JPS62138059A - Dc intermediate circuit for voltage type static converter - Google Patents

Dc intermediate circuit for voltage type static converter

Info

Publication number
JPS62138059A
JPS62138059A JP27765585A JP27765585A JPS62138059A JP S62138059 A JPS62138059 A JP S62138059A JP 27765585 A JP27765585 A JP 27765585A JP 27765585 A JP27765585 A JP 27765585A JP S62138059 A JPS62138059 A JP S62138059A
Authority
JP
Japan
Prior art keywords
circuit
reactor
capacitor
intermediate capacitor
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27765585A
Other languages
Japanese (ja)
Inventor
Hideo Saotome
英夫 早乙女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27765585A priority Critical patent/JPS62138059A/en
Publication of JPS62138059A publication Critical patent/JPS62138059A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable return from the state of the short-circuit of an arm by fractionating a DC intermediate circuit by the ripple order width of output currents from the circuit and selecting a circuit constant so that output currents from a circuit outputting ripple currents having the high order are reduced. CONSTITUTION:A reactor 3 and a DC intermediate capacitor 20 are mounted to an intermediate circuit between a thyristor rectifier 2 and a GTO thyristor converter 5. A reactor 21 is connected in series with the DC intermediate capacitor 20, and a series circuit of a DC intermediate capacitor 23 having small capacity and the reactor 21 is connected in parallel with the series circuit. Diodes 19, 22 shorten the electrification time of the DC intermediate capacitors 20, 23. The series resonance frequency of the DC intermediate capacitor 23 and a reactor 24 is selected so as to reach a value higher than that of the DC intermediate capacitor 20 and the reactor 21, and the DC intermediate capacitor 23 and the reactor 24 are used s a small-current output circuit and higher- order ripple currents from the DC intermediate capacitor 20 are compensated.

Description

【発明の詳細な説明】 〔産業上の利用分更f〕 本発明は、GTO(ゲートターンオフ)サイリスク等の
自己消弧型半導素子によって構成される交流出力回路へ
の電流を直流中間コンデンサより供給する電圧形静止変
換器の直流中間回路に関する。
[Detailed Description of the Invention] [Industrial Application Modification] The present invention supplies current to an AC output circuit constituted by self-extinguishing semiconductor elements such as GTO (gate turn-off) silices from a DC intermediate capacitor. This invention relates to a DC intermediate circuit of a voltage source static converter to be supplied.

〔従来の技術とその問題点〕[Conventional technology and its problems]

例えば第5図に示すように交流電源1からの出力をサイ
リスク整流器2で整流して直流電力を電圧形GTOサイ
リスク変換器5に与え、ここで電力変換して交流負荷6
に交流電力を供給し、若しくは負荷6から回生ずる電力
を得る回路では、該サイリスク整流器2とGTOサイリ
スク変換器5との中間回路に、直流電力平滑のために用
いられる直流リアクトル3と直流中間コンデンサ4を設
けたものが知られている。
For example, as shown in FIG. 5, the output from an AC power supply 1 is rectified by a Cyrisk rectifier 2, and DC power is supplied to a voltage source GTO Cyrisk converter 5, where the power is converted and the AC load 6
In a circuit that supplies AC power to a load 6 or obtains regenerated power from a load 6, a DC reactor 3 and a DC intermediate capacitor used for DC power smoothing are installed in an intermediate circuit between the Cyrisk rectifier 2 and the GTO Cyrisk converter 5. 4 is known.

一方、第6図は前記電圧形GTOサイリスク変換器5の
一例を示すもので、ブリッジ接続されるGTOサイリス
ク7〜12にはそれぞれ還流用のダイオード13〜18
が逆方向に並列に接続される。
On the other hand, FIG. 6 shows an example of the voltage type GTO cyrisk converter 5, in which GTO cyrisks 7 to 12 connected in a bridge are connected to reflux diodes 13 to 18, respectively.
are connected in parallel in opposite directions.

