JPS62138051A - Rotary electric machine of permanent magnet - Google Patents

Rotary electric machine of permanent magnet

Info

Publication number
JPS62138051A
JPS62138051A JP27679285A JP27679285A JPS62138051A JP S62138051 A JPS62138051 A JP S62138051A JP 27679285 A JP27679285 A JP 27679285A JP 27679285 A JP27679285 A JP 27679285A JP S62138051 A JPS62138051 A JP S62138051A
Authority
JP
Japan
Prior art keywords
permanent magnet
winding
salient
armature
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27679285A
Other languages
Japanese (ja)
Inventor
Kuniaki Kubokura
久保倉 邦明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27679285A priority Critical patent/JPS62138051A/en
Publication of JPS62138051A publication Critical patent/JPS62138051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Brushless Motors (AREA)

Abstract

PURPOSE:To reconcile the reduction of cogging torque with the reduction of torque ripple, by organizing field spaces with concave sections on the central sections of salient magnetic poles. CONSTITUTION:Salient poles 51-53 for windings on the side of an armature 4 are provided with auxiliary grooves 8c1-8c3, 8d1-8d3, and the grooves are arranged near the both ends of the respective salient poles 51-53. Inside two auxiliary grooves 8c1-8c3, 8d1-8d3 of each salient poles 51-53, near the central sections of the respective salient poles 51-53, concave sections 81-83 with the variation due to the outer peripheral position of magnetic permeance be tween the salient poles and permanent magnets 2 facing each other via a space 9 in the diameter direction of the outer periphery which is more relaxed than the variation of the magnetic permeance on the auxiliary grooves 8c1-8c3, 8d1-8d3 are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は突極構造の電機子鉄心と、界磁に永久磁石を使
用する永久磁石回転電機に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an armature core having a salient pole structure and a permanent magnet rotating electric machine that uses permanent magnets for the field.

〔発明の背景〕[Background of the invention]

突極磁極を有する回転電機、とくにブラシレスモータに
おけるトルク変動には、突極磁極間の巻線溝に起因する
コギングトルクと1巻線に誘起する電圧の直流分が一定
でないことによって生ずる脈動トルク、即ちトルクリッ
プルとがある。コギングトルクを低減する方法としては
、突極磁極表面に補助溝を設けて、コギングトルクの次
数を高次にして低減することが実開昭50−32502
号公報に開示されている。しかし、この方法は補助溝に
よってトルクリップル分が増加する問題がある。
Torque fluctuations in rotating electric machines with salient magnetic poles, especially brushless motors, include cogging torque caused by the winding groove between the salient magnetic poles, pulsating torque caused by the DC component of the voltage induced in one winding being not constant, That is, there is a torque ripple. As a method of reducing cogging torque, it is possible to reduce the cogging torque by providing an auxiliary groove on the surface of the salient pole to increase the order of the cogging torque.
It is disclosed in the publication No. However, this method has a problem in that the torque ripple increases due to the auxiliary groove.

〔発明の目的〕[Purpose of the invention]

本発明は突極構造の電機子鉄心を有し、界磁に永久磁石
を使用する電動機において、コギング1ヘルクの低減と
、出力トルクの1−ルクリップルの低減を合せ行なおう
とするものである。
The present invention aims to reduce cogging 1 herk and output torque 1-le ripple in an electric motor having a salient pole structure armature core and using a permanent magnet for the field.

〔発明の概要〕[Summary of the invention]

本発明は、補助溝や補助突極をもって、コギングトルク
成分を調和削減したり高次化して低減し、あわせて界磁
磁気パーミアンスを磁極内部で小さくして、合成トルク
のトルクリップルを低減し。
The present invention uses auxiliary grooves and auxiliary salient poles to harmonically reduce or increase the order of cogging torque components, and also reduces the field magnetic permeance inside the magnetic poles to reduce the torque ripple of the composite torque.

両立しがたいコギングトルクの低減と1−ルクリップル
の低減を両立させるものである。
This achieves both a reduction in cogging torque and a reduction in 1-leak ripple, which are difficult to achieve at the same time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の原理を図により説明する。 Hereinafter, the principle of the present invention will be explained with reference to the drawings.

第1図は、本発明の対象とするモータの一例の断面構造
を示す。回転子の永久磁石界磁部1は4極に着磁された
リング状永久磁石2とヨーク部3とで構成する。電機子
4は、巻線用突極51゜52.53と補助突極61,6
2.63とで構成し、巻線用突極51,52,53には
各々電機子部[71,72,73が巻回されている。
FIG. 1 shows a cross-sectional structure of an example of a motor to which the present invention is applied. A permanent magnet field section 1 of the rotor is composed of a ring-shaped permanent magnet 2 magnetized into four poles and a yoke section 3. The armature 4 includes winding salient poles 51°52.53 and auxiliary salient poles 61, 6.
2.63, and armature parts [71, 72, 73 are wound around the winding salient poles 51, 52, 53, respectively.

ここでは、いわゆる永久磁石2の極数と巻線用突極の数
はそれぞれ4と3の例で、その最大公約数が磁石の極数
と異なるものを対象としている。
Here, the number of poles of the so-called permanent magnet 2 and the number of salient poles for winding are 4 and 3, respectively, and the greatest common divisor thereof is different from the number of poles of the magnet.

