JPS62138179A - Device for detecting material temperature in extrusion of food and method for controlling material temperature - Google Patents
Device for detecting material temperature in extrusion of food and method for controlling material temperatureInfo
- Publication number
- JPS62138179A JPS62138179A JP60280121A JP28012185A JPS62138179A JP S62138179 A JPS62138179 A JP S62138179A JP 60280121 A JP60280121 A JP 60280121A JP 28012185 A JP28012185 A JP 28012185A JP S62138179 A JPS62138179 A JP S62138179A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- food
- detection device
- sensor
- measuring body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Formation And Processing Of Food Products (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、各種食品材料を押出加工するに当って、加工
中の材料温度を測定するために、押出機側に組込まれる
検出装置および方法の改善に関する。Detailed Description of the Invention (Industrial Application Field) The present invention provides a detection device and method incorporated into an extruder to measure the temperature of the material during extrusion processing of various food materials. Regarding improvements.
(従来の技術)
各種食品を押出加工して所要の押出形状、内容を得るた
めの食品押出機として、一般的には第9図に例示するよ
うなスクリュシリンダ型式のものが用いられる。即ち同
図において、一端に食品材料の供給ホッパ(図示省略)
を具備したシリンダ1内にはスクリュ2が同心か・っ可
回動に設置され、シリンダ1の押出側前端にはアダプタ
3が接結され、更にアダプタ3の前端にダイプレート4
を介して成形ダイ5が同心に設jj7.されることによ
り、食品材料はスクリュ2により混線状に押出され、ア
ダプタ3により整流されつつ、成形ダイ5により、所要
断面形状に成形されつつ連続的に押出されることになる
。このさい図示のように必要部分にはそれぞれ加熱装置
9が温度調整用熱電対8とともに付設され、図示省略L
7であるが温度調節計を介し、所要の加熱および温度制
御が行なわれるのである。かかる食品材料の押出加工に
際し、加工される材料温度の検出、測定に当り、従来は
図示するように、シリンダ1の周側適所あるいはアダプ
タ3の周側適所に、材料流路内に貫通する測定用の孔を
穿設し、この孔に温度検出器6を嵌入挿設し、流動する
+A料を該検出器6の先端である測温ポイント7に接触
さセることによって、材料温度を測定しているのである
。(Prior Art) As a food extruder for extruding various foods to obtain a desired extruded shape and content, a screw cylinder type as illustrated in FIG. 9 is generally used. That is, in the same figure, there is a food material supply hopper (not shown) at one end.
A screw 2 is rotatably installed concentrically in the cylinder 1, and an adapter 3 is connected to the front end of the cylinder 1 on the extrusion side, and a die plate 4 is connected to the front end of the adapter 3.
The molding die 5 is set concentrically through jj7. As a result, the food material is extruded in a mixed line shape by the screw 2, rectified by the adapter 3, and continuously extruded by the forming die 5 while being formed into a desired cross-sectional shape. At this time, as shown in the figure, a heating device 9 is attached to each necessary part along with a thermocouple 8 for temperature adjustment.
However, the required heating and temperature control is performed via a temperature controller. To detect and measure the temperature of the processed material during extrusion processing of such food materials, conventionally, as shown in the figure, a measuring device is used that penetrates into the material flow path at a suitable position on the circumferential side of the cylinder 1 or on the circumferential side of the adapter 3. The temperature of the material is measured by drilling a hole, inserting a temperature sensor 6 into the hole, and bringing the flowing +A material into contact with the temperature measurement point 7 at the tip of the sensor 6. That's what I'm doing.
(発明が解決しようとする問題点)
従来の」−記した検出、測定技術においては、以下の諸
点において問題がある。第9図において、シリンダ1に
温度検出器6を設置するタイプでは、スクリュ2が内在
する関係で、検出器6における測温ポイント7は、シリ
ンダ内径面と同一面までしか出すことが出来ないので、
シリンダ壁面近くの材料温度しか測定することが出来な
い不利があり、正確な測定には程遠いことになる。また
アダプタ3に温度検出器6を設置するタイプのものでは
、図示のようにlの距離だけ、測温ポイント7を材料流
路内に突出させることができ、構造的はスクリュ2等の
構造物がないので、検出器6の取イ」部内径一杯まで夕
を長くすることも可能であるが、一般にこの種の温度検
出器6におりる測温ポイン1−7となる検出物の径は5
n程度の可成り太いものであり、かかる先端が材料流路
内に突出した際、第10図(1)で示すように、検出部
周辺に材料の滞留部aが生じ、更にはこれが進行して同
図(2)で示すように、検出端である測温ポイント7を
も覆うように固着した材料層a゛に発展し、実際に流動
している材料の温度測定は実質的に困難となるのである
。またこの従来手段では、流路断面における異なる多数
地点での測定も流しく、材料流路に与える悪影響も大き
いのである。これらの諸点を総合すれば、従来技術では
、その検出端が材料流路を囲む壁面に近いため、材料流
れが停滞し易くかつ金属壁自体の温度の彫金を受は易く
なり、実際に流動している材料自体の正確な温度の把握
や測定は実質的に不可能である。また検出端を壁面から
離して長(突出させれば、材料の流動抵抗によって強度
上の問題点が生じ、このため検出部をより太径にすると
、材料の円滑な流動に支障を来たし、流路抵抗の増大、
滞留の増加、流路の乱れが不可避的に発生し、検出精度
、応答性が低下する等の不都合が生じる。また以十の点
から、同時に流路内の複数箇所の材料温度を測定するこ
とは更に困難化して、必要なデータの採取が不足する。(Problems to be Solved by the Invention) The conventional detection and measurement techniques described above have problems in the following points. In Fig. 9, in the type in which the temperature detector 6 is installed in the cylinder 1, the temperature measurement point 7 of the detector 6 can only be brought out to the same plane as the inner diameter surface of the cylinder because the screw 2 is inside. ,
It has the disadvantage that it is only possible to measure the material temperature near the cylinder wall, which means that the measurement is far from accurate. In addition, in the case of the type in which the temperature sensor 6 is installed in the adapter 3, the temperature measurement point 7 can be made to protrude into the material flow path by a distance of l as shown in the figure, and the temperature measurement point 7 can be structurally connected to the structure such as the screw 2. Since there are no 5