ところで、第5図に示したような直流中間回路の構成で
は、コンデンサ4と電圧形GTOサイリスク変換器5と
を直接又は直接とみなせる程度の低インピーダンスを介
して接続しているため、例えば第6図のGTOサイリス
タ7の導通期間中にGT○サイリスタ8が誤点弧してし
まったようなアーム短絡時には、コンデンサ4から急し
ゅんでしかも大きなアーム短絡電流がGTOサイリスク
変換器5のGT○サイリスタ7および8へ流れてしまい
、これらの素子を過電流破壊してしまうという欠点があ
った。
By the way, in the configuration of the DC intermediate circuit as shown in FIG. In the event of an arm short-circuit, such as when the GT○ thyristor 8 is erroneously fired during the conduction period of the GTO thyristor 7 shown in the figure, a sudden and large arm short-circuit current flows from the capacitor 4 to the GT○ thyristor 7 of the GTO thyristor converter 5. and 8, resulting in damage to these elements due to overcurrent.

また、このアーム短絡電流は急しゅんであるので、たと
え制御系がこのアーム短絡を検知してGTOサイリスタ
7および8へ消弧指令を与えても、これらの素子のター
ンオフ時間後のアーム短絡電流値はこれらの素子の可制
御電流値を超えているため、このような方法によってア
ーム短絡状態から復帰することは不可能である。
Furthermore, since this arm short-circuit current is sudden, even if the control system detects this arm short-circuit and issues an extinguishing command to GTO thyristors 7 and 8, the arm short-circuit current value after the turn-off time of these elements exceeds the controllable current value of these elements, so it is impossible to recover from the arm short-circuit state by such a method.

さらに、第5図のコンデンサ4の電圧、すなわち直流中
間電圧が1500Vを超えるような高圧の場合には、G
TOサイリスクを過電流から保護できる高圧ヒユーズは
なく、電圧形GTOサイリスク変換器のアーム短絡時に
ヒユーズによって素子を保護することは不可能である。
Furthermore, if the voltage of capacitor 4 in Fig. 5, that is, the DC intermediate voltage, is high voltage exceeding 1500V, G
There is no high-voltage fuse that can protect the TO Sirisk from overcurrents, and it is impossible to protect the element with a fuse when the arm of a voltage-type GTO Sirisk converter is short-circuited.

従って、前記のごとく高圧の時にアーム短絡状態から素
子を破壊せずにtM帰できる確実な方法は知られていな
いのが現状である。
Therefore, at present, there is no known reliable method for returning to tM without destroying the element from the arm short-circuit state when the voltage is high as described above.

本発明の目的は前記従来例の不都合を解消し、GT○ザ
イリスタのごとき自己消弧型半導体素子によって構成さ
れる交流出力回路がアーム短絡した場合、この状態から
の復帰が可能となりヒユーズ以外の方法で素子を過電流
破壊から保護できる電圧形静止変換器の直流中間回路を
提供することにある。
The purpose of the present invention is to solve the above-mentioned disadvantages of the conventional example, and when an AC output circuit constituted by a self-extinguishing semiconductor element such as a GT○ Zyristor is short-circuited in an arm, it is possible to recover from this state by a method other than using a fuse. An object of the present invention is to provide a DC intermediate circuit for a voltage-type static converter that can protect elements from overcurrent damage.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は目的を達成するため、自己消弧型半導体素子に
より構成される交流出力回路の直流中間コンデンサによ
る中間回路を介して直流電力をイハ給する場合において
、該中間コンデンサに直列にリアクトルを接続し、さら
にこのコンデンサ、リアクトルの直列回路に該リアクト
ルによって妨げられた該直流中間コンデンサからの高次
リプル電流を補償する別の小容量な直流中間コンデンサ
とりアクドルまたは抵抗との直列回路を並列に接続する
ことを要旨とするものである。
In order to achieve the object of the present invention, when DC power is supplied through an intermediate circuit including a DC intermediate capacitor of an AC output circuit constituted by a self-extinguishing semiconductor element, a reactor is connected in series to the intermediate capacitor. In addition, this capacitor and the series circuit of the reactor are connected in parallel with another small-capacity DC intermediate capacitor and a series circuit with an accelerator or resistor to compensate for the high-order ripple current from the DC intermediate capacitor blocked by the reactor. The gist of this is to