本モータは、ブラシレスモータの場合1巻線71.72
.73への通電を、回転子1の位置に応じて順次切り替
え、連続的な回転力を得る。
If this motor is a brushless motor, one winding is 71.72 mm.
.. 73 is sequentially switched depending on the position of the rotor 1 to obtain continuous rotational force.

8aH8bt+ 8az* sb、、8a、、8biは
突極磁極間に位置する巻線用溝である。この溝配置は、
電気角で一π(従ってM=2)の間隔を持った8 ax
t 8 all 88.と8b□、8b2,8b。
8aH8bt+8az*sb, 8a, 8bi are winding grooves located between the salient magnetic poles. This groove arrangement is
8 ax with a spacing of 1π (therefore M=2) in electrical angle
t 8 all 88. and 8b□, 8b2, 8b.

の2つのグループで構成する。It consists of two groups.

以上が本発明の対象の磁石モータである。また磁石2と
対向する突極51,52,53の外表面には、各々巻線
用溝とほぼ同じ磁気パーミアンスを持つ補助溝8 Q□
H8Qzg 8 C3,8dl H8dz+8d、が設
けられている。
The above is the magnet motor to which the present invention is applied. In addition, on the outer surfaces of the salient poles 51, 52, and 53 facing the magnet 2, there are auxiliary grooves 8 having approximately the same magnetic permeance as the winding grooves.
H8Qzg 8 C3,8dl H8dz+8d is provided.

以下、この種のモータのコギングトルクの発生の原理に
つき、第2図で説明する。一般にコギングトルクは永久
磁石磁極2の移動にともなって空隙部9内の磁気エネル
ギーが変化する事により引き起こされる。この変化の原
因は巻線用溝にある。
The principle of generation of cogging torque in this type of motor will be explained below with reference to FIG. Generally, cogging torque is caused by a change in magnetic energy within the gap 9 as the permanent magnet pole 2 moves. The cause of this change is the winding groove.

第2図において、(a)は空隙磁束密度を、(b)は永
久磁石磁極を、(c)は電機子部の周方向展開図を、(
d)は電機子部がθだけ移動した時の電機子部を示す。
In Figure 2, (a) shows the air gap magnetic flux density, (b) shows the permanent magnet magnetic poles, (c) shows the developed view of the armature in the circumferential direction, and (
d) shows the armature section when the armature section has moved by θ.

図において1便宜上、実際とは逆に電機子部を永久磁石
磁極2に対して動くものとして考えを進める。
In the drawings, for the sake of convenience, the armature section is assumed to move relative to the permanent magnet magnetic pole 2, contrary to the actual situation.

図において、コギングトルクTCは、一般に次式で表現
できる。
In the figure, cogging torque TC can generally be expressed by the following equation.

aθ ここで 0:永久磁石磁極に対する電機子部の移動角 E(θ):空隙全体の磁気エネルギー 一方、空隙中の任意の角度ψでの微少体格dv当りの磁
気エネルギーΔE(θ)は、 2 μ。
aθ where: 0: Movement angle of the armature with respect to the permanent magnet pole E(θ): Magnetic energy of the entire air gap Meanwhile, the magnetic energy ΔE(θ) per minute body dv at any angle ψ in the air gap is: 2 μ.

=に1・B、 2 (ψ、0)・dψ  ・・・ (2
)ここで μ。:空気の透磁率 B、(ψ、θ):空隙の磁束密度 に1:定数 となり、従って空隙全体の磁気エネルギーE(θ)は、 E(θ)”Klf 8g2(ψ、θ)dψ ・・・(3
)ここで P:永久磁石磁極数 となる。
= 1・B, 2 (ψ, 0)・dψ ... (2
) where μ. : Magnetic permeability of air B, (ψ, θ): Magnetic flux density of the air gap 1: Constant, therefore, the magnetic energy E(θ) of the entire air gap is E(θ)”Klf 8g2(ψ, θ)dψ ・・・(3
) Here, P: Number of permanent magnet magnetic poles.

一般に溝がない場合の空隙磁束密度B(ψ)は、高調波
分に分解されて、次式で表わされる。
Generally, the air gap magnetic flux density B (ψ) when there is no groove is decomposed into harmonic components and is expressed by the following equation.

ここで B、:B(ψ)の高調波のピーク値また、空隙
部にはエネルギー関数として次式を定義する。(第2図
(f)) S(ψ)=B”(ψ) =Σ S、(ψ) n=1 ここで、S、(ψ):S(ψ)の高調波分に、(ψ):
S、(ψ)の直流分 S、、:S、(ψ)の高調波のピーク値ここて、巻線用
溝、補助溝の磁束密度に対する影響は、溝部上の空隙磁
束密度が減少するか、もしくは、零になると考えられる
。そこで溝部の位置のみ単位とする以下の関数を定義す
る。(第2図(e)) ここで W:溝幅 以上の関数を使うことによって、溝の存在は、以下のu
t(θ)で表示できる。
Here, the peak value of the harmonic of B,:B(ψ) and the following equation are defined as an energy function for the gap. (Fig. 2 (f)) S(ψ)=B”(ψ) =Σ S, (ψ) n=1 Here, S, (ψ): For the harmonics of S(ψ), (ψ) :
DC component of S, (ψ) S, : peak value of harmonic of S, (ψ) Here, the effect of the winding groove and auxiliary groove on the magnetic flux density is whether the air gap magnetic flux density above the groove decreases. Or, it may become zero. Therefore, the following function is defined in which only the position of the groove is used as a unit. (Figure 2 (e)) Here, by using a function greater than or equal to W: groove width, the existence of a groove can be determined by the following u
It can be expressed as t(θ).