When the tip protrudes into the material flow path, a material retention area a is created around the detection part, as shown in FIG. 10 (1), and this further progresses. As shown in Figure (2), the layer of material has developed into a solid layer a' that covers the temperature measurement point 7, which is the detection end, making it virtually difficult to actually measure the temperature of the flowing material. It will become. Furthermore, with this conventional means, it is difficult to perform measurements at multiple different points in the cross section of the flow path, which has a large negative effect on the material flow path. Taking these points together, in the conventional technology, since the detection end is close to the wall surrounding the material flow path, the material flow tends to stagnate and is easily affected by the temperature of the metal wall itself, making it difficult for the material to actually flow. It is virtually impossible to know or measure the exact temperature of the material itself. In addition, if the detection end is extended away from the wall surface (protruding), there will be problems with strength due to flow resistance of the material. Therefore, if the detection part is made larger in diameter, it will interfere with the smooth flow of the material and increase in road resistance,
Increased stagnation and turbulence in the flow path inevitably occur, resulting in inconveniences such as a decrease in detection accuracy and responsiveness. In addition, from the above points, it becomes even more difficult to simultaneously measure the material temperature at multiple locations within the flow path, resulting in a shortage of necessary data.
特にこの種の温度測定において、材料流路に直角な平面
上での各点における温度分布や、その ・経時変動(
押出方向における材料温度の変動)の有無の測定は、必
要不可欠であるが、これを満足させることが困難である
。In particular, in this type of temperature measurement, the temperature distribution at each point on a plane perpendicular to the material flow path and its changes over time (
Although it is essential to measure the presence or absence of material temperature fluctuations in the extrusion direction, it is difficult to satisfy this requirement.
(問題点を解決するための手段)
本発明は、上記のような従来技術の問題点を解決し、材
料温度検出部における材料流動の停滞や、流動状態の乱
れ、更には金属壁面側温度の影響による測定精度の低下
等の不都合をな(し、かつ流動材料の温度分布と変動を
、流路直角断面および押出方向の経時変化についても、
精度良く測定可能としたもので、具体的には、食品押出
機におけるスクリュを具備するシリンダと成形ダイとの
連結部または成形ダイ内の材料通路の位置に設けられ、
かつ材料通路を具備する測定本体に、材料温度測定用の
細径棒状測温センサを、材料流動方向と平行かつ流動方
向と対向する方向に突出状に設けることにあり、更には
測定本体として多数の丸孔が材料通路として持つ多孔プ
レート、あるいは円環状外枠の内側に該外枠と複数箇所
で連結する任意個数の桁とから成るものを用いることに
あり、更には測定本体に個有の加熱、冷却装置を設け、
測定本体を独立して任意の、または測温センサによる測
定材料温度と同調する温度制御可能とすることにあり、
更には細径棒状測温センサを断熱性材料を介して測定本
体に固着し、また環状外枠と桁とから成る測定本体にお
ける環状外枠を、測温センサの測温ポイント位;nより
延長して外側に突出させることにある。(Means for Solving the Problems) The present invention solves the problems of the prior art as described above, such as stagnation of the material flow in the material temperature detection section, disturbance of the flow state, and furthermore, the problem of the metal wall side temperature. In addition, the temperature distribution and fluctuations of the fluid material, and changes over time in the cross section perpendicular to the flow path and in the extrusion direction, can be avoided.
It is capable of measuring with high accuracy, and specifically, it is installed at the connection part between the cylinder equipped with a screw and the molding die in a food extruder, or at the material passage within the molding die.
Moreover, a thin rod-shaped temperature sensor for measuring the material temperature is provided in the measuring body equipped with a material passage in a protruding manner in a direction parallel to and opposite to the flow direction of the material. The purpose of this method is to use a perforated plate whose round holes serve as material passages, or a device consisting of an arbitrary number of girders connected to the outer frame at multiple points inside an annular outer frame. Equipped with heating and cooling equipment,
The purpose of this is to enable temperature control of the measurement body independently or in synchronization with the temperature of the material being measured by the temperature sensor.
Furthermore, a thin rod-shaped temperature sensor is fixed to the measurement body via a heat insulating material, and the annular outer frame of the measurement body consisting of an annular outer frame and a girder is extended from the temperature measurement point of the temperature measurement sensor; n. The purpose is to make it protrude outward.
(作 用)
本発明の技術的手段によれば、第1図および第2図に示
すように、押出機におけるスクリ12を具備したシリン
ダ1の開目端にアダプタ3を取付けるとともに、該アダ
プタ3の前端にダイコネクタ10を取付け、前記アダプ
タ3とダイコネクタ10との間に、本発明に係る検出装
置17を挟持状に介設し、ダイコネクタ10の前端にダ
イプレー1−4を介し成形ダイ5を取付けるのである。(Function) According to the technical means of the present invention, as shown in FIGS. 1 and 2, the adapter 3 is attached to the open end of the cylinder 1 equipped with the screw 12 in an extruder, and A detection device 17 according to the present invention is sandwiched between the adapter 3 and the die connector 10, and a molding die is attached to the front end of the die connector 10 via the die plate 1-4. 5 is installed.