〔作用〕[Effect]

本発明によれば、GTOサイリスタのような自己消弧型
半導体素子によって構成される交流出力回路がアーム短
絡した場合、このアーム短絡電流の上昇率を抑制し、交
流出力回路がアーム短絡したアーム短絡している相の該
自己消弧型半導体素子がアーム短絡を検知した制御系か
らの指令によって自己消弧するまでの時間内はアーム短
絡電流を該自己消弧型半導体素子のしゃ断電流(可制御
電流)値以下に抑制することによって、該交流出力回路
のアーム短絡状態からの復帰が可能となる。
According to the present invention, when an arm short-circuit occurs in an AC output circuit constituted by a self-extinguishing semiconductor element such as a GTO thyristor, the rate of increase of this arm short-circuit current is suppressed, and the AC output circuit During the time period until the self-extinguishing semiconductor element of the current phase self-extinguishes itself in response to a command from the control system that has detected the arm short circuit, the arm short-circuit current is used as the cut-off current (controllable) of the self-extinguishing semiconductor element. By suppressing the current to a value equal to or lower than the current value, it becomes possible to recover the AC output circuit from the arm short-circuit state.

〔実施例〕〔Example〕

以下、図面について本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の電圧形静止変換器の直流中間回路の第
一実施例を示す回路図で、前記第5図のような交流電源
1からの出力をサイリスク整流器2で整流して直流電力
を電圧形GT○サイリスク変換器5に与え、ここで電力
変換して交流負荷6に交流電力を供給し、若しくは負荷
6から回生ずる電力を得る回路で、サイリスタ整流器2
とGTOサイリスク変換器5の中間回路にリアクトル3
と直流中間コンデンサ20を設けるものにおいて、この
第1の直流中間コンデンサ20と直列にリアクトル21
を接続し、さらにこの第1の直列回路と並列に第2の小
容量な直流中間コンデンサ23とリアクトル24の第2
の直列回路を接続した。
FIG. 1 is a circuit diagram showing a first embodiment of a DC intermediate circuit of a voltage-type static converter according to the present invention, in which the output from an AC power supply 1 as shown in FIG. is applied to the voltage type GT○ thyristor converter 5, which converts the power and supplies AC power to the AC load 6, or obtains the power regenerated from the load 6.
and reactor 3 in the intermediate circuit of GTO Cyrisk converter 5.
and a DC intermediate capacitor 20, a reactor 21 is connected in series with this first DC intermediate capacitor 20.
A second small-capacity DC intermediate capacitor 23 and a second series circuit of the reactor 24 are connected in parallel with this first series circuit.
A series circuit is connected.

さらに、これらリアクトル21および24にはダイオー
ド19および22が直流中間コンデンサ20および23
の充電時間を短縮するためそれぞれ並列に接続されてい
る。
Furthermore, diodes 19 and 22 are connected to these reactors 21 and 24, and DC intermediate capacitors 20 and 23 are connected to the reactors 21 and 24.
are connected in parallel to reduce charging time.

ところで、直流中間コンデンサ23とリアクトル24の
直列共振周波数は第1の直列回路の直流中間コンデンサ
20とリアクトル21のそれより高い値となるように設
定され、しかも電圧形GTOサイリスク変換器5がアー
ム短絡し制御系がこれを検知して短絡した相のGTOサ
イリスクに消弧指令を与え、これらの素子が自己消弧す
る時点の直流中間コンデンサ20および23からの放電
電流と直流リアクトル3の電流の和がこのGTOサイリ
スタの可制御電流値以下となるように直流中間コンデン
サ20および23とリアクトル21および24の定数を
選定する。
By the way, the series resonance frequency of the DC intermediate capacitor 23 and the reactor 24 is set to be a higher value than that of the DC intermediate capacitor 20 and the reactor 21 in the first series circuit, and moreover, the voltage type GTO Sirisk converter 5 has an arm short circuit. The control system detects this and issues an arc extinguishing command to the GTO sirisk of the shorted phase, and calculates the sum of the discharge current from the DC intermediate capacitors 20 and 23 and the current of the DC reactor 3 at the time when these elements self-extinguish the arc. The constants of the DC intermediate capacitors 20 and 23 and the reactors 21 and 24 are selected so that the current value is equal to or less than the controllable current value of the GTO thyristor.