ut(θ)=U(θ+α1)+u(θ+α2)+・・+
u(0十〇、)=ΣU(θ+α、)・・・・・・・・・
・・・・・・・・・・・・(7)n=1 ここで α0.α2・・・・・・α1:溝位置階:溝数 従って溝を含めた磁束密度の分布は、 Bg(ψ、θ)=(1−u、(θ))B(ψ)・・・(
8)となり、(8)式を(3)式に代入すると、・・・
・・・・・・・・・・・・(9)が得られるに こで(9)式の第一項はθの関数にならないため、(1
)式により明らかにコギングトルクに影響を与えない。
ut(θ)=U(θ+α1)+u(θ+α2)+...+
u(010,)=ΣU(θ+α,)・・・・・・・・・
・・・・・・・・・・・・(7) n=1 where α0. α2...α1: Groove position level: number of grooves Therefore, the distribution of magnetic flux density including the grooves is: Bg(ψ, θ) = (1-u, (θ)) B(ψ)...(
8), and substituting equation (8) into equation (3),...
・・・・・・・・・・・・(9) is obtained. Since the first term of equation (9) is not a function of θ, (1
) clearly does not affect the cogging torque.

従ってコギングトルクTaはaθ 8  ・・・・・・
・・・・・・・・・(10)となる、ここでS(ψ)は
、溝がない場合のエネルギー関数を示す、さらにこれは
、 となり、従って、コギングトルクT。は、第2図で説明
すると同図(f)で示すエネルギー関数E(θ)での、
移動前の位置関数(第2図(e))が1を示すエネルギ
ー関数の総和E1と移動後の総和E2の変動によって表
わされる。
Therefore, the cogging torque Ta is aθ 8...
......(10), where S(ψ) represents the energy function when there is no groove, which further becomes: Therefore, the cogging torque T. As explained in Fig. 2, the energy function E(θ) shown in Fig. 2(f) is
The position function before movement (FIG. 2(e)) is represented by the fluctuation of the sum E1 of the energy functions indicating 1 and the sum E2 after movement.

第2図(f)より変動を直接見出すことは困難であるの
で、(11)式を更に展開するとn=1    n1=
1 n=1  n1=1 n=1  n1=1 ・・・・・・・・・・・・・・(12)となり、従って
(12)式より、コギングトルクT、は各調波成分に分
解することができる。このことは、コギングトルクの各
調波成分は、同じ調波のエネルギー関数の溝位置部の値
の和の変動として与えられる事を示す。
Since it is difficult to directly find the fluctuation from Figure 2 (f), by further expanding equation (11), n=1 n1=
1 n=1 n1=1 n=1 n1=1 ・・・・・・・・・・・・・・・(12) Therefore, from equation (12), the cogging torque T is decomposed into each harmonic component. can do. This indicates that each harmonic component of the cogging torque is given as a variation in the sum of the groove position values of the energy function of the same harmonic.

さらに上記理論を実例により、第3図を用いて説明する
Further, the above theory will be explained by an example using FIG. 3.

(a)は空隙磁束密度Bgを、(b)は永久磁石磁極、
(c)は巻線用溝のみの電機子部を。
(a) is the air gap magnetic flux density Bg, (b) is the permanent magnet magnetic pole,
(c) shows the armature section with only the winding grooves.

(d)はその溝位置関数を、(C)、(f)。(d) shows the groove position function, (C) and (f).

(g)には、それぞれエネルギー関数の基本成分、第3
調波分、第6調波分を示す。ここで、巻線用溝は、電気
角で−πずつ位相の異なる8a工1aaZt8a、のグ
ループと、8b、、8b、、8b3のグループとからな
る。この2つのグループに対して。
(g) shows the basic component of the energy function and the third
The harmonic component and the 6th harmonic component are shown. Here, the winding groove is composed of a group of 8a, 1aaZt8a, and a group of 8b, 8b, 8b3, which differ in phase by -π in electrical angle. for these two groups.

式(12)の基本波分に対して適用するとΣSa、 s
in:’1(0+ αn1)n=1 =一定 となる。上式中の〔〕内の前半は溝8a1,8a、。
When applied to the fundamental wave component of equation (12), ΣSa, s
in:'1(0+αn1)n=1=constant. The first half in brackets [ ] in the above formula are grooves 8a1, 8a.

8a3のグループに対応するものであり、後半は)18
b1,8b2,8b□のグループに対応するものである
が、和は一定となり、コギングトルクT。
It corresponds to the group of 8a3, and the second half is) 18
This corresponds to the groups b1, 8b2, and 8b□, but the sum is constant and the cogging torque T.

は生じない。does not occur.

一般に溝間隔−M2C(Mは3の倍数でない整数)をも
つ3個の溝のグループは、上式と同じ手法での考察から
、基本波分と3n±1次調波分のコギングトルクを生じ
ないことが分る。
In general, a group of three grooves with a groove spacing -M2C (M is an integer that is not a multiple of 3) produces cogging torque for the fundamental wave and 3n±1st harmonic from consideration using the same method as the above formula. It turns out there isn't.

一方、第3次調波について考えると。On the other hand, if we consider the third harmonic.