本発明においては、材料温度の検出装置17として、図
示のようにアダプタ3とダイコネクタ10とによって挟
持固定される測定本体18と、この測定本体18に保持
される細径棒状の測温センサ19とによって構成される
とともに、前記測温センサ19をシリンダ1側からスク
リュ2を介して押出されてくる材料流動方向と平行し、
かつ材料に対向する向きに、測定本体18から突出状に
設けるのであり、図例においては測定本体18として、
アダプタ3およびダイコネクタ10によって嵌合挟持さ
れる同心円環状の環状外枠20と、該外枠20の内周面
にその両端が一体化され、かつ押出機中心軸と直交して
縦断状とされた桁21による構造のものを用いることに
よって、第2図に示すように外枠20の内周面と桁21
の両側によって囲まれた材料通路22.22を形成し、
外枠20および桁21に亘って穿設した挿通孔に、例え
ば熱電対、ザーミスタ等を用いた細径棒状の測温センサ
19を挿通して埋込み状とし、必要位置から屈曲させて
センサ19を前記した方向、姿勢のもとに桁21から突
出させることにより、センサ19の一端は環状外枠20
の外周面から挿通孔外に出し、リード線23を介して例
えば図示外の温度指示計あるいは温度調節計等の所要の
計測、調節機器に連結することと相まって、以下の作用
を生じるのである。即ち押出機の稼動とともに、食品材
料はスクリ、12の回転による混練、押出を介して、シ
リンダ1の前端からアダプタ3における材料通路、環状
外枠20におりる材料通路、更にはダイコネクタ10に
十昌Jる材料通路を経由して、成形ダイ5により所要の
断面形状のもとに、連続的に押出加工される。検出装置
17におりる細径棒状の測温センサ19ば、図示のよう
にアダプタ3における材料通路内において、ダイ側に向
って流動する材料の流動方向と平行し、かつ流れに向っ
て対向する方向、姿勢のもとに突出されているので、そ
のセンサ19の先端の測温ポイン[6は、完全に材料内
にあって材料に接触しているので、確実に材料温度をキ
ャッチし、その測定を行なえるのである。本発明の検出
装置17によれば、装置自体を押出機側と独立と7たユ
ニッ1一体表し、これを押出機における材料流路内に直
接的に埋設ずろことによって、その測温を行なうセンシ
19を、材料流路内において材料流動方向と対向して平
行に配設することができ、このため材料流動抵抗を最少
とし、センサ19を細径棒状にでき、流路の停滞、抵抗
、更には流れの乱れ等を生じないのであり、その測温ポ
イント16を材料流れに正対して突出させることができ
ることと相まって、材料温度を直接感知し、測温応答性
、測定精度の向上が得られるのであり、同時に押出機に
おける材料の押出を全く阻害しないことになる。更にま
た装置17を、測定本体18と測温センサ19とによっ
て構成するため、測温センサ19を確実かつ強固に保持
できるとともに、測定本体18に材料通路22を形成す
ることにより、−貫した材料流動を阻害しないのであり
、特に図例で示すように複数個の測温センサ19を用い
ることができるのである。例えば1本のセンサ19は押
出中心上に位置させ、他の1本はアダプタ3の壁面に近
い方に配置し、残る1本のセンサ19は前記両者の中間
地点に配置する等を始めとして、流動材料の流路におけ
る直角な平面上での各点の温度分布の状態や、その経時
変動の状態等の測定内容が自由にかつ任意に設計でき、
これによってより豊富で正確な温度データを容易乙こ得
られることになり、又独立したユニット体であるために
、この検出装置17(、こ押出機側と独1′1: i、
た加熱、冷却装置をイζJ与し7、より好ましくは押出
機側とは断熱状態に取付けて装置全体に任意のあるいは
測定目的に対応した独自の温度制御を施す、二とができ
、これによって、より正Mrな温度測定内容を得ること
ができるのであり、押出機内部で実際に流動し7でいる
材料自体の正確な温度の検出と測定が容易c9二可能と
なるのである。In the present invention, the material temperature detection device 17 includes a measurement body 18 which is clamped and fixed by the adapter 3 and the die connector 10 as shown in the figure, and a thin rod-shaped temperature sensor 19 held by the measurement body 18. and the temperature sensor 19 is parallel to the flow direction of the material extruded from the cylinder 1 side via the screw 2,
In addition, it is provided in a protruding manner from the measuring body 18 in a direction facing the material, and in the illustrated example, as the measuring body 18,
A concentric annular outer frame 20 is fitted and held by the adapter 3 and the die connector 10, and both ends thereof are integrated with the inner peripheral surface of the outer frame 20, and the outer frame 20 has a vertical cross section perpendicular to the central axis of the extruder. By using the structure with the girder 21, as shown in FIG.
forming a material passageway 22.22 surrounded by both sides of the
A thin rod-shaped temperature sensor 19 using, for example, a thermocouple or a thermistor is inserted into the insertion hole drilled across the outer frame 20 and the girder 21 to embed it, and the sensor 19 is bent from the required position. By protruding from the girder 21 in the direction and attitude described above, one end of the sensor 19 is connected to the annular outer frame 20.