すなわち、直流中間コンデンサ23は直流中間コンデン
サ20より小さな値を選定し、リアクトル21および2
4は前記直列共振周波数および放電電流値の条件を満足
するような値に選定されている。
That is, the DC intermediate capacitor 23 is selected to have a smaller value than the DC intermediate capacitor 20, and the reactors 21 and 2
4 is selected to a value that satisfies the conditions of the series resonance frequency and discharge current value.

このようにして、第2の直列回路の小容量な直流中間コ
ンデンサ23とリアクトル24は、小電流出力回路とし
て第1の直列回路のりアクドル21によって妨げられた
該直流中間コンデンサ20からの高次リプル電流を補償
するものとなる。
In this way, the small capacitance DC intermediate capacitor 23 and reactor 24 of the second series circuit act as a small current output circuit to prevent high-order ripples from the DC intermediate capacitor 20 blocked by the first series circuit's axle 21. This will compensate for the current.

これにより、GTOサイリスタ変換器5のGTOサイリ
スク7〜12がアーム短絡した場合、電流の上昇率を抑
制し、制御系がアーム短絡を検知して短絡している相の
GTOサイリスクに消弧指令を与えた時、素子のターン
オフ時間後のアーム短絡電流値をGTOサイリスクの可
制御電流値以下とすることができる。
As a result, when the GTO thyristors 7 to 12 of the GTO thyristor converter 5 have an arm short circuit, the rate of increase in current is suppressed, and the control system detects the arm short circuit and issues an arc extinguishing command to the GTO thyrisk of the shorted phase. When given, the arm short-circuit current value after the turn-off time of the element can be made equal to or less than the controllable current value of the GTO Cyrisk.

第2図は第2実施例を示すもので、前記1実施例の第1
図のものと相違する点は、抵抗25をリアク1−ル24
に直列に接続した点である。これによりリアクトル24
、直流中間コンデンサ20および23による直流中間回
路内部での共振現象を抑制することができる。
FIG. 2 shows a second embodiment, and shows the first embodiment of the first embodiment.
The difference from the one shown is that the resistor 25 is replaced by the reactor 24.
This is the point connected in series with . As a result, reactor 24
, the resonance phenomenon inside the DC intermediate circuit caused by the DC intermediate capacitors 20 and 23 can be suppressed.

さらに、第3実施例として、第3図に示すように前記直
流中間回路内部の共振現象を防止するためにリアクトル
のかわりに抵抗26を直流中間コンデンサ23に直列に
接続してもよい。
Furthermore, as a third embodiment, a resistor 26 may be connected in series with the DC intermediate capacitor 23 instead of the reactor in order to prevent resonance within the DC intermediate circuit, as shown in FIG.

また、別の実施例として第4図に示すように、前記直流
中間コンデンサ23とリアクトル24、抵抗25の第2
の直流回路に、さらにコンデンサ28とりアクドル29
、抵抗30の第3の直列回路を並列接続した。この場合
、直流中間コンデンサ23は20により、また28は2
3よりそれぞれ小容量として直流中間回路の出力電流の
りプルの次数幅をより細分化し、コンデンサ容量の小さ
いもの、すなわち、より高次のりプル電流を出力する回
路程、その出力電流(放電電流)の大きさを小さくする
ように直流中間コンデンサ28と直列に接続されるリア
クトル29又は抵抗30を選定した。
Further, as another embodiment, as shown in FIG.
In addition to the DC circuit, there is a capacitor 28 and an accelerator 29.
, a third series circuit of resistors 30 was connected in parallel. In this case, the DC intermediate capacitor 23 is replaced by 20, and 28 is replaced by 2
3, the order width of the output current ripple of the DC intermediate circuit is divided into smaller capacitances, and the smaller the capacitor capacity, that is, the circuit that outputs a higher order ripple current, the smaller the output current (discharge current). The reactor 29 or resistor 30 connected in series with the DC intermediate capacitor 28 was selected to reduce its size.