Σ Sa 5in2 ・3 (θ+α、1)n=1 =Sa、・n−r  sin 6 (θ)・・・・・・
・・・・・・・・・(14)となり第3図(f)で示す
様に各溝位置上のエネルギー分布の第3次調波は同相と
なり、コギングを引き起こす。
Σ Sa 5in2 ・3 (θ+α, 1) n=1 =Sa, ・n−r sin 6 (θ)・・・・・・
(14) As shown in FIG. 3(f), the third harmonic of the energy distribution on each groove position becomes in phase, causing cogging.

この第3次調波によるコギングトルク発生を除こでKは
整数)だけずらして補助溝を配置することが有効である
。最も簡単な例として、第3図(f)に矢印で示した位
置に補助溝をつけると良い。これによって(14)式は
、 ・・・・・・・・・・・・・・・(15)となり零とな
し得る。尚(15)式の第一項は巻線溝の項、第二項は
補助溝の項である。
It is effective to dispose the auxiliary grooves so that they are shifted by an amount (K is an integer) in order to eliminate the cogging torque generated by this third harmonic. As the simplest example, an auxiliary groove may be provided at the position indicated by the arrow in FIG. 3(f). As a result, equation (14) becomes . . . (15) and can be made zero. Note that the first term in equation (15) is a term for the winding groove, and the second term is a term for the auxiliary groove.

ここで補助溝の配置は第3図に限られたものですれば、
その他の任意の位置でも良い。但し−グループを構成す
る10個の補助溝の間隔は、電気角−Mi(Mは3の倍
数でない整数)を維持するものとする。この溝装置でコ
ギングトルクT、は高次になり低減することができる。
If the arrangement of the auxiliary grooves is limited to that shown in Figure 3, then
Any other position may also be used. However, the interval between the ten auxiliary grooves constituting the group shall be maintained at an electrical angle of -Mi (M is an integer that is not a multiple of 3). With this groove device, the cogging torque T becomes high order and can be reduced.

以上の巻線溝と補助溝の配置では、第3次調波成分は除
去されたが、第6次調波成分が出てくる。
In the above arrangement of the winding groove and the auxiliary groove, the third harmonic component is removed, but the sixth harmonic component appears.

第3図(f)で示した溝装置は第6次調波成分に対して
は =2nり・Sa、・5in2・6・θ ・・・・・・・
・・・・・(16)となる、この第6次調波成分は巻線
用溝と補助溝補助溝のグループを、他のグループに対し
て、電π る、その配列例を第3図(h)に示す。
For the 6th harmonic component, the groove device shown in FIG.
...(16) This 6th harmonic component makes the group of winding grooves and auxiliary grooves different from other groups. An example of their arrangement is shown in Figure 3. Shown in (h).

その他、第9y4波成分については、第3次調波を消せ
ば、自動的に消え、その他の高次としては第12調波成
分が残るが、このクラスの高調波の必要に応じてスキュ
ーを行なえば、最小のスキュ必要に応じてスキューを行
なえば、最小のスキュー角で除去できる。
In addition, as for the 9y4th wave component, if you erase the 3rd harmonic, it will disappear automatically, and the 12th harmonic will remain as the other higher order, but you can adjust the skew according to the needs of this class of harmonics. If the skew is performed as necessary, the skew can be removed with the minimum skew angle.

次に出力トルクのトルクリップルについてみる。Next, let's look at the torque ripple of the output torque.

第2図(a)は空隙9における磁束分布を示していた。FIG. 2(a) shows the magnetic flux distribution in the air gap 9.

界磁の磁石2から出た磁束は、その大部分が突極部の5
1,52,53.及び61,62゜63に吸いとられ、
各々の突極部51,52゜53の実効的なピッチは、機
械角で−、電気角でπとなる。巻線71,72,73と
鎖交する磁束は、突極部51,52.53に流入する磁
束に等しいから1巻線の実効ピッチも同様に電気角でπ
と云える。
Most of the magnetic flux emitted from the field magnet 2 is at the salient pole 5.
1,52,53. and absorbed by 61, 62°63,
The effective pitch of each of the salient pole portions 51, 52, 53 is - in mechanical angle and π in electrical angle. Since the magnetic flux interlinking with the windings 71, 72, 73 is equal to the magnetic flux flowing into the salient pole parts 51, 52, 53, the effective pitch of one winding is also π in electrical angle.
I can say that.

第4図は、界磁部と巻線71(または72 、73)と
の関係を示す概略展開図である。界磁部磁石2は平面展
開され、巻線71は等価的に実効ピッチπの1タ一ン巻
線71Sに置きかえである。ここに巻線71Sに電流i
を流す、界磁部1との電磁作用によって回転力Mが生じ
る。その大きさは、フレミングの左手の法則により、電
流と磁束密度に比例するから となる。即、回転力Mは巻線の実効ピッチの両端に比例
することが分る。
FIG. 4 is a schematic development diagram showing the relationship between the field section and the windings 71 (or 72, 73). The field part magnet 2 is developed in a plane, and the winding 71 is equivalently replaced with a one-turn winding 71S having an effective pitch of π. Here, a current i is applied to the winding 71S.
A rotational force M is generated by the electromagnetic interaction with the field section 1. This is because its size is proportional to the current and magnetic flux density according to Fleming's left-hand rule. That is, it can be seen that the rotational force M is proportional to both ends of the effective pitch of the winding.

