
くて膜に亀裂が発生したものである。
In the results shown in Table 1, the appearance of the molded product of Comparative Example 2 is marked with an x because the transparent conductive polymer film formed on the plastic sheet cannot follow the elongation during vacuum forming. A crack has occurred in the.

第1表に示した結果より、本発明の帯電防止性積層材シ
ートを使用して成形したトレー等の容器は、外観、帯電
防止性共に優れていることが理解される。
From the results shown in Table 1, it is understood that containers such as trays formed using the antistatic laminate sheet of the present invention are excellent in both appearance and antistatic properties.

Claims (1)

【特許請求の範囲】[Claims] (1)エチレン性不飽和基を有するイオン電解性モノマ
ーの1種以上とエチレン性不飽和基を有する重合性モノ
マーの1種以上とを必須の繰り返し単位とする共重合体
と可塑剤とからなる導電性透明高分子膜を形成し得る帯
電防止組成物を、プラスチックシートに塗工してなる真
空成形、圧空成形の可能な帯電防止性積層材。
(1) Consisting of a copolymer whose essential repeating units are one or more ionic electrolytic monomers having an ethylenically unsaturated group and one or more polymerizable monomers having an ethylenically unsaturated group, and a plasticizer. An antistatic laminate material that can be vacuum-formed or pressure-formed by coating a plastic sheet with an antistatic composition capable of forming a conductive transparent polymer film.
JP27683585A 1985-12-11 1985-12-11 Antistatic laminated material Pending JPS62138244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27683585A JPS62138244A (en) 1985-12-11 1985-12-11 Antistatic laminated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27683585A JPS62138244A (en) 1985-12-11 1985-12-11 Antistatic laminated material

Publications (1)

Publication Number Publication Date
JPS62138244A true JPS62138244A (en) 1987-06-22

Family

ID=17575064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27683585A Pending JPS62138244A (en) 1985-12-11 1985-12-11 Antistatic laminated material

Country Status (1)

Country Link
JP (1) JPS62138244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131911A (en) * 2014-01-14 2015-07-23 信越ポリマー株式会社 Method for manufacturing antistatic sheet and method for manufacturing antistatic molded article
JP6019166B1 (en) * 2015-04-28 2016-11-02 信越ポリマー株式会社 Method for producing antistatic sheet and method for producing antistatic molded body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015131911A (en) * 2014-01-14 2015-07-23 信越ポリマー株式会社 Method for manufacturing antistatic sheet and method for manufacturing antistatic molded article
JP6019166B1 (en) * 2015-04-28 2016-11-02 信越ポリマー株式会社 Method for producing antistatic sheet and method for producing antistatic molded body
WO2016175100A1 (en) * 2015-04-28 2016-11-03 信越ポリマー株式会社 Process for producing antistatic sheet, and process for producing antistatic molded object

Similar Documents

Publication Publication Date Title
US20200207058A1 (en) Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, pressure-sensitive adhesive-layer-attached polarizing film, and image display device
JP3401682B2 (en) Protective film for polarizing plate
US4091165A (en) Surface processing copolymer for synthetic papers
JPS6128543A (en) Resin composition
JPS62138244A (en) Antistatic laminated material
JPH082979B2 (en) Polyester film and method for producing the same
JPH08157767A (en) Conductive coating composition
JP4352605B2 (en) Antistatic agent
JP3147385B2 (en) Antistatic acrylic resin composition
JP3306982B2 (en) Antifogging film and method for producing the same
JP3301493B2 (en) Laminated film
JPH07252456A (en) Antielectrostatic-induction adhesive primer
JP2541637B2 (en) Antistatic film
JPS614736A (en) Rendering resin molding antistatic
JP3272796B2 (en) Antistatic polyester film
JPS5839860B2 (en) Antistatic resin composition
JP3043836B2 (en) Method for producing non-metal ion type antistatic vinyl chloride sheet
JPS5989365A (en) Coating composition
JP3662204B2 (en) Sheet
JPS62146968A (en) Antistatic composition
JP3502477B2 (en) Easy adhesion white polyester film
JPH07228634A (en) Antistatic agent excellent in transparency and flexibility
JP3109008B2 (en) Composition for forming conductive coating
JPH04220469A (en) Conductive coating composition
JPH10130611A (en) Self-adhesive composition