これにより電圧形GTOサイリスク変換器5がアーム短
絡をした後に短絡した相のGTOサイリスクがしゃ断す
るアーム短絡電流値を前記第1〜第3実施例より小さく
することができる。
As a result, the arm short-circuit current value at which the GTO syrisk of the short-circuited phase is cut off after the voltage type GTO syrisk converter 5 short-circuits the arm can be made smaller than in the first to third embodiments.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の電圧形静止変換器の直流中間
回路は、直流中間回路をその出力電流のりプル次数幅に
よって細分化し、より次数の高いリプル電流を出力する
回路程、その出力電流の大きさを小さくするように回路
定数を選定したので、GTOサイリスクのような自己消
弧型半導体素子によって構成される交流出力回路がアー
ム短絡した場合、このアーム短絡電流の上昇率を抑制で
き、制御系がアーム短絡を検知して短絡している相の素
子に消弧指令を与えた時、素子のターンオフ時間後のア
ーム短絡電流値を素子の可制御電流値以下とすることが
できるので、この交流出力回路をアーム短絡状態から復
帰させることが可能となり、ヒユーズ以外の方法で素子
を過電流破壊から保護することができるものである。
As described above, in the DC intermediate circuit of the voltage source static converter of the present invention, the DC intermediate circuit is subdivided according to the ripple order width of its output current. Since the circuit constants are selected to reduce the size, when an arm short-circuit occurs in an AC output circuit composed of a self-extinguishing semiconductor device such as GTO Cyrisk, the rate of increase in arm short-circuit current can be suppressed, making it possible to control When the system detects an arm short circuit and issues an arc extinguishing command to the element of the shorted phase, the arm short circuit current value after the element turn-off time can be kept below the controllable current value of the element. It becomes possible to restore the AC output circuit from the arm short-circuit state, and it is possible to protect the device from overcurrent destruction by a method other than using a fuse.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の電圧形静止変換器の直流中間
回路の第1〜第4実施例を示す回路図、第5図は従来例
を示す回路図、第6図は電圧形GTOサイリスタ変換器
の一例を示す回路図である。 1・・・交流電源   2・・・サイリスタ整流器3・
・・直流リアクトル 4・・・直流中間コンデンサ 5・・・電圧形GTOサイリスタ変換器6・・・交流負
荷   7〜12・・・GTOサイリスク13〜18・
・・ダイオード 19・・・ダイオード  20・・・直流中間コンデン
サ21・・・リアクトル  22・・・ダイオード23
.28・・・直流中間コンデンサ 24.29・・・リアクトル
1 to 4 are circuit diagrams showing the first to fourth embodiments of the DC intermediate circuit of the voltage-type static converter of the present invention, FIG. 5 is a circuit diagram showing a conventional example, and FIG. 6 is a voltage-type static converter. FIG. 2 is a circuit diagram showing an example of a GTO thyristor converter. 1... AC power supply 2... Thyristor rectifier 3.
...DC reactor 4...DC intermediate capacitor 5...Voltage type GTO thyristor converter 6...AC load 7-12...GTO thyristor 13-18.
...Diode 19...Diode 20...DC intermediate capacitor 21...Reactor 22...Diode 23
.. 28...DC intermediate capacitor 24.29...Reactor

Claims (1)