回転角θの変化に対する各巻!?1,72゜73の各実
効ピッチ両端における磁束密度の差の変化を第5図(a
)に示す、この場合、一定値の電流1t112113を
第5図(b)の様に回転角に応じて各巻線71,72.
73に順次流すと、回転力Mは第5図(c)となる。一
定電流を通電するときの回転力の変動分が、トルクリッ
プルであるから、第5図CC>のΔMとなる。
Each volume for changes in rotation angle θ! ? Figure 5 (a) shows the change in the difference in magnetic flux density at both ends of each effective pitch of 1,72°73.
), in this case, a constant value of current 1t112113 is applied to each winding 71, 72 . . . according to the rotation angle as shown in FIG. 5(b).
73, the rotational force M becomes as shown in FIG. 5(c). Since the variation in the rotational force when a constant current is applied is torque ripple, it becomes ΔM in FIG. 5 CC>.

以上の説明から明らかな様に、各巻線71゜72.73
の磁束密度差の平坦部の角度幅Fを広くすれば、トルク
リップルΔMは減少する6巻線の実効ピッチを界磁部1
の1磁極ピツチに近づける様減らしてくれば、このFは
広がり、トルクリップルは減少することも分る。補助突
極61゜62.63は、不要な磁束が巻線と鎖交しない
様にし1巻線の実効ピッチを界磁部の1磁極ビヤチに近
づけている・ この種モータについては、回転力は、巻線内の誘起電圧
Eと電流主の積に比例することも、衆知の電動機理論に
より開示されていることである。
As is clear from the above explanation, each winding is 71°72.73°.
If the angular width F of the flat part of the magnetic flux density difference is increased, the torque ripple ΔM will decrease.
It can also be seen that if F is reduced to approach one magnetic pole pitch, F will expand and torque ripple will decrease. The auxiliary salient poles 61゜62.63 prevent unnecessary magnetic flux from interlinking with the windings, and bring the effective pitch of one winding close to the single magnetic pole pitch of the field section. For this type of motor, the rotational force is It is also disclosed in well-known motor theory that E is proportional to the product of the induced voltage E in the winding and the main current.

即ち第5図(a)、(Q)は、いずれも巻線内誘起電規
Eで置換して考察できる事となる。
That is, both of FIGS. 5(a) and (Q) can be considered by replacing them with the in-winding induced electric current E.

さらに、巻線の誘起電圧は、磁束鎖交の時間変化の割合
に比例するという衆知のファラデイの法則で求めること
もできるし、又、巻線辺が、磁界を表わす磁力線を切る
ことによって誘導されるとするフレミングの右手側によ
って求めることもでき、いずれの方法でも同一の結論に
到達することは衆知となっており、誘起電圧波形は巻線
辺の切る磁束波と同一波形となる。
Furthermore, the induced voltage in the winding can be calculated using Faraday's law, which is well known to be proportional to the rate of change in magnetic flux linkage over time, or it can also be calculated by It can also be obtained using Fleming's right hand side, which assumes that, and it is common knowledge that either method will reach the same conclusion, and the induced voltage waveform will be the same waveform as the magnetic flux wave cut by the winding side.

即ち、第5図(a)、(c)を誘起電圧Eに置換して考
える時、その波形は、第2図(a)、第3図(a)の空
隙磁束参密度Bgの波形に相似であることが理解できる
In other words, when we replace Figures 5(a) and 5(c) with the induced voltage E, its waveform is similar to the waveform of the air gap magnetic flux reference density Bg in Figures 2(a) and 3(a). It is understandable that

ここに、前述の如く、巻線の実効ピッチに注目して平坦
部Fを広くシトルクリツブルを低減する方法とは別に、
磁束分布波形に注目して、トルクリップルを低減する方
法のあることが分る。
Here, as mentioned above, apart from the method of reducing sittle cripple by widening the flat part F by focusing on the effective pitch of the winding,
It turns out that there is a way to reduce torque ripple by paying attention to the magnetic flux distribution waveform.

実効的なトルクリップルは1回転力Mの平均に対し変動
分で評価できる。そしてさらに、コギングトルク同様に
高次化して緩和することも効果的である。そのためには
、第5図(a)、(c)の平坦部FをΔM方向にその値
がΔMを超えない範囲で部分的に低下させれば良い。(
第5図(d)の八T) それは1個に限らず複数でも、三角形状にこだわらない
形であっても同様効果的であることは容易に分る。
The effective torque ripple can be evaluated by the variation with respect to the average of one rotational force M. Further, it is also effective to reduce the cogging torque by increasing the order of the cogging torque. For this purpose, the flat portion F in FIGS. 5(a) and 5(c) may be partially lowered in the ΔM direction within a range in which the value does not exceed ΔM. (
(8T in Figure 5(d)) It is easy to see that it is equally effective not only for one but for multiple shapes, even for shapes other than triangles.

このΔTを得る方法は、界磁1側の工夫によるものと、
電機子4側の工夫によるものとが考えられる。
The method for obtaining this ΔT is based on a device on the field 1 side.
It is thought that this is due to a device on the armature 4 side.