In combination with the fact that it is brought out of the insertion hole from the outer circumferential surface and connected to a required measuring and regulating device such as a temperature indicator or a temperature controller (not shown) via the lead wire 23, the following effects occur. That is, as the extruder operates, the food material is transferred from the front end of the cylinder 1 to the material passage in the adapter 3, to the annular outer frame 20, and further to the die connector 10 through kneading and extrusion by the rotation of the screw 12. The material is continuously extruded into a desired cross-sectional shape by a forming die 5 through a material passageway. The temperature sensor 19 in the shape of a thin rod included in the detection device 17 is parallel to the flow direction of the material flowing toward the die side in the material passage of the adapter 3 as shown in the figure, and is opposed to the flow direction. The temperature measurement point [6] at the tip of the sensor 19 is completely inside the material and in contact with the material, so it can reliably capture the material temperature and measure its temperature. Measurements can be made. According to the detection device 17 of the present invention, the device itself is integrated with the extruder side and an independent unit, and the sensor measures the temperature by directly embedding this unit in the material flow path of the extruder. 19 can be disposed in parallel to the material flow direction in the material flow path, thereby minimizing material flow resistance and making the sensor 19 have a small diameter rod shape, reducing stagnation, resistance, and does not cause flow turbulence, and combined with the fact that the temperature measurement point 16 can be projected directly opposite the material flow, the material temperature can be directly sensed, improving temperature measurement response and measurement accuracy. At the same time, the extrusion of the material in the extruder is not inhibited at all. Furthermore, since the device 17 is composed of the measurement body 18 and the temperature sensor 19, the temperature measurement sensor 19 can be held securely and firmly, and by forming the material passage 22 in the measurement body 18, it is possible to This does not impede the flow, and in particular, a plurality of temperature sensors 19 can be used as shown in the example. For example, one sensor 19 is placed above the extrusion center, another one is placed closer to the wall surface of the adapter 3, and the remaining sensor 19 is placed at an intermediate point between the two. Measurement contents such as the state of temperature distribution at each point on a perpendicular plane in the flow path of a fluid material and the state of its change over time can be freely and arbitrarily designed.
This makes it easier to obtain more abundant and accurate temperature data, and since it is an independent unit, this detection device 17 (extruder side and German 1'1: i,
It is possible to provide a heating and cooling device 7, more preferably insulated from the extruder side, and to perform independent temperature control on the entire device according to the desired or measurement purpose. Therefore, it is possible to obtain more accurate temperature measurement contents, and it becomes possible to easily detect and measure the accurate temperature of the material itself that is actually flowing inside the extruder.
(実施例)
本発明に係る検出装置i:17の適切l(各実施例を、
第1図以下において逐次説示する。(Example) Detection device i according to the present invention: Appropriate l of 17 (Each example is
This will be explained sequentially in FIG. 1 and below.
第1図および第2図に示した実施例シ1゛、測定本体1
8と測温センサ19とから成る検出装置17にオフいて
、前記測定本体18を環状外枠20と桁21とによる構
造のものを用いた実施例であって、スクリ−12を具倫
したシリンダ1の開111i:I i>iiiに固定さ
れるアダプタ3に、ダイコネクタ10を例えばボルト締
結手段等で取(=jけるとともに、アダプタ3およびダ
イコネクタ10の対向面に設げた環状切欠3a、10a
によって、検出装置17の測定本体18としての環状外
枠20が嵌合状に挟持されて組込まれる。環状外枠20
はアダプタ3、ダイコネクタ10と同心の円環状であり
、その内周面は前記両者3,10の内面と同一面とされ
、この環状外枠20の中心を通り、かっ押出機軸心と直
交する桁21が、その両端が外枠20と一体化されて形
成される。このさい開拓21の断面形状は第1図のA−
A線断面図で明らかなように、例えば涙滴状の流路形断
面形状とされて、材料流動抵抗の低下、更には材料の滞
留防止を行なうようにされる。また環状外枠20の外周
面から桁21のシリンダ1側に向う面に亘って、略I、
形の挿通孔lhが図例では3個穿設され、これら各種通
孔18aには、例えば熱電対、ザーリスタ等による細径
棒状の測温センサ19がそれぞれ埋入状に種皮されると
ともに、一端は外枠20の外周面外に突出され、他端は
桁21のシリンダ1側に向う面から、材料の流動方向と
慣行し、かつ流れに対向する向きに突出されるのである
。図例では3個のセンサ゛19の例を示したが、この測
温センサ19の数や配置(17置はもとより自由に属す
る。これらセンサ15の前記一端にはり−ド線23が付
設されて、図示外の温度測定計または温度調節計測に連
結される。従ってこの実施例では、環状外枠20の内周
面と桁21との間に形成される空間が材料通路22.2
2とされる。ダイコネクタ10にはダイプレー1・4を
介し成形ダイ5が付設される。Embodiment 1 shown in FIGS. 1 and 2, measurement body 1
8 and a temperature measuring sensor 19, the measuring body 18 is constructed of an annular outer frame 20 and a girder 21, and is a cylinder incorporating a screen 12. Opening 111i of 1: The die connector 10 is attached to the adapter 3 fixed with Ii>iii using, for example, bolt fastening means (=j), and the annular notch 3a provided on the opposing surfaces of the adapter 3 and the die connector 10, 10a
As a result, the annular outer frame 20 as the measuring body 18 of the detection device 17 is fitted and assembled. Annular outer frame 20
is an annular shape concentric with the adapter 3 and the die connector 10, and its inner circumferential surface is flush with the inner surface of both the above-mentioned 3 and 10, passing through the center of this annular outer frame 20, and perpendicular to the axis of the extruder. The girder 21 is formed such that both ends thereof are integrated with the outer frame 20. At this time, the cross-sectional shape of the reclamation 21 is A-
As is clear from the cross-sectional view taken along line A, the cross-sectional shape of the channel is, for example, teardrop-shaped, to reduce material flow resistance and further prevent material from stagnation. Further, from the outer peripheral surface of the annular outer frame 20 to the surface of the girder 21 facing the cylinder 1 side, approximately I,
In the illustrated example, three shaped insertion holes lh are drilled, and in each of these various holes 18a, a small diameter rod-shaped temperature sensor 19 such as a thermocouple or ZARISTA is embedded in a seed coat, and one end is inserted. protrudes outside the outer circumferential surface of the outer frame 20, and the other end protrudes from the surface of the girder 21 facing the cylinder 1 side in a direction that corresponds to the flow direction of the material and is opposed to the flow. In the illustrated example, three sensors 19 are shown, but the number and arrangement of the temperature sensors 19 (in addition to 17 locations) are freely determined. It is connected to a temperature measuring meter or a temperature regulating meter (not shown).Therefore, in this embodiment, the space formed between the inner circumferential surface of the annular outer frame 20 and the girder 21 is the material passage 22.