【特許請求の範囲】[Claims] 自己消弧型半導体素子により構成される交流出力回路へ
直流中間コンデンサによる中間回路を介して直流電力を
供給するものにおいて、該中間コンデンサに直列にリア
クトルを接続し、さらにこのコンデンサ、リアクトルの
直列回路に該リアクトルによって妨げられた該直流中間
コンデンサからの高次リプル電流を補償する別の小容量
な直流中間コンデンサをリアクトルまたは抵抗との直列
回路を並列に接続することを特徴とした電圧形静止変換
器の直流中間回路。
In a device that supplies DC power to an AC output circuit composed of self-extinguishing semiconductor elements via an intermediate circuit including a DC intermediate capacitor, a reactor is connected in series to the intermediate capacitor, and a series circuit of the capacitor and the reactor is used. Voltage-type static conversion characterized in that a series circuit with a reactor or resistor is connected in parallel with another small-capacity DC intermediate capacitor to compensate for the high-order ripple current from the DC intermediate capacitor blocked by the reactor. DC intermediate circuit of the device.
JP27765585A 1985-12-09 1985-12-09 Dc intermediate circuit for voltage type static converter Pending JPS62138059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27765585A JPS62138059A (en) 1985-12-09 1985-12-09 Dc intermediate circuit for voltage type static converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27765585A JPS62138059A (en) 1985-12-09 1985-12-09 Dc intermediate circuit for voltage type static converter

Publications (1)

Publication Number Publication Date
JPS62138059A true JPS62138059A (en) 1987-06-20

Family

ID=17586452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27765585A Pending JPS62138059A (en) 1985-12-09 1985-12-09 Dc intermediate circuit for voltage type static converter

Country Status (1)

Country Link
JP (1) JPS62138059A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132827A1 (en) * 2012-03-05 2013-09-12 富士電機株式会社 Power conversion device
EP2822173A4 (en) * 2012-03-02 2016-04-27 Daikin Ind Ltd Indirect matrix converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524022A (en) * 1975-06-23 1977-01-12 Gen Electric Power circuit having controlling condenser type filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524022A (en) * 1975-06-23 1977-01-12 Gen Electric Power circuit having controlling condenser type filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2822173A4 (en) * 2012-03-02 2016-04-27 Daikin Ind Ltd Indirect matrix converter
US9564797B2 (en) 2012-03-02 2017-02-07 Daikin Industries, Ltd. Indirect matrix converter
WO2013132827A1 (en) * 2012-03-05 2013-09-12 富士電機株式会社 Power conversion device
WO2013132528A1 (en) * 2012-03-05 2013-09-12 富士電機株式会社 Power conversion device
JPWO2013132528A1 (en) * 2012-03-05 2015-07-30 富士電機株式会社 Power converter
US9484829B2 (en) 2012-03-05 2016-11-01 Fuji Electric Co., Ltd. Power conversion device including noise suppression capacitor

Similar Documents

Publication Publication Date Title
JP3745561B2 (en) Multi-level neutral point potential fixed power converter
JPH11136947A (en) Converter circuit
JP3071944B2 (en) Electric vehicle power converter
JPS62138059A (en) Dc intermediate circuit for voltage type static converter
US4853835A (en) Protective apparatus for inverter
US4636932A (en) dv/dt Protection circuit device for an AC-DC converter apparatus
JP2004088941A (en) Snubber circuit for self-arc-extinguishing element
JP2512242B2 (en) Inverter device
JP3315303B2 (en) Motor control device
JP3831932B2 (en) Inverter device
JPS6352667A (en) Auxiliary power source
JP3296408B2 (en) Power converter
JPH073801Y2 (en) Protection circuit for active filter
JPH01286777A (en) Protective device for ac/dc converting apparatus
JPH02114821A (en) Protection of snubber energy regenerative circuit
JP2635549B2 (en) Electric car control device
JPS6361862B2 (en)
JPH07135780A (en) Motor control system
JPH0686563A (en) Power conversion apparatus
JP2646654B2 (en) Voltage source inverter protection circuit
JPH0747958Y2 (en) Protection circuit for active filter
JPS63302768A (en) Protecting circuit for current type inverter unit
JPS60128826A (en) Shortcircuit protecting device for inverter
JPH04108390U (en) sine wave power supply
JPH04217814A (en) Input overvoltage protective circuit for semiconductor power converter