第6図(a)、(b)は、界磁1側での実施例を示しく
a)は、磁石2に各々11,12,13゜14のくぼみ
を設けている。(b)は、磁石2の肉厚内径、外径とも
0点を中心としたR工、R2で構成する第1図例に対し
、内径側の全であるいは、一部をA点を中心とした半径
R,(R3<R工)で構成し、破線で示す前者例に対し
、くぼみ21゜22.23,24を設けたものである。
FIGS. 6(a) and 6(b) show an embodiment on the field 1 side. In a), the magnet 2 is provided with recesses of 11°, 12°, and 13°14, respectively. (b) shows that the inner diameter and outer diameter of the magnet 2 are both centered at point 0, R, and R2 in the example shown in Figure 1. It is constructed with a radius R, (R3<R), and has depressions 21°, 22, 23, and 24 in contrast to the former example shown by the broken line.

すなわち(a)、(b)いずれも、第1図の電機子4(
この場合溝なしで、表面一様な円筒と考える)に対し、
磁石2の端面31,32の中側が両端よりも磁気パーミ
アンスが小さくなる如く、空隙長を大きく構成しておる
。これにより、第5図(d)の如きくぼみ八Tを形成し
ようとするものである。
That is, in both (a) and (b), the armature 4 (
In this case, it is considered a cylinder with a uniform surface without grooves), whereas
The gap length is configured to be large so that the magnetic permeance is smaller at the inner side of the end faces 31 and 32 of the magnet 2 than at both ends. This attempts to form a depression 8T as shown in FIG. 5(d).

このくぼみ11,12,13,14、あるいは21.2
2,23,24は各磁石に複数個あっても、また形状が
いかなるものであっても、前述の如く1回転力のΔMあ
るいはそれに対応する誘起電圧の側より小さく、かつ、
平坦部F内にある回転力ΔTあるいはそれに対応する誘
起電圧を発生させるものであれば良いことは自明である
。但し2部外であっても巻線電流i□912j 1mの
切替点T内であれば、一部効果もある。
This depression 11, 12, 13, 14 or 21.2
2, 23, and 24, even if each magnet has a plurality of them or whatever their shape, they are smaller than ΔM of one rotational force or the induced voltage corresponding to it, as described above, and
It is obvious that any device that generates the rotational force ΔT within the flat portion F or the induced voltage corresponding thereto may be used. However, even if it is outside the 2nd section, there is some effect as long as it is within the switching point T of the winding current i□912j 1m.

第7図は、本発明に従って電機子4側での工夫によるも
のを示す。巻線用突ti51,52.53には補助溝8
 cl、 8 c、、 8 c、及び8d、、 8d2
゜8d、があり、それらは前述理論に準じて各突極の両
端近辺に配列されている。
FIG. 7 shows a modification on the armature 4 side according to the present invention. There are auxiliary grooves 8 on the winding protrusions 51, 52, and 53.
cl, 8c, 8c, and 8d, 8d2
8d, which are arranged near both ends of each salient pole according to the theory described above.

この各突極51,52,53の2つの補助溝8 c、〜
8 C3,8d1〜8 d、の内側で、各突極51〜5
3の中央近辺には、外周の径方向空隙9をへだでて対抗
する永久磁石2との磁気パーミアンの、外周位置による
変化が補助溝8 C1+ 8 czp8 c、、 8 
di、 8 d、、 8 d、よりもゆるやかな形状の
くぼみ部81,82.83が形成されている。
The two auxiliary grooves 8 c, ~ of each salient pole 51, 52, 53
8 C3, 8d1 to 8d, inside each salient pole 51 to 5
In the vicinity of the center of 3, there is an auxiliary groove 8 C1+ 8 czp8 c, , 8 where the magnetic permian with the opposing permanent magnet 2 across the radial gap 9 on the outer periphery varies depending on the outer circumferential position.
Recesses 81, 82, and 83 are formed in shapes that are gentler than those of di, 8d, and 8d.

これにより前述理論にもとずき、第5図(d)のくぼみ
ΔTを作成するものである。
Based on this theory, the depression ΔT shown in FIG. 5(d) is created.

〔発明の効果〕〔Effect of the invention〕

以上の構成によれば9両立しがたいコギングトルクの低
減と、トルクリップルの低減を合せ実施し得る。
According to the above configuration, it is possible to reduce cogging torque and torque ripple, which are difficult to achieve at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する電動機の構造図、第2図はコ
ギングトルク発生の原理説明図、第3図は第1図に対応
したコギングトルク低減の説明図、第4図、第5図(a
)ないしくd)および第6図(a)、(b)はそれぞれ
トルクリップルの発生原理と低減手法を示す図、第7図
は本発明の一実施例を示す構成図である。 1・・・永久磁石界磁部、2・・・永久磁石磁極、3・
・・ヨーク部、4・・・電機子、51,52,53・・
・巻線用突極、61,62.63・・・補助突極、71
,72゜73−・・電機子巻線、8 alp 8 a2
e 8 a3t 8 bit8b2,8b3・・・巻線
用溝、8C工、8c、、 8c3゜8di、8d2,8
d、・・・補助溝、9・・・空隙、11゜12.13,
14・・・磁石2内のくぼみ、21゜22.23.24
・・・磁石2内のくぼみ、31゜32・・・磁石2の端
部、81,82,83・・・巻線用突極、51.52.
53の中央付近に形成された磁気パーミアンス変化のゆ
るやかなくぼみ部。
Fig. 1 is a structural diagram of an electric motor to which the present invention is applied, Fig. 2 is an explanatory diagram of the principle of cogging torque generation, Fig. 3 is an explanatory diagram of cogging torque reduction corresponding to Fig. 1, Figs. 4 and 5. (a
) to d) and FIGS. 6(a) and 6(b) are diagrams showing the principle of torque ripple generation and reduction methods, respectively, and FIG. 7 is a configuration diagram showing one embodiment of the present invention. 1... Permanent magnet field part, 2... Permanent magnet magnetic pole, 3...
... Yoke part, 4... Armature, 51, 52, 53...
・Salient pole for winding, 61, 62.63... Auxiliary salient pole, 71
,72゜73-...armature winding, 8 alp 8 a2
e 8 a3t 8 bit8b2, 8b3... Winding groove, 8C work, 8c,, 8c3°8di, 8d2, 8
d,...Auxiliary groove, 9...Gap, 11°12.13,
14... Recess in magnet 2, 21°22.23.24
... Recess in magnet 2, 31° 32 ... End of magnet 2, 81, 82, 83 ... Salient pole for winding, 51.52.
A depression formed near the center of 53 where the magnetic permeance gradually changes.