2. A molding die 5 is attached to the die connector 10 via die plates 1 and 4.
第3図に示した実施例は、検出装置17における測定本
体18として、多孔プレート11を用いたものであって
、第1.2図実施例と同一符号は何れも同一部材を示し
ており、アダプタ3とダイコネクタ10の環状切欠3a
、10aに、多孔ブレーl−11の外周部分を嵌合挟持
し、プレート11の全面に多数列設した丸孔11aは、
何れも材料流動方向と平行に明けられることによって、
この丸孔11aを材料通路とするのである。このさい多
孔プレート1]乙こおける中心を通り、かつ押出中心吉
直交する中央の所定幅部分は前記丸孔11aを形成しな
い無孔部分とし、第4図に示す第3図のA−Δ断面で明
らかなように、この無孔部分に、先に第1.2図実施例
で示したと同様に挿通孔18aを設けて、各測温センサ
19を埋設し、かつセンサ19の他端をプレート−面か
ら、材料流動方向と平行しかつ対向する向きに突出させ
るのであり、その他は第1.2図実施例と全く同様構造
であって差支えない。この実施例においても、測温セン
サ19の数や測定位置については自由に設計可能である
。この構造によれば、測温センサ19の保持がより強固
に行なえ、また測定本体18としてもより強固なものと
することができる。The embodiment shown in FIG. 3 uses a porous plate 11 as the measurement body 18 in the detection device 17, and the same reference numerals as in the embodiment in FIG. 1.2 indicate the same members. Annular notch 3a of adapter 3 and die connector 10
, 10a, a plurality of round holes 11a are arranged in rows on the entire surface of the plate 11, and the outer peripheral portion of the porous brake l-11 is fitted and held therein.
By opening parallel to the material flow direction,
This round hole 11a is used as a material passage. At this time, a predetermined width part at the center passing through the center of the perforated plate 1] and perpendicular to the extrusion center is a non-porous part where the round hole 11a is not formed, and the A-Δ cross section of FIG. 3 shown in FIG. As is clear from the above, an insertion hole 18a is provided in this non-porous portion in the same manner as shown in the embodiment shown in FIG. - It is made to protrude from the surface in a direction parallel to and opposite to the material flow direction, and other than that, the structure may be exactly the same as that of the embodiment shown in FIG. 1.2. Also in this embodiment, the number and measurement positions of temperature sensors 19 can be freely designed. According to this structure, the temperature measurement sensor 19 can be held more firmly, and the measurement body 18 can also be made stronger.
第5図に示した実施例は、検出装置17が独立したユニ
ット構造であることを利用し、装置17に対して押出機
側と独立した単独の温度制御が可能であるようにしたも
ので、この図例では第1図実施例の環状外枠20と桁2
1とによる測定本体18を用いる検出装置に対して実施
したものを示しているが、図示のように環状外枠20を
アダプタ3およびダイコネクタ10と同等外径の大きさ
のものとし、両者3.10と並んで露出する環状外枠2
0の外周面一トに加熱、冷却装置I4を周回状に付設し
、環状外枠20と両者3,10の各接合面間に断熱÷A
12を介設L7て、押出機側と断熱し、環状外枠20に
装置17のための温度検出用熱電対13を挿設し、リー
ド線23を介して図示外の温度調節計と連結し、これに
よって検出装置17自体の温度を、独自に制御自在とす
るのである。これによれば検出装置17を任意の温度に
制御し、材料温度を可及的正確に測定することが出来る
とともに、また桁21側の測温センサ19によって実際
に測定した材料温度をフィードバックし、検出装置17
自体の温度を、実質的に材料温度と同等の温度に保持さ
せることにより、更に正確な材料温度の測定も可能であ
る。この温度制御手段は第1〜3図実施例に対しても同
様に用いられる。The embodiment shown in FIG. 5 utilizes the fact that the detection device 17 has an independent unit structure, so that the temperature of the device 17 can be controlled independently from the extruder side. In this example, the annular outer frame 20 and girder 2 of the embodiment in FIG.
1, the annular outer frame 20 has the same outer diameter as the adapter 3 and the die connector 10, and both Annular outer frame 2 exposed alongside .10
A heating/cooling device I4 is attached to the outer peripheral surface of the frame 20 in a circular manner, and heat insulation ÷A is provided between the annular outer frame 20 and each joint surface of both the frames 3 and 10.
12 is installed L7 to insulate it from the extruder side, a temperature detection thermocouple 13 for the device 17 is inserted into the annular outer frame 20, and connected to a temperature controller (not shown) via a lead wire 23. This allows the temperature of the detection device 17 itself to be independently controlled. According to this, it is possible to control the detection device 17 to an arbitrary temperature and measure the material temperature as accurately as possible, and also feed back the material temperature actually measured by the temperature sensor 19 on the girder 21 side. Detection device 17
By maintaining the temperature of the material at substantially the same temperature as the material temperature, it is also possible to measure the material temperature more accurately. This temperature control means is similarly used in the embodiments of FIGS. 1-3.