Claims (1)

【特許請求の範囲】 1、永久磁石界磁部と、突極の総てもしくは一部に電機
子巻線を巻装した突極磁極で構成した電機子とからなり
、前記突極磁極の表面に補助溝を設けかつ、永久磁石界
磁部もしくは電機子部のいずれか一方が他方に対して回
転可能に構成された永久磁石機において、前記突極磁極
の中央部にくぼみ形状をもつて界磁空隙を構成すること
によつて前記永久磁石界磁部と電機子間の磁気パーミア
ンスが前記突極磁極両端に比しその内側で小さくなるよ
うにしたことを特徴とする永久磁石回転電機。 2、前記特許請求の範囲第1項記載のものにおいて、電
機子鉄心の主突極部の間に前記界磁部と対向するように
補助突極部を設け、電機子巻線の実効ピツチを界磁極の
ピツチにほぼひとしくしたことを特徴とする永久磁石回
転電機。 3、前記特許請求の範囲第1項事載のものにおいて界磁
極数がP個で、電機子巻線突極がm個で、両者の最大公
約数がPとことなり、かつ、電気角で2/3Mπ(Mは
3の倍数でない整数)の間隔を持つた巻線用溝の1つあ
るいは複数のグループをもち、巻線用溝位置に対して電
気角で2/3K+π/6(Kは整数)だけ分離した位置
に巻線用溝と同数の補助溝を突極磁極表面に設けたこと
を特徴とする永久磁石回転電機。 4、前記特許請求の範囲第3項記載のものにおいて、巻
線用溝と補助溝との間隔をπ/3K+π/6だけ分離し
た一つの巻線用の溝と補助溝のグループを、他のグルー
プに対して、電気角でL・π/2(Lは整数)だけずら
して配置したことを特徴とする永久磁石回転電機。 5、前記特許請求の範囲第1項記載のものにおいて、界
磁の位置に応じて複数の電機子巻線への通電を切り替え
て連続的な回転力を得るものであつて、前記磁気パーミ
アンスの低下が、巻線切替内の合成誘起電圧にくぼみを
発生するものにして、かつ巻線切替点のくぼみよりもく
ぼまないことを特徴とする永久磁石回転電機。
[Claims] 1. An armature consisting of a permanent magnet field part and a salient magnetic pole in which an armature winding is wound around all or a part of the salient pole, and the surface of the salient magnetic pole is In a permanent magnet machine in which an auxiliary groove is provided in a permanent magnet field part or an armature part is configured to be rotatable relative to the other, the field part is provided with a concave shape in the center of the salient magnetic pole. A permanent magnet rotating electric machine characterized in that magnetic permeance between the permanent magnet field portion and the armature is smaller inside the salient magnetic pole than at both ends of the salient magnetic pole by forming a magnetic air gap. 2. In the item described in claim 1, an auxiliary salient pole portion is provided between the main salient pole portions of the armature core so as to face the field portion, and the effective pitch of the armature winding is A permanent magnet rotating electrical machine characterized by having field poles that are almost equally pitched. 3. In the item described in claim 1, the number of field poles is P, the number of armature winding salient poles is m, the greatest common divisor of both is different from P, and the electrical angle is It has one or more groups of winding grooves with an interval of 2/3Mπ (M is an integer that is not a multiple of 3), and the electrical angle is 2/3K+π/6 (K is A permanent magnet rotating electrical machine characterized by having auxiliary grooves of the same number as winding grooves provided on the surface of a salient magnetic pole at positions separated by an integer. 4. In the product described in claim 3, one group of winding grooves and auxiliary grooves in which the distance between the winding grooves and the auxiliary grooves is separated by π/3K+π/6 is separated from the other group. A permanent magnet rotating electric machine characterized in that the permanent magnet rotating electric machine is arranged so as to be shifted by an electrical angle of L·π/2 (L is an integer) with respect to the group. 5. The device according to claim 1, wherein continuous rotational force is obtained by switching energization to a plurality of armature windings according to the position of the magnetic field, and the magnetic permeance is A permanent magnet rotating electric machine characterized in that the drop causes a depression in the composite induced voltage within the winding switching, and the depression is not smaller than the depression at the winding switching point.
JP27679285A 1985-12-11 1985-12-11 Rotary electric machine of permanent magnet Pending JPS62138051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27679285A JPS62138051A (en) 1985-12-11 1985-12-11 Rotary electric machine of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27679285A JPS62138051A (en) 1985-12-11 1985-12-11 Rotary electric machine of permanent magnet

Publications (1)

Publication Number Publication Date
JPS62138051A true JPS62138051A (en) 1987-06-20

Family

ID=17574438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27679285A Pending JPS62138051A (en) 1985-12-11 1985-12-11 Rotary electric machine of permanent magnet

Country Status (1)

Country Link
JP (1) JPS62138051A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595194U (en) * 1992-05-15 1993-12-24 日本精工株式会社 Brushless motor
US7362031B2 (en) * 2003-09-03 2008-04-22 Mitsuba Corporation Electric motor
WO2009089935A1 (en) * 2008-01-15 2009-07-23 Robert Bosch Gmbh Stator of an electronically commutated rotor motor
WO2011029231A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Square-wave three-phase permanent magnet direct current motor provided with large teeth and small teeth structure and the assembling method thereof
WO2011029233A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type three-phase brushless permanent magnet direct current motor and assembling method thereof
WO2011029228A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Square-wave three-phase brushless permanent magnet direct current motor provided with large-teeth-and-small-teeth structure and assembling method thereof
WO2011029229A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Three-phase brushless permanent magnet direct current motor provided with large teeth and small teeth structure and assembling method thereof
WO2011029234A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type square-wave three-phase brushless permanent magnet direct current motor and assembling method thereof
WO2011029230A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Brushless permanent magnet direct current motor provided with large teeth and small teeth structure and assembling method thereof
WO2011029235A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type square-wave three-phase brushless direct current motor and assembling method thereof
WO2011029227A1 (en) * 2009-09-11 2011-03-17 Du Kunmei Large diameter square wave three-phase brushless permanent magnet direct current motor and assembling method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595194U (en) * 1992-05-15 1993-12-24 日本精工株式会社 Brushless motor
US7362031B2 (en) * 2003-09-03 2008-04-22 Mitsuba Corporation Electric motor
WO2009089935A1 (en) * 2008-01-15 2009-07-23 Robert Bosch Gmbh Stator of an electronically commutated rotor motor
CN102017365A (en) * 2008-01-15 2011-04-13 罗伯特.博世有限公司 Stator of an electronically commutated rotor motor
WO2011029229A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Three-phase brushless permanent magnet direct current motor provided with large teeth and small teeth structure and assembling method thereof
WO2011029228A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Square-wave three-phase brushless permanent magnet direct current motor provided with large-teeth-and-small-teeth structure and assembling method thereof
WO2011029233A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type three-phase brushless permanent magnet direct current motor and assembling method thereof
WO2011029234A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type square-wave three-phase brushless permanent magnet direct current motor and assembling method thereof
WO2011029230A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Brushless permanent magnet direct current motor provided with large teeth and small teeth structure and assembling method thereof
WO2011029235A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Large-diameter type square-wave three-phase brushless direct current motor and assembling method thereof
WO2011029227A1 (en) * 2009-09-11 2011-03-17 Du Kunmei Large diameter square wave three-phase brushless permanent magnet direct current motor and assembling method thereof
WO2011029231A1 (en) * 2009-09-11 2011-03-17 深圳航天科技创新研究院 Square-wave three-phase permanent magnet direct current motor provided with large teeth and small teeth structure and the assembling method thereof
CN102124630A (en) * 2009-09-11 2011-07-13 深圳航天科技创新研究院 Large-diameter type three-phase brushless permanent magnet direct current motor and assembling method thereof
CN102124627A (en) * 2009-09-11 2011-07-13 深圳航天科技创新研究院 Large-diameter type square-wave three-phase brushless direct current motor and assembling method thereof

Similar Documents

Publication Publication Date Title
JP5791794B2 (en) Permanent magnet embedded rotary electric machine
US5757100A (en) Method &amp; apparatus for reducing cogging torque in an electric motor
JP6903144B2 (en) Permanent magnet type rotary electric machine
WO2012097107A1 (en) Magnetically isolated phase interior permanent magnet electrical rotating machine
KR20160100378A (en) Permanent magnet motor
JPH03501679A (en) rotating electric machine
JPS62138051A (en) Rotary electric machine of permanent magnet
JP6196864B2 (en) Permanent magnet rotating electric machine
JP2008211918A (en) Rotary electric machine
JP5307849B2 (en) Electric motor
JP2018011466A (en) Permanent-magnet embedded synchronous machine
JP2006087283A (en) Permanent magnet type rotation motor
JP2006262603A (en) Rotary electric machine
JP2014180193A (en) Synchronous motor with high responsiveness
JP3489215B2 (en) Permanent magnet synchronous motor
WO2017171037A1 (en) Rotor and method for designing rotor
JP2010057208A (en) Rotary electric machine
JPS6198143A (en) Permanent magnet rotary electric machine
JP2001298922A (en) Vernier motor
ITVI20100220A1 (en) PERMANENT MAGNET GENERATOR WITH REDUCED COGGING EFFECT AND RELATED MAGNET
JP7458699B2 (en) Variable magnetic flux rotating electric machine
JPH0681463B2 (en) Rotating electric machine
JP2002281701A (en) Synchronous reluctance motor
JPS6041822Y2 (en) synchronous machine
JPH1080124A (en) Permanent magnet type rotating electric machine