第6図に示した実施例は、検出装置17における測定本
体18に測温センサ19を取付けるに当っての構造実施
例であって、図示のように多孔プレート11を測定本体
18として用いる場合を例示しているが、多孔プレー)
11における測温センサ19の埋設部分において、断熱
性+A料15を介して、または同材料15によって測温
センサ19を包み込んだ構造によって測温センサ19と
測定本体18とを一体化させることにより、検出装置1
7自体の温度影響を少なくして、より正確な材料温度の
測定が行なえるようにすることもでき、この構造は第1
〜5図実施例の環状外枠20と桁21とによる測定本体
18に対しても、全く同様に適用できることば勿論であ
る。The embodiment shown in FIG. 6 is a structural example for attaching the temperature sensor 19 to the measurement body 18 of the detection device 17, and includes a case where the porous plate 11 is used as the measurement body 18 as shown in the figure. This example shows a porous play)
By integrating the temperature sensor 19 and the measurement body 18 through the heat-insulating +A material 15 or through a structure in which the temperature sensor 19 is wrapped in the same material 15, in the embedded part of the temperature sensor 19 in the temperature sensor 11, Detection device 1
It is also possible to reduce the temperature influence of 7 itself to enable more accurate material temperature measurement, and this structure
Of course, the same can be applied to the measuring body 18 made up of the annular outer frame 20 and the girder 21 in the embodiment shown in FIGS.
第7図に示した実施例は、先に第5図実施例で説示した
検出装置17自体を独立して任意の、あるいは特定の温
度制御可能とした型式のものおいて特に有効であるが、
測定本体18における環状外枠20を、図示のように測
温センサ19の測温ポイント16の位置より!1くβ2
のように、外方へ延長させて、測温センサ19を外枠2
0内に抱え込むようにしたものであり、これによれば材
料温度測定に当っての安定性と正確性が向上し、且つ測
温センサ19の保護にも役立つことになるのであり、こ
れは第3図実施例における多孔プレート11の場合にも
同様に適用できる。The embodiment shown in FIG. 7 is particularly effective in the type of detecting device 17 described in the embodiment in FIG.
The annular outer frame 20 of the measurement main body 18 is placed from the temperature measurement point 16 of the temperature measurement sensor 19 as shown in the figure! 1kuβ2
As shown in the figure, extend the temperature sensor 19 outward and attach it to the outer frame 2.
This improves the stability and accuracy of material temperature measurement, and also helps protect the temperature sensor 19. The same can be applied to the case of the perforated plate 11 in the embodiment shown in FIG.
第8図に示した実施例は、先に第1図実施例その他にお
いて示した環状外枠2oと桁21とによる測定本体18
の変形例を示したもので、桁21を同図向って左側の十
字形、また同図向って右側のY形のように、放射状の指
形状とすることも出来るのであり、これによれば測温セ
ンサ19の配置位置の自由な選択と増加がきわめて容易
に得られるのである。The embodiment shown in FIG. 8 is a measuring body 18 made up of the annular outer frame 2o and the girder 21 shown in the embodiment of FIG.
This shows a modified example of the girder 21, which can also be shaped into a radial finger shape, such as the cross shape on the left side of the figure, or the Y shape on the right side of the figure. This makes it very easy to freely select and increase the location of the temperature sensor 19.
以上の各実施例は、本発明の用途として食品材料の押出
加工を主体に、押出機と成形ダイとの間または成形ダイ
内の任意位置における使用について述べているが、本発
明の趣旨、効果を逸脱しない範囲で食品以外の材料、ま
たば押出機と成形ダイ以外の加工装置にも応用できるこ
とは勿論である。Each of the above embodiments mainly describes the use of the present invention in extrusion processing of food materials, and the use at any position between an extruder and a molding die or within a molding die, but the purpose and effects of the present invention are It goes without saying that the invention can also be applied to materials other than foods, and to processing equipment other than extruders and molding dies, without departing from the above.
(発明の効果)
本発明の検出装置17によれば、測温センサ19による
材料温度検出部が、(A料流動方向に対向かつ平行に設
置されることにより、材料流動抵抗はきわめて小さく、
センサ19を細径棒状のものとすることができ、流路に
おける材料の滞留、抵抗、乱れ等を生起することなく、
測温応答性の速やかさ、測定精度の向上において優れ、
更にそのセンサ19の測温ポイント16が材料流れに対
向して突出しているので、材料温度は直接かつ確実に感
知されるので、応答性、精度の何れもが確実に高くなる
のである。また測定本体18においても、環状外枠と桁
乃至多孔プレートのように、材料通路を確保してその流
動を低下させることがなく、測温のために円滑な押出機
能を阻害しない点においても優れ、更に検出装置17を
独立したユニット体として材料流路内に組込むため、装
置17自体を独立して温度制御し、装置自体の温度によ
る測温センサ19の検出温度への影響を極力小さくする
ように、装置17の温度を適切に制御できる点で優れ、
更にまた、検出した材料温度(多点測温の場合はその平
均的な代表材料温度を採る)を合致するように、材料実
測温度をフィードバックして、装置17自体の温度を制
御することにより、装置自体の温度を含む周囲の物体の
温度による影響を受けることなく、材料温度を正確に測
定出来る点においても優れ、また測温センサ部を断熱性
材料を介と2、測定本体18に固着することにより、装
置自体の温度と材料温度の差が大きい場合でも、その影
響を小さくすることが出来、より正確な温度検出が得ら
れるとともに、測定本体18番こおりるFil状外枠2
oを測温センサ19の測温ポイント16位置より延長し
7て被包することにより、保管および作業時の測温ポイ
ントの保護に役立つのみならず、測温センサ部分におけ
る材料流れを整流することもでき、例えばアダプタ形状
の制約も減少して使い易くなるのであり、更に単独温度
制御I′I■能方式のものにおいては、測定本体延長部
の壁面温度による+A料層温度よび測温サーミスタへの
影響を小さくすることができ、壁面を材料温度と等しく
フィードハックすることとによって、より一層正確な+
A料層温度測定が可能である点においても有利化され、
従来の不確実で安定性を欠く測温手段の問題点を解消で
きるのである。(Effects of the Invention) According to the detection device 17 of the present invention, the material temperature detection section using the temperature sensor 19 is installed opposite to and parallel to the flow direction of the material A, so that the material flow resistance is extremely small.
The sensor 19 can be made into a small diameter rod shape, without causing material retention, resistance, turbulence, etc. in the flow path.
Excellent in speed of temperature measurement response and improvement in measurement accuracy.
Furthermore, since the temperature measurement point 16 of the sensor 19 protrudes opposite the material flow, the material temperature can be sensed directly and reliably, and both responsiveness and accuracy are reliably increased. In addition, the measuring body 18 is also superior in that, unlike the annular outer frame and girder or porous plate, it does not secure a material passage and reduce its flow, and does not impede the smooth extrusion function for temperature measurement. Furthermore, since the detection device 17 is incorporated into the material flow path as an independent unit, the temperature of the device 17 itself is controlled independently to minimize the influence of the temperature of the device itself on the temperature detected by the temperature sensor 19. It is excellent in that the temperature of the device 17 can be controlled appropriately,
Furthermore, by controlling the temperature of the device 17 itself by feeding back the measured material temperature so as to match the detected material temperature (in the case of multi-point temperature measurement, the average representative material temperature is taken), It is also excellent in that it can accurately measure the temperature of the material without being affected by the temperature of surrounding objects, including the temperature of the device itself, and the temperature sensor part is fixed to the measurement body 18 through an insulating material. By doing so, even if there is a large difference between the temperature of the device itself and the temperature of the material, the influence can be reduced, more accurate temperature detection can be obtained, and the film-shaped outer frame 2
By extending 7 from the temperature measurement point 16 position of the temperature measurement sensor 19 and encasing it, it is not only useful to protect the temperature measurement point during storage and work, but also to rectify the flow of material at the temperature measurement sensor portion. For example, restrictions on the shape of the adapter are reduced, making it easier to use.Furthermore, in the case of the independent temperature control type, the +A material layer temperature and temperature measurement thermistor can be adjusted depending on the wall temperature of the extension of the measuring body. By making the wall surface equal to the material temperature, you can reduce the influence of
It is also advantageous in that it is possible to measure the temperature of the A material layer,
This solves the problems of conventional temperature measuring means, which are uncertain and lack stability.
第1図は本発明装置実施例のA−A断面を含む縦断正面
図、第2図は同装置要部の縦断側面図、第3図は同じく
本発明装置実施例の縦断正面図、第4図は同要部の縦断
側面図、第5図は温度制御付き本発明装置実施例の縦断
正面図、第6図は測温センサ取付部構造実施例のB−B
断面を含む縦断側面図、第7図は測定本体延長の本発明
装置実施例の要部縦断正面図、第8図は第1図装置実施
例の指度形構造実施例の縦断側面図、第9図は従来装置
を示す縦断正面図、第10図は第9図の要部拡大図であ
る。
1− シリンダ、2−スクリュ、3−アダプタ、4−ダ
イプレート、5−成形ダイ、10−ダイコネクタ、17
−検出装置、18−・−測定本体、19−測温センサ、
2〇−環状外枠、21−桁、11−・多孔プレート、】
2−断熱材、14−加熱、冷却装置、15−断熱性材料
。FIG. 1 is a longitudinal sectional front view including the A-A cross section of an embodiment of the device of the present invention, FIG. 2 is a longitudinal sectional side view of the main parts of the device, FIG. The figure is a longitudinal sectional side view of the same main part, Fig. 5 is a longitudinal sectional front view of an embodiment of the present invention device with temperature control, and Fig. 6 is a B-B of an embodiment of the structure of the temperature sensor mounting part.
7 is a longitudinal sectional front view of the main part of an embodiment of the device of the present invention with an extended measuring body; FIG. 8 is a longitudinal sectional side view of an embodiment of the index-shaped structure of the device embodiment of FIG. FIG. 9 is a longitudinal sectional front view showing a conventional device, and FIG. 10 is an enlarged view of the main part of FIG. 1- cylinder, 2- screw, 3- adapter, 4- die plate, 5- forming die, 10- die connector, 17
-detection device, 18-.-measurement body, 19-temperature sensor,
20-Annular outer frame, 21-Girder, 11-Porous plate,]
2-Insulating material, 14-Heating, cooling device, 15-Insulating material.
Claims (7)
と成形ダイとの連結部または成形ダイ内の材料通路の任
意位置に設けられ、かつ材料通路を具備する測定本体に
、材料温度測定用の細径棒状測温センサを、材料流動方
向と平行かつ流動方向と対向する方向に突出状に設ける
ことを特徴とする食品押出加工における材料温度検出装
置。(1) A small diameter for measuring the temperature of the material is provided in a measuring body equipped with a material passage, which is installed at an arbitrary position in the connecting part between a cylinder equipped with a screw and a molding die in a food extruder, or in a material passage in the molding die. A material temperature detection device for food extrusion processing, characterized in that a rod-shaped temperature sensor is provided in a protruding manner in a direction parallel to and opposite to the material flow direction.
における多数の丸孔が材料通路とされることを特徴とす
る特許請求の範囲第1項記載の食品押出加工における材
料温度検出装置。(2) The material temperature detection device for food extrusion processing according to claim 1, wherein a porous plate is used as the measuring body, and a large number of round holes in the plate are used as material passages.
数箇所で連結する任意個数の桁を有するものを用いるこ
とを特徴とする特許請求の範囲第1項記載の食品押出加
工における材料温度検出装置。(3) In the food extrusion process as set forth in claim 1, the measuring body is a body having an arbitrary number of digits connected to the annular outer frame at a plurality of locations inside the annular outer frame. Material temperature detection device.
体を独立して任意の温度制御を可能とすることを特徴と
する特許請求の範囲第1項記載の食品押出加工における
材料温度検出装置。(4) The temperature of the material in food extrusion processing according to claim 1, characterized in that the measuring body is provided with its own heating and cooling device to enable arbitrary temperature control of the measuring body independently. Detection device.
材料を介して測定本体に固着することを特徴とする特許
請求の範囲第1項乃至第4項記載の食品押出加工におけ
る材料温度検出装置。(5) A material for food extrusion processing according to claims 1 to 4, characterized in that a thin rod-shaped temperature sensor for measuring material temperature is fixed to the measuring body via a heat insulating material. Temperature detection device.
枠を、測温センサの測温ポイント位置より延長して外側
に突出させることを特徴とする特許請求の範囲第3項記
載の食品押出加工における材料温度検出装置。(6) The food according to claim 3, characterized in that the annular outer frame of the measuring body consisting of an annular outer frame and a girder is extended from the temperature measurement point position of the temperature measurement sensor and protrudes outward. Material temperature detection device for extrusion processing.
と成形ダイとの連結部または成形ダイ内の材料通路の任
意位置に設けられ、かつ材料通路を具備する測定本体に
、材料温度測定用の細径棒状測温センサを、材料流動方
向と平行かつ流動方向と対向する方向に突出状に設ける
ことを特徴とする食品押出加工における材料温度検出装
置において、 前記測温センサで測定した材料温度をフィードバックし
て前記測定本体の温度を実質的に材料温度と同じ温度に
同調制御することを特徴とする食品押出加工における材
料温度検出装置の制御方法。(7) A small diameter for measuring the temperature of the material is provided in the measuring body equipped with the material passage, which is installed at an arbitrary position in the connecting part between the cylinder equipped with the screw and the molding die in the food extruder, or in the material passage in the molding die. A material temperature detection device for food extrusion processing, characterized in that a rod-shaped temperature sensor is provided in a protruding manner in a direction parallel to and opposite to the flow direction of the material, which feeds back the material temperature measured by the temperature sensor. A method for controlling a material temperature detecting device in food extrusion processing, characterized in that the temperature of the measuring body is synchronously controlled to substantially the same temperature as the material temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280121A JPS62138179A (en) | 1985-12-11 | 1985-12-11 | Device for detecting material temperature in extrusion of food and method for controlling material temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280121A JPS62138179A (en) | 1985-12-11 | 1985-12-11 | Device for detecting material temperature in extrusion of food and method for controlling material temperature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62138179A true JPS62138179A (en) | 1987-06-20 |
Family
ID=17620625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60280121A Pending JPS62138179A (en) | 1985-12-11 | 1985-12-11 | Device for detecting material temperature in extrusion of food and method for controlling material temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62138179A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411516U (en) * | 1990-05-21 | 1992-01-30 |
-
1985
- 1985-12-11 JP JP60280121A patent/JPS62138179A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0411516U (en) * | 1990-05-21 | 1992-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10976204B2 (en) | Heat flux sensor with improved heat transfer | |
US6022210A (en) | Hot runner nozzle | |
EP0349317A2 (en) | Temperature measurement of flowing fluids | |
JPH03148026A (en) | Automatic calibration pair sensor non- contact temperature measuring method and apparatus | |
JPS61251707A (en) | Temperature compensation type ultrasonic wall thickness measurement method | |
JPS62138179A (en) | Device for detecting material temperature in extrusion of food and method for controlling material temperature | |
US3382714A (en) | Heat-sensing instrument | |
US3559486A (en) | Apparatus for measuring temperatures in highly viscous media | |
JPH04225126A (en) | Resin-temperature measuring apparatus | |
JPH07276377A (en) | Block for measuring temperature of heating cylinder | |
CN208921313U (en) | A kind of metal substrate temperature sensor | |
JPS6145462Y2 (en) | ||
CN207488852U (en) | A kind of gas constant temperature device and detecting system | |
JPS5810256Y2 (en) | Rubber and plastic extrusion coating equipment | |
KR100414038B1 (en) | Instrumentation rake measuring temperature and pressure | |
JPH0345158Y2 (en) | ||
JP3328408B2 (en) | Surface temperature measurement method | |
CN221677985U (en) | Extruder head and extruder comprising same | |
CN214188248U (en) | Temperature detection assembly and hot runner system | |
US3744315A (en) | Method and a device for determining the temperature at viscosity measurements | |
JPS57184510A (en) | Automatic measuring method of pressing center of extrusion press and its device | |
JPS59105520A (en) | Thermal type mass flowmeter | |
CN221675755U (en) | Crystallizer heat flow testing device and crystallizer with same | |
JPH0114928Y2 (en) | ||
JPH0275962A (en) | Method for detecting flowing of molten metal |